Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Clin Cancer Res ; 17(7): 1883-94, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21325292

ABSTRACT

PURPOSE: Microarray studies indicate medulloblastoma comprises distinct molecular disease subgroups, which offer potential for improved clinical management. EXPERIMENTAL DESIGN: Minimal mRNA expression signatures diagnostic for the Wnt/Wingless (WNT) and Sonic Hedgehog (SHH) subgroups were developed, validated, and used to assign subgroup affiliation in 173 tumors from four independent cohorts, alongside a systematic investigation of subgroup clinical and molecular characteristics. RESULTS: WNT tumors [12% (21/173)] were diagnosed >5 years of age (peak, 10 years), displayed classic histology, CTNNB1 mutation (19/20), and associated chromosome 6 loss, and have previously been associated with favorable prognosis. SHH cases [24% (42/173)] predominated in infants (<3 years) and showed an age-dependent relationship to desmoplastic/nodular pathology; all infant desmoplastic/nodular cases (previously associated with a good outcome) were SHH-positive, but these relationships broke down in noninfants. PTCH1 mutations were common [34% (11/32)], but PTCH1 exon1c hypermethylation, chromosome 9q and REN (KCTD11) genetic loss were not SHH associated, and SMO or SUFU mutation, PTCH1 exon1a or SUFU hypermethylation did not play a role, indicating novel activating mechanisms in the majority of SHH cases. SHH tumors were associated with an absence of COL1A2 methylation. WNT/SHH-independent medulloblastomas [64% (110/173)] showed all histologies, peaked at 3 and 6 years, and were exclusively associated with chromosome 17p loss. CONCLUSIONS: Medulloblastoma subgroups are characterized by distinct genomic, epigenomic and clinicopathologic features, and clinical outcomes. Validated array-independent gene expression assays for the rapid assessment of subgroup affiliation in small biopsies provide a basis for their routine clinical application, in strategies including molecular disease-risk stratification and delivery of targeted therapeutics.


Subject(s)
Cerebellar Neoplasms/diagnosis , Gene Expression Profiling , Medulloblastoma/diagnosis , Adolescent , Adult , Age Factors , Carcinoma, Large Cell/diagnosis , Carcinoma, Large Cell/genetics , Carcinoma, Large Cell/therapy , Case-Control Studies , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/therapy , Child , Child, Preschool , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 9/genetics , Cluster Analysis , Epigenesis, Genetic , Female , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Infant , Loss of Heterozygosity , Male , Medulloblastoma/genetics , Medulloblastoma/therapy , Microsatellite Repeats , Mutation , Patched Receptors , Patched-1 Receptor , Principal Component Analysis , RNA, Messenger/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , Young Adult , beta Catenin/genetics , beta Catenin/metabolism
2.
Cell Cycle ; 5(20): 2381-9, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17102621

ABSTRACT

Abnormalities of chromosome 10 are frequently observed in the development of medulloblastoma, the most common malignant brain tumor of childhood. To identify critical genetic loci involved, we performed detailed physical mapping of regions of allelic loss on this chromosome. 18% of cases (5/32 primary tumors, 2/8 cell lines) harbored allelic losses on 10q. Refined mapping identified a 21.7Mb common interval, affecting the region 10q23.3-10q25.3. This region contains three genes, MXI1, SUFU and BTRC, which represent putative medulloblastoma tumor suppressor (TS) genes on the basis of either (i) negative regulation of critical medulloblastoma pathways, or (ii) mutation in other cancer types. We therefore sought evidence of their genetic inactivation in 46 cases, by mutational analysis of their entire coding regions. A MXI1 mutation was identified which abolishes its translation initiation site (A1G; MET1VAL), however no further tumor-specific sequence variations were detected. We next identified and characterised CpG islands associated with 5' regions of the MXI1, SUFU and BTRC genes; analysis of these regions for evidence of DNA hypermethylation, alongside expression analysis of their respective transcripts, revealed no evidence to support epigenetic inactivation of any gene. These findings implicate the inactivation of critical TS loci at 10q23.3-25.3 in medulloblastoma, however comprehensive analysis of SUFU, BTRC and MXI1 indicates they are unlikely to represent major targets of these allelic losses. MXI1 mutation appears to play a role in the pathogenesis of a small subset of cases, and suggests an alternative mechanism to MYC amplification for disruption of the MYC/MAD/MAX network in medulloblastoma.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Chromosomes, Human, Pair 10 , Genes, Tumor Suppressor , Medulloblastoma/genetics , Tumor Suppressor Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Gene Silencing , Humans , Infant , Male , Medulloblastoma/etiology , Physical Chromosome Mapping , Repressor Proteins/genetics , beta-Transducin Repeat-Containing Proteins/genetics
3.
Cell Cycle ; 5(22): 2666-70, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17172831

ABSTRACT

The accurate assessment of disease risk remains a major goal in children with medulloblastoma. Activation of the canonical Wnt/Wingless (Wnt/Wg) signalling pathway occurs in up to 25% of cases and is associated with a favorable disease outcome. To explore the molecular pathogenesis of Wnt/Wg-active medulloblastomas, and to investigate any genetic basis for their observed clinical behavior, we assessed a series of primary medulloblastomas for evidence of Wnt/Wg pathway activation, alongside a genome-wide analysis of associated copy-number aberrations. Cases displaying evidence of Wnt/Wg activation (CTNNB1 mutation and/or beta-catenin nuclear stabilisation) were exclusively associated with a distinct genomic signature involving loss of an entire copy of chromosome 6 but few other aberrations (p < 0.001). In contrast, Wnt/Wg-negative tumors coclustered into an unrelated sub-group characterised by multiple established genomic defects common in medulloblastoma (losses of chromosomes 17p, 8, 10 and 16; gains of chromosomes 7 and 17q). Further investigation of specific genetic defects in a larger independent cohort demonstrated that loss of chromosome 6 was exclusively observed in Wnt/Wg-active tumors, but not in Wnt/Wg-negative cases (8/13 vs. 0/19; p = 0.0001), while pathway activation was independent of chromosome 17 aberrations, the most common chromosomal alterations detected in medulloblastoma (p = 0.005). Wnt/Wg-active tumors could not be distinguished on the basis of clinical or pathological disease features. Our data indicate that Wnt/Wg-active tumors represent an independent molecular sub-group of medulloblastomas characterised by a distinct pattern of genomic aberrations. These findings provide a strong biological basis to support (1) the idiosyncratic clinical behavior of Wnt/Wg-active medulloblastomas, and (2) the development of beta-catenin status as an independent marker for therapeutic stratification in this disease.


Subject(s)
Cerebellar Neoplasms/classification , Cerebellar Neoplasms/diagnosis , Chromosome Deletion , Chromosomes, Human, Pair 6 , Medulloblastoma/classification , Medulloblastoma/diagnosis , Wnt Proteins/metabolism , Adolescent , Cerebellar Neoplasms/genetics , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Medulloblastoma/genetics , Prognosis , Signal Transduction , Wnt Proteins/genetics , beta Catenin/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL