Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Ann Surg ; 277(4): e893-e899, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35185121

ABSTRACT

OBJECTIVE: To compare positron emission tomography (PET)/magnetic resonance imaging (MRI) to the standard of care imaging (SCI) for the diagnosis of peritoneal carcinomatosis (PC) in primary abdominopelvic malignancies. SUMMARY BACKGROUND DATA: Identifying PC impacts prognosis and management of multiple cancer types. METHODS: Adult subjects were prospectively and consecutively enrolled from April 2019 to January 2021. Inclusion criteria were: 1) acquisition of whole-body contrast-enhanced (CE) 18F-fluorodeoxyglucose PET/MRI, 2) pathologically confirmed primary abdominopelvic malignancies. Exclusion criteria were: 1) greater than 4 weeks interval between SCI and PET/MRI, 2) unavailable follow-up. SCI consisted of whole-body CE PET/computed tomography (CT) with diagnostic quality CT, and/or CE-CT of the abdomen and pelvis, and/or CE-MRI of the abdomen±pelvis. If available, pathology or surgical findings served as the reference standard, otherwise, imaging followup was used. When SCI and PET/MRI results disagreed, medical records were checked for management changes. Follow-up data were collected until August 2021. RESULTS: One hundred sixty-four subjects were included, 85 (52%) were female, and the median age was 60 years (interquartile range 50-69). At a subject level, PET/MRI had higher sensitivity (0.97, 95% CI 0.86-1.00) than SCI (0.54, 95% CI 0.37-0.71), P < 0.001, without a difference in specificity, of 0.95 (95% CI 0.90-0.98) for PET/MRI and 0.98 (95% CI 0.93-1.00) for SCI, P » 0.250. PET/MRI and SCI results disagreed in 19 cases. In 5/19 (26%) of the discordant cases, PET/MRI findings consistent with PC missed on SCI led to management changes. CONCLUSION: PET/MRI improves detection of PC compared with SCI which frequently changes management.


Subject(s)
Peritoneal Neoplasms , Adult , Humans , Female , Middle Aged , Male , Peritoneal Neoplasms/diagnostic imaging , Standard of Care , Fluorodeoxyglucose F18 , Sensitivity and Specificity , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals , Positron Emission Tomography Computed Tomography/methods
2.
Bioorg Med Chem Lett ; 64: 128674, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35292342

ABSTRACT

Heme oxygenase-1 (HO-1) has been involved in the pathogenesis of Alzheimer's disease (AD), thus constituting a promising target for AD drug development. Positron emission tomography (PET) is a fully translational imaging technology, which will help us understand the role of HO-1 in the progression of AD, facilitating to validate promising HO-1 inhibitors in clinical trials. To our knowledge, there is no report on PET imaging probe targeting HO-1 in animals and humans. We report herein the synthesis and characterization of a 11C-labeled imidazole-based alcohol derivative ([11C]QC-33) for imaging of HO-1 in the brain. The desired product [11C]QC-33 was afforded with a radiochemical yield of 16 ± 9% (n = 3, decay corrected). The radiochemical purity was greater than 99%, and the molar radioactivity was greater than 185 GBq/µmol. In vitro autoradiography studies indicated specific binding of [11C]QC-33 in the HO-1 rich regions, showing 75%, 75%, and 69% radioactivity binding reductions in cerebellum, brain stem, and midbrain, respectively. PET/CT scanning in C57BL/6 mice showed low brain uptake and poor blood-brain barrier (BBB) penetration of [11C]QC-33. These results suggested that [11C]QC-33 can serve as a lead compound to advance the development of next generation PET tracer with the potential to monitor HO-1 in AD progression.


Subject(s)
Heme Oxygenase-1 , Positron Emission Tomography Computed Tomography , Animals , Brain/diagnostic imaging , Brain/metabolism , Heme Oxygenase-1/metabolism , Imidazoles/metabolism , Imidazoles/pharmacology , Mice , Mice, Inbred C57BL , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism
3.
Bioorg Chem ; 123: 105779, 2022 06.
Article in English | MEDLINE | ID: mdl-35397430

ABSTRACT

The orexin receptors (OXRs) have been involved in multiple physiological and neuropsychiatric functions. Identification of PET imaging probes specifically targeting OXRs enables us to better understand the OX system. Seltorexant (JNJ-42847922) is a potent OX2R antagonist with the potential to be an OX2R PET imaging probe. Here, we describe the synthesis and characterization of [18F]Seltorexant as an OX2R PET probe. The ex vivo autoradiography studies indicated the good binding specificity of [18F]Seltorexant. In vivo PET imaging of [18F]Seltorexant in rodents showed suitable BBB penetration with the highest brain uptake of %ID/cc = 3.4 at 2 min post-injection in mice. The regional brain biodistribution analysis and blocking studies showed that [18F]Seltorexant had good binding selectivity and specificity. However, pretreatment with unlabelled Seltorexant and P-gp competitor CsA observed significantly increased brain uptake of [18F]Seltorexant, indicating [18F]Seltorexant could interact P-gp at the blood-brain barrier. Our findings demonstrated that [18F]Seltorexant is a potential brain OX2R PET imaging probe, which paves the way for new OX2R PET probes development and OX system investigation.


Subject(s)
Neuroimaging , Positron-Emission Tomography , Animals , Brain/diagnostic imaging , Brain/metabolism , Mice , Orexin Receptors , Positron-Emission Tomography/methods
4.
Br J Cancer ; 125(7): 975-982, 2021 09.
Article in English | MEDLINE | ID: mdl-34282295

ABSTRACT

BACKGROUND: Oligometastatic colorectal cancer (CRC) is potentially curable and demands individualised strategies. METHODS: This single-centre retrospective study investigated if positron emission tomography (PET)/magnetic resonance imaging (MR) had a clinical impact on oligometastatic CRC relative to the standard of care imaging (SCI). Adult patients with oligometastatic CRC on SCI who also underwent PET/MR between 3/2016 and 3/2019 were included. The exclusion criterion was lack of confirmatory standard of reference, either surgical pathology, intraoperative gross confirmation or imaging follow-up. SCI consisted of contrast-enhanced (CE) computed tomography (CT) of the chest/abdomen/pelvis, abdominal/pelvic CE-MR, and/or CE whole-body PET/CT with diagnostic quality (i.e. standard radiation dose) CT. Follow-up was evaluated until 3/2020. RESULTS: Thirty-one patients constituted the cohort, 16 (52%) male, median patient age was 53 years (interquartile range: 49-65 years). PET/MR and SCI results were divergent in 19% (95% CI 9-37%) of the cases, with PET/MR leading to management changes in all of them. The diagnostic accuracy of PET/MR was 90 ± 5%, versus 71 ± 8% for SCI. In a pairwise analysis, PET/MR outperformed SCI when compared to the reference standard (p = 0.0412). CONCLUSIONS: These findings suggest the potential usefulness of PET/MR in the management of oligometastatic CRC.


Subject(s)
Colorectal Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Tomography, X-Ray Computed/methods , Aged , Female , Humans , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity , Standard of Care
5.
Bioconjug Chem ; 32(8): 1711-1718, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34139120

ABSTRACT

Two tandem bromodomains (BD1 and BD2) of bromodomain and extraterminal domain (BET) family proteins have shown distinct roles in mediating gene transcription and expression. Inhibitors that interact with a specific bromodomain may contribute to a specific therapeutic potential with fewer side effects. However, little is known about this disease-related target. Positron emission tomography (PET) imaging could allow us to achieve in-depth knowledge of the BD2 bromodomain. Herein we describe the radiosynthesis and evaluation of [11C]1 as a BRD4 BD2 bromodomain PET imaging radioligand. Our preliminary PET imaging results in rodents demonstrated that [11C]1 had suitable biodistribution in peripheral organs and tissues. Further blocking studies indicated that [11C]1 had good binding specificity toward the BD2 bromodomain. This study may pave the way for the development of a PET radioligand specifically targeting BD1/2 bromodomains as well as for the biological mechanism investigation of BD1/2 bromodomains.


Subject(s)
Drug Delivery Systems , Isotope Labeling , Nuclear Proteins/chemistry , Positron-Emission Tomography , Transcription Factors/chemistry , Animals , Gene Expression Regulation , Humans , Male , Mice , Molecular Docking Simulation , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Protein Binding , Protein Domains , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism
6.
Eur J Nucl Med Mol Imaging ; 48(1): 53-66, 2021 01.
Article in English | MEDLINE | ID: mdl-32592040

ABSTRACT

PURPOSE: Castration-resistant prostate cancer (CRPC) is the most common cause of death in men. The effectiveness of HDAC inhibitors has been demonstrated by preclinical models, but not in clinical studies, probably due to the ineffectively accumulation of HDACI in prostate cancer cells. The purpose of this work was to evaluate effects of a novel HDACI (CN133) on CRPC xenograft model and 22Rv1 cells, and develops methods, PET/CT imaging, to detect the therapeutic effects of CN133 on this cancer. METHODS: We designed and performed study to compare the effects of CN133 with SAHA on the 22Rv1 xenograft model and 22Rv1 cells. Using PET/CT imaging with [11C] Martinostat and [18F] FDG, we imaged mice bearing 22Rv1 xenografts before and after 21-day treatment with placebo and CN133 (1 mg/kg), and uptake on pre-treatment and post-treatment imaging was measured. The anti-tumor mechanisms of CN133 were investigated by qPCR, western blot, and ChIP-qPCR. RESULTS: Our data showed that the CN133 treatment led to a 50% reduction of tumor volume compared to the placebo that was more efficacious than SAHA treatment in this preclinical model. [11C] Martinostat PET imaging could identify early lesions of prostate cancer and can also be used to monitor the therapeutic effect of CN133 in CRPC. Using pharmacological approaches, we demonstrated that effects of CN133 showed almost 100-fold efficacy than SAHA treatment in the experiment of cell proliferation, invasion, and migration. The anti-tumor mechanisms of CN133 were due to the inhibition of AR signaling pathway activity by decreased HDAC 2 and 3 protein expressions. CONCLUSION: Taken together, these studies provide not only a novel epigenetic approach for prostate cancer therapy but also offering a potential tool, [11C] Martinostat PET/CT imaging, to detect the early phase of prostate cancer and monitor therapeutic effect of CN133. These results will likely lead to human trials in the future.


Subject(s)
Histone Deacetylase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Animals , Cell Line, Tumor , Cell Proliferation , Histone Deacetylase Inhibitors/therapeutic use , Humans , Male , Mice , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/drug therapy , Xenograft Model Antitumor Assays
7.
Eur J Nucl Med Mol Imaging ; 48(4): 1235-1245, 2021 04.
Article in English | MEDLINE | ID: mdl-33034673

ABSTRACT

PURPOSE: The role of positron emission tomography/magnetic resonance (PET/MR) in evaluating the local extent of rectal cancer remains uncertain. This study aimed to investigate the possible role of PET/MR versus magnetic resonance (MR) in clinically staging rectal cancer. METHODS: This retrospective two-center cohort study of 62 patients with untreated rectal cancer investigated the possible role of baseline staging PET/MR versus stand-alone MR in determination of clinical stage. Two readers reviewed T and N stage, mesorectal fascia involvement, tumor length, distance from the anal verge, sphincter involvement, and extramural vascular invasion (EMVI). Sigmoidoscopy, digital rectal examination, and follow-up imaging, along with surgery when available, served as the reference standard. RESULTS: PET/MR outperformed MR in evaluating tumor size (42.5 ± 21.03 mm per the reference standard, 54 ± 20.45 mm by stand-alone MR, and 44 ± 20 mm by PET/MR, P = 0.004), and in identifying N status (correct by MR in 36/62 patients [58%] and by PET/MR in 49/62 cases [79%]; P = 0.02) and external sphincter infiltration (correct by MR in 6/10 and by PET/MR in 9/10; P = 0.003). No statistically significant differences were observed in relation to any other features. CONCLUSION: PET/MR provides a more precise assessment of the local extent of rectal cancers in evaluating cancer length, N status, and external sphincter involvement. PET/MR offers the opportunity to improve clinical decision-making, especially when evaluating low rectal tumors with possible external sphincter involvement.


Subject(s)
Magnetic Resonance Imaging , Rectal Neoplasms , Cohort Studies , Humans , Neoplasm Staging , Pelvis/diagnostic imaging , Pelvis/pathology , Positron-Emission Tomography , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/pathology , Retrospective Studies
8.
Bioorg Med Chem Lett ; 34: 127777, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33418063

ABSTRACT

We report herein the discovery of a positron emission tomography (PET) tracer for the (NOD)-like receptor protein 3 (NLRP3). Our recent medicinal chemistry campaign on developing sulfonamide-based NLRP3 inhibitors led to an analog, 1, with a methoxy substituent amenable to labeling with carbon-11. PET/CT imaging studies indicated that [11C]1 exhibited rapid blood-brain barrier (BBB) penetration and moderate brain uptake, as well as blockable uptake in the brain. [11C]1, thus suggesting the potential to serve as a useful tool for imaging NLRP3 inflammasome in living brains.


Subject(s)
Drug Discovery , Inflammasomes/analysis , NLR Family, Pyrin Domain-Containing 3 Protein/analysis , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals/chemistry , Sulfonamides/chemistry , Animals , Blood-Brain Barrier/metabolism , Carbon Radioisotopes , Inflammasomes/metabolism , Mice , Mice, Inbred C57BL , Molecular Structure , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/metabolism , Sulfonamides/chemical synthesis , Sulfonamides/metabolism
9.
ACS Med Chem Lett ; 12(2): 282-287, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33603976

ABSTRACT

In this paper, we report the design, synthesis, and biological evaluation of the first selective bromodomain and extra-terminal domain (BET) BD1 bromodomains of the PET radiotracer [18F]PB006. The standard compound PB006 showed high affinity and good selectivity toward BRD4 BD1 (K d = 100 nM and 29-fold selectively for BD1 over BD2) in an in vitro binding assay. PET imaging experiments in rodents were performed to evaluate the bioactivity of [18F]PB006 in vivo. A biodistribution study of [18F]PB006 in mice revealed high radiotracer uptake in peripheral tissues, such as liver and kidney, and moderate radiotracer uptake in the brain. Further blocking studies demonstrated the significant radioactivity decreasing (20-30% reduction compared with baseline) by pretreating unlabeled PB006 and JQ1, suggesting the high binding selectivity and specificity of [18F]PB006. Our study indicated that [18F]PB006 is a potent PET probe selectively targeting BET BD1, and further structural optimization of the radiotracer is still required to improve brain uptake to support neuroepigenetic imaging.

10.
J Med Chem ; 64(20): 15420-15428, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34652135

ABSTRACT

We report the development of the first positron emission tomography (PET) radiotracer, [18F]CNY-07, based on a highly specific and potent RIPK1 inhibitor, Nec-1s, for RIPK1/necroptosis brain imaging in rodents. [18F]CNY-07 was synthesized through copper-mediated 18F-radiolabeling from an aryl boronic ester precursor and studied in vivo PET imaging in rodents. PET imaging results showed that [18F]CNY-07 can penetrate the blood-brain barrier with a maximum percent injected dose per unit volume of 3 at 10 min postinjection in the brain in vivo. Self-blocking studies of [18F]CNY-07 by pretreating with unlabeled molecules in rodents showed reduced radioactivity in animal brains (30% radioactivity decreased), indicating the binding specificity of our radiotracer. Our studies demonstrate that [18F]CNY-07 has provided a useful PET radioligand enabling brain RIPK1 imaging, which could be a valuable research tool in studying RIPK1-related neurological disorders in animals and potentially humans.


Subject(s)
Brain/diagnostic imaging , Positron-Emission Tomography , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Brain/enzymology , Dose-Response Relationship, Drug , Mice , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
11.
J Med Chem ; 64(19): 14745-14756, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34549949

ABSTRACT

To better understand the role of bromodomain and extra-terminal domain (BET) proteins in epigenetic mechanisms, we developed a series of thienodiazepine-based derivatives and identified two compounds, 3a and 6a, as potent BET inhibitors. Further in vivo pharmacokinetic studies and analysis of in vitro metabolic stability of 6a revealed excellent brain penetration and reasonable metabolic stability. Compounds 3a and 6a were radiolabeled with fluorine-18 in two steps and utilized in positron emission tomography (PET) imaging studies in mice. Preliminary PET imaging results demonstrated that [18F]3a and [18F]6a have good brain uptake (with maximum SUV = 1.7 and 2, respectively) and binding specificity in mice brains. These results show that [18F]6a is a potential PET radiotracer that could be applied to imaging BET proteins in the brain. Further optimization and improvement of the metabolic stability of [18F]6a are still needed in order to create optimal PET imaging probes of BET family members.


Subject(s)
Azepines/chemistry , Drug Design , Molecular Probes/chemistry , Positron-Emission Tomography/methods , Protein Domains , Animals , Azepines/pharmacokinetics , Mice , Molecular Docking Simulation , Molecular Probes/pharmacokinetics , Transcription Factors/metabolism
12.
Mol Imaging Biol ; 23(3): 456-466, 2021 06.
Article in English | MEDLINE | ID: mdl-33415677

ABSTRACT

PURPOSE: Imaging is central to the diagnosis and management of Pancreatic Ductal Adenocarcinoma (PDAC). This study evaluated if positron emission tomography (PET)/magnetic resonance imaging (MRI) elicited treatment modifications in PDAC when compared to standard of care imaging (SCI). PROCEDURES: This retrospective study included consecutive patients with PDAC who underwent 2-deoxy-2-[18F]fluoro-D-glucose ([18F]F-FDG) PET/MRI and SCI from May 2017 to January 2019. SCI included abdominal computed tomography (CT), MRI, and/or PET/CT. For patients who had more than one pair of PET/MRI and SCI, each management decision was independently evaluated. Treatment strategies based on each modality were extracted from electronic medical records. Follow-up was evaluated until January 2020. RESULTS: Twenty-five patients underwent 37 PET/MRI's, mean age was 65 ± 9 years and 13 (13/25, 52 %) were men. 49 % (18/37, 95 % CI 33-64 %) of the PET/MRI scans changed clinical management. Whether the SCI included a PET/CT or not did not significantly modify the probability of management change (OR = 0.9, 95 % CI 0.2-4, p = 1). One hundred percent (33/33) of the available follow-up data confirmed PET/MRI findings. CONCLUSIONS: PET/MRI significantly changed PDAC management, consistently across the different SCI modalities it was compared to. These findings suggest a role for PET/MRI in the management of PDAC.


Subject(s)
Adenocarcinoma/diagnostic imaging , Adenocarcinoma/therapy , Magnetic Resonance Imaging/methods , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Positron-Emission Tomography/methods , Aged , Female , Fluorodeoxyglucose F18/pharmacology , Humans , Male , Middle Aged , Multimodal Imaging , Positron Emission Tomography Computed Tomography/methods , Retrospective Studies , Tomography, X-Ray Computed
13.
Front Mol Biosci ; 7: 198, 2020.
Article in English | MEDLINE | ID: mdl-32903367

ABSTRACT

Bromodomain and extra-terminal domain (BET) family proteins have become a hot research area because of their close relationship with a variety of human diseases. The non-invasive imaging technique, such as positron emission tomography (PET), provides a powerful tool to visualize and quantify the BET family proteins that accelerating the investigation of this domain. Herein, we describe the development of a promising PET probe, [ 11 C]1, specifically targeting BET family proteins based on the potent BET inhibitor CF53. [ 11 C]1 was successfully radio-synthesized with good yield and high purity after the optimization of radiolabeling conditions. The in vivo bio-activities evaluation of [ 11 C]1 was performed using PET imaging in rodents. The results demonstrated that [ 11 C]1 has favorable uptake in peripheral organs and moderate uptake in the brain. Further blocking studies indicated the high binding specificity and selectivity for BET proteins of this probe. Our findings suggest that [ 11 C]1 is a promising BET PET probe for BET proteins as well as epigenetic imaging.

14.
Nucl Med Biol ; 84-85: 96-101, 2020.
Article in English | MEDLINE | ID: mdl-32320910

ABSTRACT

INTRODUCTION: Bromodomain and extra-terminal domain (BET) family proteins play a vital role in the epigenetic regulation process by interacting with acetylated lysine (Ac-K) residues in histones. BET inhibitors have become promising candidates to treat various diseases through the inhibition of the interaction between BET bromodomains and Ac-K of histone tails. With a molecular imaging probe, noninvasive imaging such as positron emission tomography (PET) can visualize the distribution and roles of BET family proteins in vivo and enlighten our understanding of BET protein function in both healthy and diseased tissue. METHODS: We radiolabeled the potent BET inhibitor INCB054329 by N-methylation to make [11C]PB003 as a BET PET radiotracer. The bioactivity evaluation of unlabeled PB003 in vitro was performed to confirm its binding affinity for BRDs, then the PET/CT imaging in rodents was performed to evaluate the bioactivity of [11C]PB003 in vivo. RESULTS: In our in vitro evaluation, PB003 showed a high BET binding affinity for BRDs (Kd = 2 nM, 1.2 nM, and 1.2 nM for BRD2, BRD3, and BRD4, respectively). In vivo PET/CT imaging demonstrated that [11C]PB003 has favorable uptake with appropriate kinetics and distributions in main peripheral organs. Besides, the blockade of [11C]PB003 binding was found in our blocking study which indicated the specificity of [11C]PB003. However, the BBB penetration and brain uptake of [11C]PB003 was limited, with only a maximum 0.2% injected dose/g at ~2 min post-injection. CONCLUSION: The imaging results in rodents in vivo demonstrate that [11C]PB003 binds to BET with high selectivity and specificity and has favorable uptake in peripheral organs. However, the low brain uptake of [11C]PB003 limits the visualization of brain regions indicating the efforts are still needed to discover the new BET imaging probes for brain visualization.


Subject(s)
Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Isotope Labeling , Kinetics , Methylation , Protein Domains , Radioactive Tracers , Radiochemistry
15.
J Exp Med ; 217(12)2020 12 07.
Article in English | MEDLINE | ID: mdl-32936886

ABSTRACT

The pathogenesis of Alzheimer's disease (AD) is primarily driven by brain accumulation of the amyloid-ß-42 (Aß42) peptide generated from the amyloid-ß precursor protein (APP) via cleavages by ß- and γ-secretase. γ-Secretase is a prime drug target for AD; however, its brain regional expression and distribution remain largely unknown. Here, we are aimed at developing molecular imaging tools for visualizing γ-secretase. We used our recently developed γ-secretase modulators (GSMs) and synthesized our GSM-based imaging agent, [11C]SGSM-15606. We subsequently performed molecular imaging in rodents, including AD transgenic animals, and macaques, which revealed that our probe displayed good brain uptake and selectivity, stable metabolism, and appropriate kinetics and distribution for imaging γ-secretase in the brain. Interestingly, rodents and macaques shared certain brain areas with high γ-secretase expression, suggesting a functional conservation of γ-secretase. Collectively, we have provided the first molecular brain imaging of γ-secretase, which may not only accelerate our drug discovery for AD but also advance our understanding of AD.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/metabolism , Molecular Imaging , Animals , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Humans , Macaca mulatta , Magnetic Resonance Imaging , Male , Mice, Transgenic , Positron Emission Tomography Computed Tomography , Presenilin-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL