Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Publication year range
1.
EMBO J ; 39(19): e103530, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33001475

ABSTRACT

Cells subjected to environmental stresses undergo regulated cell death (RCD) when homeostatic programs fail to maintain viability. A major mechanism of RCD is the excessive calcium loading of mitochondria and consequent triggering of the mitochondrial permeability transition (mPT), which is especially important in post-mitotic cells such as cardiomyocytes and neurons. Here, we show that stress-induced upregulation of the ROS-generating protein Nox4 at the ER-mitochondria contact sites (MAMs) is a pro-survival mechanism that inhibits calcium transfer through InsP3 receptors (InsP3 R). Nox4 mediates redox signaling at the MAM of stressed cells to augment Akt-dependent phosphorylation of InsP3 R, thereby inhibiting calcium flux and mPT-dependent necrosis. In hearts subjected to ischemia-reperfusion, Nox4 limits infarct size through this mechanism. These results uncover a hitherto unrecognized stress pathway, whereby a ROS-generating protein mediates pro-survival effects through spatially confined signaling at the MAM to regulate ER to mitochondria calcium flux and triggering of the mPT.


Subject(s)
Calcium Signaling , Calcium/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , NADPH Oxidase 4/metabolism , Animals , Cell Survival , Inositol 1,4,5-Trisphosphate Receptors/genetics , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/metabolism , NADPH Oxidase 4/genetics , Oxidative Stress , Rats
2.
Circ Res ; 130(7): 994-1010, 2022 04.
Article in English | MEDLINE | ID: mdl-35193397

ABSTRACT

RATIONALE: Atrial fibrillation (AF) and heart failure often coexist, but their interaction is poorly understood. Clinical data indicate that the arrhythmic component of AF may contribute to left ventricular (LV) dysfunction. OBJECTIVE: This study investigates the effects and molecular mechanisms of AF on the human LV. METHODS AND RESULTS: Ventricular myocardium from patients with aortic stenosis and preserved LV function with sinus rhythm or rate-controlled AF was studied. LV myocardium from patients with sinus rhythm and patients with AF showed no differences in fibrosis. In functional studies, systolic Ca2+ transient amplitude of LV cardiomyocytes was reduced in patients with AF, while diastolic Ca2+ levels and Ca2+ transient kinetics were not statistically different. These results were confirmed in LV cardiomyocytes from nonfailing donors with sinus rhythm or AF. Moreover, normofrequent AF was simulated in vitro using arrhythmic or rhythmic pacing (both at 60 bpm). After 24 hours of AF-simulation, human LV cardiomyocytes from nonfailing donors showed an impaired Ca2+ transient amplitude. For a standardized investigation of AF-simulation, human iPSC-cardiomyocytes were tested. Seven days of AF-simulation caused reduced systolic Ca2+ transient amplitude and sarcoplasmic reticulum Ca2+ load likely because of an increased diastolic sarcoplasmic reticulum Ca2+ leak. Moreover, cytosolic Na+ concentration was elevated and action potential duration was prolonged after AF-simulation. We detected an increased late Na+ current as a potential trigger for the detrimentally altered Ca2+/Na+-interplay. Mechanistically, reactive oxygen species were higher in the LV of patients with AF. CaMKII (Ca2+/calmodulin-dependent protein kinase IIδc) was found to be more oxidized at Met281/282 in the LV of patients with AF leading to an increased CaMKII activity and consequent increased RyR2 phosphorylation. CaMKII inhibition and ROS scavenging ameliorated impaired systolic Ca2+ handling after AF-simulation. CONCLUSIONS: AF causes distinct functional and molecular remodeling of the human LV. This translational study provides the first mechanistic characterization and the potential negative impact of AF in the absence of tachycardia on the human ventricle.


Subject(s)
Atrial Fibrillation , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Humans , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
3.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892333

ABSTRACT

The sodium channel NaV1.8, encoded by the SCN10A gene, has recently emerged as a potential regulator of cardiac electrophysiology. We have previously shown that NaV1.8 contributes to arrhythmogenesis by inducing a persistent Na+ current (late Na+ current, INaL) in human atrial and ventricular cardiomyocytes (CM). We now aim to further investigate the contribution of NaV1.8 to human ventricular arrhythmogenesis at the CM-specific level using pharmacological inhibition as well as a genetic knockout (KO) of SCN10A in induced pluripotent stem cell CM (iPSC-CM). In functional voltage-clamp experiments, we demonstrate that INaL was significantly reduced in ventricular SCN10A-KO iPSC-CM and in control CM after a specific pharmacological inhibition of NaV1.8. In contrast, we did not find any effects on ventricular APD90. The frequency of spontaneous sarcoplasmic reticulum Ca2+ sparks and waves were reduced in SCN10A-KO iPSC-CM and control cells following the pharmacological inhibition of NaV1.8. We further analyzed potential triggers of arrhythmias and found reduced delayed afterdepolarizations (DAD) in SCN10A-KO iPSC-CM and after the specific inhibition of NaV1.8 in control cells. In conclusion, we show that NaV1.8-induced INaL primarily impacts arrhythmogenesis at a subcellular level, with minimal effects on systolic cellular Ca2+ release. The inhibition or knockout of NaV1.8 diminishes proarrhythmic triggers in ventricular CM. In conjunction with our previously published results, this work confirms NaV1.8 as a proarrhythmic target that may be useful in an anti-arrhythmic therapeutic strategy.


Subject(s)
Arrhythmias, Cardiac , Heart Ventricles , Induced Pluripotent Stem Cells , Myocytes, Cardiac , NAV1.8 Voltage-Gated Sodium Channel , NAV1.8 Voltage-Gated Sodium Channel/metabolism , NAV1.8 Voltage-Gated Sodium Channel/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Heart Ventricles/metabolism , Heart Ventricles/cytology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/etiology , Action Potentials/drug effects
4.
Basic Res Cardiol ; 118(1): 14, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37020075

ABSTRACT

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used for personalised medicine and preclinical cardiotoxicity testing. Reports on hiPSC-CM commonly describe heterogenous functional readouts and underdeveloped or immature phenotypical properties. Cost-effective, fully defined monolayer culture is approaching mainstream adoption; however, the optimal age at which to utilise hiPSC-CM is unknown. In this study, we identify, track and model the dynamic developmental behaviour of key ionic currents and Ca2+-handling properties in hiPSC-CM over long-term culture (30-80 days). hiPSC-CMs > 50 days post differentiation show significantly larger ICa,L density along with an increased ICa,L-triggered Ca2+-transient. INa and IK1 densities significantly increase in late-stage cells, contributing to increased upstroke velocity and reduced action potential duration, respectively. Importantly, our in silico model of hiPSC-CM electrophysiological age dependence confirmed IK1 as the key ionic determinant of action potential shortening in older cells. We have made this model available through an open source software interface that easily allows users to simulate hiPSC-CM electrophysiology and Ca2+-handling and select the appropriate age range for their parameter of interest. This tool, together with the insights from our comprehensive experimental characterisation, could be useful in future optimisation of the culture-to-characterisation pipeline in the field of hiPSC-CM research.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Aged , Calcium , Action Potentials , Cell Differentiation
5.
Basic Res Cardiol ; 118(1): 47, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37930434

ABSTRACT

Barth Syndrome (BTHS) is an inherited cardiomyopathy caused by defects in the mitochondrial transacylase TAFAZZIN (Taz), required for the synthesis of the phospholipid cardiolipin. BTHS is characterized by heart failure, increased propensity for arrhythmias and a blunted inotropic reserve. Defects in Ca2+-induced Krebs cycle activation contribute to these functional defects, but despite oxidation of pyridine nucleotides, no oxidative stress developed in the heart. Here, we investigated how retrograde signaling pathways orchestrate metabolic rewiring to compensate for mitochondrial defects. In mice with an inducible knockdown (KD) of TAFAZZIN, and in induced pluripotent stem cell-derived cardiac myocytes, mitochondrial uptake and oxidation of fatty acids was strongly decreased, while glucose uptake was increased. Unbiased transcriptomic analyses revealed that the activation of the eIF2α/ATF4 axis of the integrated stress response upregulates one-carbon metabolism, which diverts glycolytic intermediates towards the biosynthesis of serine and fuels the biosynthesis of glutathione. In addition, strong upregulation of the glutamate/cystine antiporter xCT increases cardiac cystine import required for glutathione synthesis. Increased glutamate uptake facilitates anaplerotic replenishment of the Krebs cycle, sustaining energy production and antioxidative pathways. These data indicate that ATF4-driven rewiring of metabolism compensates for defects in mitochondrial uptake of fatty acids to sustain energy production and antioxidation.


Subject(s)
Barth Syndrome , Animals , Mice , Barth Syndrome/genetics , Cystine , Antioxidants , Fatty Acids , Glutamates , Glutathione
6.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373335

ABSTRACT

In heart failure and atrial fibrillation, a persistent Na+ current (INaL) exerts detrimental effects on cellular electrophysiology and can induce arrhythmias. We have recently shown that NaV1.8 contributes to arrhythmogenesis by inducing a INaL. Genome-wide association studies indicate that mutations in the SCN10A gene (NaV1.8) are associated with increased risk for arrhythmias, Brugada syndrome, and sudden cardiac death. However, the mediation of these NaV1.8-related effects, whether through cardiac ganglia or cardiomyocytes, is still a subject of controversial discussion. We used CRISPR/Cas9 technology to generate homozygous atrial SCN10A-KO-iPSC-CMs. Ruptured-patch whole-cell patch-clamp was used to measure the INaL and action potential duration. Ca2+ measurements (Fluo 4-AM) were performed to analyze proarrhythmogenic diastolic SR Ca2+ leak. The INaL was significantly reduced in atrial SCN10A KO CMs as well as after specific pharmacological inhibition of NaV1.8. No effects on atrial APD90 were detected in any groups. Both SCN10A KO and specific blockers of NaV1.8 led to decreased Ca2+ spark frequency and a significant reduction of arrhythmogenic Ca2+ waves. Our experiments demonstrate that NaV1.8 contributes to INaL formation in human atrial CMs and that NaV1.8 inhibition modulates proarrhythmogenic triggers in human atrial CMs and therefore NaV1.8 could be a new target for antiarrhythmic strategies.


Subject(s)
Atrial Fibrillation , Heart Failure , Humans , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Genome-Wide Association Study , Anti-Arrhythmia Agents/pharmacology , Myocytes, Cardiac/metabolism , Heart Failure/metabolism , Action Potentials , NAV1.8 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/metabolism
7.
J Mol Cell Cardiol ; 164: 136-147, 2022 03.
Article in English | MEDLINE | ID: mdl-34923199

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are an increasingly employed model in cardiac research and drug discovery. As cellular metabolism plays an integral role in determining phenotype, the characterization of the metabolic profile of hiPSC-CM during maturation is crucial for their translational application. In this study we employ a combination of methods including extracellular flux, 13C-glucose enrichment and targeted metabolomics to characterize the metabolic profile of hiPSC-CM during their maturation in culture from 6 weeks, up to 12 weeks. Results show a progressive remodeling of pathways involved in energy metabolism and substrate utilization along with an increase in sarcomere regularity. The oxidative capacity of hiPSC-CM and particularly their ability to utilize fatty acids increased with time. In parallel, relative glucose oxidation was reduced while glutamine oxidation was maintained at similar levels. There was also evidence of increased coupling of glycolysis to mitochondrial respiration, and away from glycolytic branch pathways at later stages of maturation. The rate of glycolysis as assessed by lactate production was maintained at both stages but with significant alterations in proximal glycolytic enzymes such as hexokinase and phosphofructokinase. We observed a progressive maturation of mitochondrial oxidative capacity at comparable levels of mitochondrial content between these time-points with enhancement of mitochondrial network structure. These results show that the metabolic profile of hiPSC-CM is progressively restructured, recapitulating aspects of early post-natal heart development. This would be particularly important to consider when employing these cell model in studies where metabolism plays an important role.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation , Cells, Cultured , Energy Metabolism , Glucose/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism
8.
Basic Res Cardiol ; 117(1): 13, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260914

ABSTRACT

Cancer therapies with anthracyclines have been shown to induce cardiovascular complications. The aims of this study were to establish an in vitro induced pluripotent stem cell model (iPSC) of anthracycline-induced cardiotoxicity (ACT) from patients with an aggressive form of B-cell lymphoma and to examine whether doxorubicin (DOX)-treated ACT-iPSC cardiomyocytes (CM) can recapitulate the clinical features exhibited by patients, and thus help uncover a DOX-dependent pathomechanism. ACT-iPSC CM generated from individuals with CD20+ B-cell lymphoma who had received high doses of DOX and suffered cardiac dysfunction were studied and compared to control-iPSC CM from cancer survivors without cardiac symptoms. In cellular studies, ACT-iPSC CM were persistently more susceptible to DOX toxicity including augmented disorganized myofilament structure, changed mitochondrial shape, and increased apoptotic events. Consistently, ACT-iPSC CM and cardiac fibroblasts isolated from fibrotic human ACT myocardium exhibited higher DOX-dependent reactive oxygen species. In functional studies, Ca2+ transient amplitude of ACT-iPSC CM was reduced compared to control cells, and diastolic sarcoplasmic reticulum Ca2+ leak was DOX-dependently increased. This could be explained by overactive CaMKIIδ in ACT CM. Together with DOX-dependent augmented proarrhythmic cellular triggers and prolonged action potentials in ACT CM, this suggests a cellular link to arrhythmogenic events and contractile dysfunction especially found in ACT engineered human myocardium. CamKIIδ inhibition prevented proarrhythmic triggers in ACT. In contrast, control CM upregulated SERCA2a expression in a DOX-dependent manner, possibly to avoid heart failure conditions. In conclusion, we developed the first human patient-specific stem cell model of DOX-induced cardiac dysfunction from patients with B-cell lymphoma. Our results suggest that DOX-induced stress resulted in arrhythmogenic events associated with contractile dysfunction and finally in heart failure after persistent stress activation in ACT patients.


Subject(s)
Heart Diseases , Heart Failure , Induced Pluripotent Stem Cells , Lymphoma, B-Cell , Neoplasms , Cardiotoxicity/metabolism , Cardiotoxicity/pathology , Doxorubicin/metabolism , Doxorubicin/toxicity , Heart Diseases/metabolism , Heart Failure/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Myocytes, Cardiac/metabolism , Neoplasms/metabolism
9.
Basic Res Cardiol ; 117(1): 32, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35737129

ABSTRACT

Alterations of RNA editing that affect the secondary structure of RNAs can cause human diseases. We therefore studied RNA editing in failing human hearts. Transcriptome sequencing showed that adenosine-to-inosine (A-to-I) RNA editing was responsible for 80% of the editing events in the myocardium. Failing human hearts were characterized by reduced RNA editing. This was primarily attributable to Alu elements in introns of protein-coding genes. In the failing left ventricle, 166 circRNAs were upregulated and 7 circRNAs were downregulated compared to non-failing controls. Most of the upregulated circRNAs were associated with reduced RNA editing in the host gene. ADAR2, which binds to RNA regions that are edited from A-to-I, was decreased in failing human hearts. In vitro, reduction of ADAR2 increased circRNA levels suggesting a causal effect of reduced ADAR2 levels on increased circRNAs in the failing human heart. To gain mechanistic insight, one of the identified upregulated circRNAs with a high reduction of editing in heart failure, AKAP13, was further characterized. ADAR2 reduced the formation of double-stranded structures in AKAP13 pre-mRNA, thereby reducing the stability of Alu elements and the circularization of the resulting circRNA. Overexpression of circAKAP13 impaired the sarcomere regularity of human induced pluripotent stem cell-derived cardiomyocytes. These data show that ADAR2 mediates A-to-I RNA editing in the human heart. A-to-I RNA editing represses the formation of dsRNA structures of Alu elements favoring canonical linear mRNA splicing and inhibiting the formation of circRNAs. The findings are relevant to diseases with reduced RNA editing and increased circRNA levels and provide insights into the human-specific regulation of circRNA formation.


Subject(s)
Induced Pluripotent Stem Cells , RNA Editing , Humans , Induced Pluripotent Stem Cells/metabolism , RNA/chemistry , RNA/genetics , RNA/metabolism , RNA, Circular/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
10.
Basic Res Cardiol ; 117(1): 45, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068416

ABSTRACT

Tachycardiomyopathy is characterised by reversible left ventricular dysfunction, provoked by rapid ventricular rate. While the knowledge of mitochondria advanced in most cardiomyopathies, mitochondrial functions await elucidation in tachycardiomyopathy. Pacemakers were implanted in 61 rabbits. Tachypacing was performed with 330 bpm for 10 days (n = 11, early left ventricular dysfunction) or with up to 380 bpm over 30 days (n = 24, tachycardiomyopathy, TCM). In n = 26, pacemakers remained inactive (SHAM). Left ventricular tissue was subjected to respirometry, metabolomics and acetylomics. Results were assessed for translational relevance using a human-based model: induced pluripotent stem cell derived cardiomyocytes underwent field stimulation for 7 days (TACH-iPSC-CM). TCM animals showed systolic dysfunction compared to SHAM (fractional shortening 37.8 ± 1.0% vs. 21.9 ± 1.2%, SHAM vs. TCM, p < 0.0001). Histology revealed cardiomyocyte hypertrophy (cross-sectional area 393.2 ± 14.5 µm2 vs. 538.9 ± 23.8 µm2, p < 0.001) without fibrosis. Mitochondria were shifted to the intercalated discs and enlarged. Mitochondrial membrane potential remained stable in TCM. The metabolite profiles of ELVD and TCM were characterised by profound depletion of tricarboxylic acid cycle intermediates. Redox balance was shifted towards a more oxidised state (ratio of reduced to oxidised nicotinamide adenine dinucleotide 10.5 ± 2.1 vs. 4.0 ± 0.8, p < 0.01). The mitochondrial acetylome remained largely unchanged. Neither TCM nor TACH-iPSC-CM showed relevantly increased levels of reactive oxygen species. Oxidative phosphorylation capacity of TCM decreased modestly in skinned fibres (168.9 ± 11.2 vs. 124.6 ± 11.45 pmol·O2·s-1·mg-1 tissue, p < 0.05), but it did not in isolated mitochondria. The pattern of mitochondrial dysfunctions detected in two models of tachycardiomyopathy diverges from previously published characteristic signs of other heart failure aetiologies.


Subject(s)
Cardiomyopathies , Heart Failure , Ventricular Dysfunction, Left , Animals , Cardiomyopathies/etiology , Humans , Mitochondria/metabolism , Myocardium/metabolism , Rabbits
11.
Mol Ther ; 29(4): 1395-1410, 2021 04 07.
Article in English | MEDLINE | ID: mdl-33388418

ABSTRACT

Doxorubicin is one of the most potent chemotherapeutic agents. However, its clinical use is restricted due to the severe risk of cardiotoxicity, partially attributed to elevated production of reactive oxygen species (ROS). Telomerase canonically maintains telomeres during cell division but is silenced in adult hearts. In non-dividing cells such as cardiomyocytes, telomerase confers pro-survival traits, likely owing to the detoxification of ROS. Therefore, we hypothesized that pharmacological overexpression of telomerase may be used as a therapeutic strategy for the prevention of doxorubicin-induced cardiotoxicity. We used adeno-associated virus (AAV)-mediated gene therapy for long-term expression of telomerase in in vitro and in vivo models of doxorubicin-induced cardiotoxicity. Overexpression of telomerase protected the heart from doxorubicin-mediated apoptosis and rescued cardiac function, which was accompanied by preserved cardiomyocyte size. At the mechanistic level, we observed altered mitochondrial morphology and dynamics in response to telomerase expression. Complementary in vitro experiments confirmed the anti-apoptotic effects of telomerase overexpression in human induced pluripotent stem cell-derived cardiomyocytes after doxorubicin treatment. Strikingly, elevated levels of telomerase translocated to the mitochondria upon doxorubicin treatment, which helped to maintain mitochondrial function. Thus, telomerase gene therapy could be a novel preventive strategy for cardiotoxicity by chemotherapy agents such as the anthracyclines.


Subject(s)
Cardiotoxicity/genetics , Doxorubicin/adverse effects , Neoplasms/drug therapy , Telomerase/genetics , Animals , Apoptosis/drug effects , Cardiotoxicity/prevention & control , Cardiotoxicity/therapy , Dependovirus/genetics , Doxorubicin/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Genetic Vectors/genetics , Genetic Vectors/pharmacology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Mice , Mitochondria/drug effects , Mitochondria/genetics , Myocytes, Cardiac/drug effects , Neoplasms/complications , Neoplasms/genetics , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Telomerase/pharmacology
12.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293084

ABSTRACT

Dilated cardiomyopathy (DCM) is a common cause of heart failure (HF) and is of familial origin in 20−40% of cases. Genetic testing by next-generation sequencing (NGS) has yielded a definite diagnosis in many cases; however, some remain elusive. In this study, we used a combination of NGS, human-induced pluripotent-stem-cell-derived cardiomyocytes (iPSC-CMs) and nanopore long-read sequencing to identify the causal variant in a multi-generational pedigree of DCM. A four-generation family with familial DCM was investigated. Next-generation sequencing (NGS) was performed on 22 family members. Skin biopsies from two affected family members were used to generate iPSCs, which were then differentiated into iPSC-CMs. Short-read RNA sequencing was used for the evaluation of the target gene expression, and long-read RNA nanopore sequencing was used to evaluate the relevance of the splice variants. The pedigree suggested a highly penetrant, autosomal dominant mode of inheritance. The phenotype of the family was suggestive of laminopathy, but previous genetic testing using both Sanger and panel sequencing only yielded conflicting evidence for LMNA p.R644C (rs142000963), which was not fully segregated. By re-sequencing four additional affected family members, further non-coding LMNA variants could be detected: rs149339264, rs199686967, rs201379016, and rs794728589. To explore the roles of these variants, iPSC-CMs were generated. RNA sequencing showed the LMNA expression levels to be significantly lower in the iPSC-CMs of the LMNA variant carriers. We demonstrated a dysregulated sarcomeric structure and altered calcium homeostasis in the iPSC-CMs of the LMNA variant carriers. Using targeted nanopore long-read sequencing, we revealed the biological significance of the variant c.356+1G>A, which generates a novel 5' splice site in exon 1 of the cardiac isomer of LMNA, causing a nonsense mRNA product with almost complete RNA decay and haploinsufficiency. Using novel molecular analysis and nanopore technology, we demonstrated the pathogenesis of the rs794728589 (c.356+1G>A) splice variant in LMNA. This study highlights the importance of precise diagnostics in the clinical management and workup of cardiomyopathies.


Subject(s)
Cardiomyopathy, Dilated , Nanopore Sequencing , Nanopores , Humans , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Lamin Type A/genetics , Lamin Type A/metabolism , Calcium/metabolism , Virulence , RNA Splice Sites , Mutation , Phenotype , Pedigree , Genotype
13.
Biochem Biophys Res Commun ; 583: 121-127, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34735873

ABSTRACT

In response to cardiac injury, increased activity of the hexosamine biosynthesis pathway (HBP) is linked with cytoprotective as well as adverse effects depending on the type and duration of injury. Glutamine-fructose amidotransferase (GFAT; gene name gfpt) is the rate-limiting enzyme that controls flux through HBP. Two protein isoforms exist in the heart called GFAT1 and GFAT2. There are conflicting data on the relative importance of GFAT1 and GFAT2 during stress-induced HBP responses in the heart. Using neonatal rat cardiac cell preparations, targeted knockdown of GFPT1 and GFPT2 were performed and HBP activity measured. Immunostaining with specific GFAT1 and GFAT2 antibodies was undertaken in neonatal rat cardiac preparations and murine cardiac tissues to characterise cell-specific expression. Publicly available human heart single cell sequencing data was interrogated to determine cell-type expression. Western blots for GFAT isoform protein expression were performed in human cardiomyocytes derived from induced pluripotent stem cells (iPSCs). GFPT1 but not GFPT2 knockdown resulted in a loss of stress-induced protein O-GlcNAcylation in neonatal cardiac cell preparations indicating reduced HBP activity. In rodent cells and tissue, immunostaining for GFAT1 identified expression in both cardiac myocytes and fibroblasts whereas immunostaining for GFAT2 was only identified in fibroblasts. Further corroboration of findings in human heart cells identified an enrichment of GFPT2 gene expression in cardiac fibroblasts but not ventricular myocytes whereas GFPT1 was expressed in both myocytes and fibroblasts. In human iPSC-derived cardiomyocytes, only GFAT1 protein was expressed with an absence of GFAT2. In conclusion, these results indicate that GFAT1 is the primary cardiomyocyte isoform and GFAT2 is only present in cardiac fibroblasts. Cell-specific isoform expression may have differing effects on cell function and should be considered when studying HBP and GFAT functions in the heart.


Subject(s)
Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Animals , Fibroblasts/metabolism , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Hexosamines/biosynthesis , Hexosamines/metabolism , Induced Pluripotent Stem Cells , Mice , Myocardium/cytology , Protein Isoforms , Rats, Sprague-Dawley
14.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34884792

ABSTRACT

INTRODUCTION: Familial dilated cardiomyopathy (DCM) is clinically variable and has been associated with mutations in more than 50 genes. Rapid improvements in DNA sequencing have led to the identification of diverse rare variants with unknown significance (VUS), which underlines the importance of functional analyses. In this study, by investigating human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), we evaluated the pathogenicity of the p.C335R sodium voltage-gated channel alpha subunit 5 (SCN5a) variant in a large family with familial DCM and conduction disease. METHODS: A four-generation family with autosomal dominant familial DCM was investigated. Next-generation sequencing (NGS) was performed in all 16 family members. Clinical deep phenotyping, including endomyocardial biopsy, was performed. Skin biopsies from two patients and one healthy family member were used to generate human-induced pluripotent stem cells (iPSCs), which were then differentiated into cardiomyocytes. Patch-clamp analysis with Xenopus oocytes and iPSC-CMs were performed. RESULTS: A SCN5a variant (c.1003T>C; p.C335R) could be detected in all family members with DCM or conduction disease. A novel truncating TTN variant (p.Ser24998LysfsTer28) could also be identified in two family members with DCM. Family members with the SCN5a variant (p.C335R) showed significantly longer PQ and QRS intervals and lower left ventricular ejection fractions (LV-EF). All four patients who received CRT-D were non-responders. Electrophysiological analysis with Xenopus oocytes showed a loss of function in SCN5a p.C335R. Na+ channel currents were also reduced in iPSC-CMs from DCM patients. Furthermore, iPSC-CM with compound heterozygosity (SCN5a p.C335R and TTNtv) showed significant dysregulation of sarcomere structures, which may be contributed to the severity of the disease and earlier onset of DCM. CONCLUSION: The SCN5a p.C335R variant is causing a loss of function of peak INa in patients with DCM and cardiac conduction disease. The co-existence of genetic variants in channels and structural genes (e.g., SCN5a p.C335R and TTNtv) increases the severity of the DCM phenotype.


Subject(s)
Cardiac Conduction System Disease/genetics , Cardiomyopathy, Dilated/genetics , Myocytes, Cardiac/pathology , NAV1.5 Voltage-Gated Sodium Channel/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Animals , CHO Cells , Cell Line , Cricetulus , Female , Genetic Predisposition to Disease/genetics , High-Throughput Nucleotide Sequencing , Humans , Induced Pluripotent Stem Cells/cytology , Male , Middle Aged , Myocytes, Cardiac/cytology , Sarcomeres/metabolism , Sodium/metabolism , Stroke Volume/genetics , Xenopus laevis/physiology , Young Adult
15.
Basic Res Cardiol ; 115(2): 20, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32078054

ABSTRACT

Pharmacologic approaches for the treatment of atrial arrhythmias are limited due to side effects and low efficacy. Thus, the identification of new antiarrhythmic targets is of clinical interest. Recent genome studies suggested an involvement of SCN10A sodium channels (NaV1.8) in atrial electrophysiology. This study investigated the role and involvement of NaV1.8 (SCN10A) in arrhythmia generation in the human atria and in mice lacking NaV1.8. NaV1.8 mRNA and protein were detected in human atrial myocardium at a significant higher level compared to ventricular myocardium. Expression of NaV1.8 and NaV1.5 did not differ between myocardium from patients with atrial fibrillation and sinus rhythm. To determine the electrophysiological role of NaV1.8, we investigated isolated human atrial cardiomyocytes from patients with sinus rhythm stimulated with isoproterenol. Inhibition of NaV1.8 by A-803467 or PF-01247324 showed no effects on the human atrial action potential. However, we found that NaV1.8 significantly contributes to late Na+ current and consequently to an increased proarrhythmogenic diastolic sarcoplasmic reticulum Ca2+ leak in human atrial cardiomyocytes. Selective pharmacological inhibition of NaV1.8 potently reduced late Na+ current, proarrhythmic diastolic Ca2+ release, delayed afterdepolarizations as well as spontaneous action potentials. These findings could be confirmed in murine atrial cardiomyocytes from wild-type mice and also compared to SCN10A-/- mice (genetic ablation of NaV1.8). Pharmacological NaV1.8 inhibition showed no effects in SCN10A-/- mice. Importantly, in vivo experiments in SCN10A-/- mice showed that genetic ablation of NaV1.8 protects against atrial fibrillation induction. This study demonstrates that NaV1.8 is expressed in the murine and human atria and contributes to late Na+ current generation and cellular arrhythmogenesis. Blocking NaV1.8 selectively counteracts this pathomechanism and protects against atrial arrhythmias. Thus, our translational study reveals a new selective therapeutic target for treating atrial arrhythmias.


Subject(s)
Aniline Compounds/pharmacology , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/prevention & control , Furans/pharmacology , Heart Rate/drug effects , Myocytes, Cardiac/drug effects , NAV1.8 Voltage-Gated Sodium Channel/drug effects , Picolinic Acids/pharmacology , Sodium Channel Blockers/pharmacology , Action Potentials/drug effects , Aged , Animals , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Cells, Cultured , Disease Models, Animal , Female , Humans , Male , Mice, Knockout , Middle Aged , Myocytes, Cardiac/metabolism , NAV1.8 Voltage-Gated Sodium Channel/genetics , NAV1.8 Voltage-Gated Sodium Channel/metabolism
16.
Basic Res Cardiol ; 115(3): 27, 2020 03 07.
Article in English | MEDLINE | ID: mdl-32146539

ABSTRACT

Heart failure is a major health problem worldwide with a significant morbidity and mortality rate. Although studied extensively in animal models, data from patients at the compensated disease stage are lacking. We sampled myocardium biopsies from aortic stenosis patients with compensated hypertrophy and moderate heart failure and used transcriptomics to study the transition to failure. Sequencing and comparative analysis of analogous samples of mice with transverse aortic constriction identified 25 candidate genes with similar regulation in response to pressure overload, reflecting highly conserved molecular processes. The gene cysteine-rich secretory protein LCCL domain containing 1 (CRISPLD1) is upregulated in the transition to failure in human and mouse and its function is unknown. Homology to ion channel regulatory toxins suggests a role in Ca2+ cycling. CRISPR/Cas9-mediated loss-of-function leads to dysregulated Ca2+ handling in human-induced pluripotent stem cell-derived cardiomyocytes. The downregulation of prohypertrophic, proapoptotic and Ca2+-signaling pathways upon CRISPLD1-KO and its upregulation in the transition to failure implicates a contribution to adverse remodeling. These findings provide new pathophysiological data on Ca2+ regulation in the transition to failure and novel candidate genes with promising potential for therapeutic interventions.


Subject(s)
Calcium Signaling , Calcium/metabolism , Cell Adhesion Molecules/metabolism , Evolution, Molecular , Heart Failure/metabolism , Amino Acid Sequence , Animals , Aortic Valve Stenosis/complications , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Apoptosis , Biopsy , Cell Adhesion Molecules/chemistry , Cell Adhesion Molecules/deficiency , Cell Adhesion Molecules/genetics , Conserved Sequence , Down-Regulation , Female , Heart Failure/complications , Heart Failure/genetics , Humans , Induced Pluripotent Stem Cells/cytology , Male , Mice , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Transcriptome , Transforming Growth Factor beta/metabolism
17.
Circ Res ; 122(2): 246-254, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29133306

ABSTRACT

RATIONALE: RBPs (RNA-binding proteins) have been described to be expressed and regulated in various organs including the heart. Little is known about the role of RBPs in heart failure induced by the chemotherapy drug doxorubicin and their interaction with circular RNAs. OBJECTIVE: We aimed to identify key RBPs involved in doxorubicin-mediated heart failure and to elucidate their function. METHODS AND RESULTS: Global transcriptome profiling from murine myocardium exposed to doxorubicin identified 5 differentially expressed RBPs. Expression of the RBP QKI (Quaking) in response to doxorubicin was strongly downregulated in rodent cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes in vitro and in vivo in mice. Knockdown of Qki in primary cardiomyocytes increased apoptosis and atrophy after treatment with doxorubicin, whereas lentiviral mediated overexpression of Qki5 inhibited the doxorubicin-induced apoptosis in cardiomyocytes. In vivo, AAV9 (adeno-associated virus serotype 9)-mediated cardiac overexpression of Qki5 prevented cardiac apoptosis and cardiac atrophy induced by doxorubicin and improved cardiac function. Mechanistically, by lentiviral-based overexpression and CRISPR/Cas9-mediated silencing of Qki5, we identified regulated expression of specific circular RNAs derived from Ttn (Titin), Fhod3 (Formin homology 2 domain containing 3), and Strn3 (Striatin, calmodulin-binding protein 3). Moreover, inhibition of Ttn-derived circular RNA increased the susceptibility of cardiomyocytes to doxorubicin. CONCLUSIONS: We here show that overexpression of Qki5 strongly attenuates the toxic effect of doxorubicin via regulating a set of circular RNAs. Qki5 is, thus, an interesting target molecule to combat doxorubicin-induced cardiotoxicity.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Cardiotoxicity/metabolism , Doxorubicin/toxicity , RNA-Binding Proteins/biosynthesis , RNA/biosynthesis , Animals , Cardiotoxicity/genetics , Gene Expression , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , RNA/genetics , RNA, Circular , RNA-Binding Proteins/genetics , Random Allocation
18.
Europace ; 22(7): 1119-1131, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32572487

ABSTRACT

AIMS: The multi-C2 domain protein dysferlin localizes to the T-Tubule system of skeletal and heart muscles. In skeletal muscle, dysferlin is known to play a role in membrane repair and in T-tubule biogenesis and maintenance. Dysferlin deficiency manifests as muscular dystrophy of proximal and distal muscles. Cardiomyopathies have been also reported, and some dysferlinopathy mouse models develop cardiac dysfunction under stress. Generally, the role and functional relevance of dysferlin in the heart is not clear. The aim of this study was to analyse the effect of dysferlin deficiency on the transverse-axial tubule system (TATS) structure and on Ca2+ homeostasis in the heart. METHODS AND RESULTS: We studied dysferlin localization in rat and mouse cardiomyocytes by immunofluorescence microscopy. In dysferlin-deficient ventricular mouse cardiomyocytes, we analysed the TATS by live staining and assessed Ca2+ handling by patch-clamp experiments and measurement of Ca2+ transients and Ca2+ sparks. We found increasing co-localization of dysferlin with the L-type Ca2+-channel during TATS development and show that dysferlin deficiency leads to pathological loss of transversal and increase in longitudinal elements (axialization). We detected reduced L-type Ca2+-current (ICa,L) in cardiomyocytes from dysferlin-deficient mice and increased frequency of spontaneous sarcoplasmic reticulum Ca2+ release events resulting in pro-arrhythmic contractions. Moreover, cardiomyocytes from dysferlin-deficient mice showed an impaired response to ß-adrenergic receptor stimulation. CONCLUSIONS: Dysferlin is required for TATS biogenesis and maintenance in the heart by controlling the ratio of transversal and axial membrane elements. Absence of dysferlin leads to defects in Ca2+ homeostasis which may contribute to contractile heart dysfunction in dysferlinopathy patients.


Subject(s)
Calcium , Excitation Contraction Coupling , Animals , Dysferlin/genetics , Mice , Myocytes, Cardiac , Rats , Sarcoplasmic Reticulum
19.
Mol Ther ; 27(1): 17-28, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30527757

ABSTRACT

Improved therapy of cancer has significantly increased the lifespan of patients. However, cancer survivors face an increased risk of cardiovascular complications due to adverse effects of cancer therapies. The chemotherapy drug doxorubicin is well known to induce myofibril damage and cardiac atrophy. Our aim was to test potential counteracting effects of the pro-hypertrophic miR-212/132 family in doxorubicin-induced cardiotoxicity. In vitro, overexpression of the pro-hypertrophic miR-212/132 cluster in primary rodent and human iPSC-derived cardiomyocytes inhibited doxorubicin-induced toxicity. Next, a disease model of doxorubicin-induced cardiotoxicity was established in male C57BL/6N mice. Mice were administered either adeno-associated virus (AAV)9-control or AAV9-miR-212/132 to achieve myocardial overexpression of the miR-212/132 cluster. AAV9-mediated overexpression limited cardiac atrophy by increasing left ventricular mass and wall thickness, decreased doxorubicin-mediated apoptosis, and prevented myofibril damage. Based on a transcriptomic profiling we identified fat storage-inducing transmembrane protein 2 (Fitm2) as a novel target and downstream effector molecule responsible, at least in part, for the observed miR-212/132 anti-cardiotoxic effects. Overexpression of Fitm2 partially reversed the effects of miR-212/132. Overexpression of the miR-212/132 family reduces development of doxorubicin-induced cardiotoxicity and thus could be a therapeutic entry point to limit doxorubicin-mediated adverse cardiac effects.


Subject(s)
Doxorubicin/adverse effects , MicroRNAs/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cardiotoxicity , Caspase 3/metabolism , Caspase 7/metabolism , Dependovirus/genetics , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Rats
20.
Eur Heart J ; 38(46): 3449-3460, 2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29029073

ABSTRACT

AIMS: In this study, we aimed to clinically and genetically characterize LVNC patients and investigate the prevalence of variants in known and novel LVNC disease genes. INTRODUCTION: Left ventricular non-compaction cardiomyopathy (LVNC) is an increasingly recognized cause of heart failure, arrhythmia, thromboembolism, and sudden cardiac death. We sought here to dissect its genetic causes, phenotypic presentation and outcome. METHODS AND RESULTS: In our registry with follow-up of in the median 61 months, we analysed 95 LVNC patients (68 unrelated index patients and 27 affected relatives; definite familial LVNC = 23.5%) by cardiac phenotyping, molecular biomarkers and exome sequencing. Cardiovascular events were significantly more frequent in LVNC patients compared with an age-matched group of patients with non-ischaemic dilated cardiomyopathy (hazard ratio = 2.481, P = 0.002). Stringent genetic classification according to ACMG guidelines revealed that TTN, LMNA, and MYBPC3 are the most prevalent disease genes (13 patients are carrying a pathogenic truncating TTN variant, odds ratio = 40.7, Confidence interval = 21.6-76.6, P < 0.0001, percent spliced in 76-100%). We also identified novel candidate genes for LVNC. For RBM20, we were able to perform detailed familial, molecular and functional studies. We show that the novel variant p.R634L in the RS domain of RBM20 co-segregates with LVNC, leading to titin mis-splicing as revealed by RNA sequencing of heart tissue in mutation carriers, protein analysis, and functional splice-reporter assays. CONCLUSION: Our data demonstrate that the clinical course of symptomatic LVNC can be severe. The identified pathogenic variants and distribution of disease genes-a titin-related pathomechanism is found in every fourth patient-should be considered in genetic counselling of patients. Pathogenic variants in the nuclear proteins Lamin A/C and RBM20 were associated with worse outcome.


Subject(s)
Hypertrophy, Left Ventricular/genetics , Mutation/genetics , Adult , Arrhythmias, Cardiac/genetics , Cardiomyopathy, Dilated/genetics , Connectin/genetics , Death, Sudden, Cardiac/etiology , Female , Genetic Predisposition to Disease/genetics , Humans , Lamin Type A/genetics , Male , Pedigree , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL