ABSTRACT
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy with historically poor outcomes and no worldwide consensus treatment approach. Unique among most hematologic malignancies for its frequent cutaneous involvement, BPDCN can also invade other extramedullary compartments, including the central nervous system. Generally affecting older adults, many patients are unfit to receive intensive chemotherapy, and although hematopoietic stem cell transplantation is preferred for younger, fit individuals, not all are eligible. One recent therapeutic breakthrough is that all BPDCNs express CD123 (IL3Rα) and that this accessible surface marker can be pharmacologically targeted. The first-in-class agent for BPDCN, tagraxofusp, which targets CD123, was approved in December 2018 in the United States for patients with BPDCN aged ≥2 years. Despite favorable response rates in the frontline setting, many patients still relapse in the setting of monotherapy, and outcomes in patients with relapsed/refractory BPDCN remain dismal. Therefore, novel approaches targeting both CD123 and other targets are actively being investigated. To begin to formally address the state of the field, we formed a new collaborative initiative, the North American BPDCN Consortium (NABC). This group of experts, which includes a multidisciplinary panel of hematologists/oncologists, hematopoietic stem cell transplant physicians, pathologists, dermatologists, and pediatric oncologists, was tasked with defining the current standard of care in the field and identifying the most important research questions and future directions in BPDCN. The position findings of the NABC's inaugural meetings are presented herein.
Subject(s)
Hematologic Neoplasms , Myeloproliferative Disorders , Skin Neoplasms , Child , Humans , Aged , Standard of Care , Interleukin-3 Receptor alpha Subunit , Dendritic Cells/pathology , Neoplasm Recurrence, Local/pathology , Myeloproliferative Disorders/pathology , Hematologic Neoplasms/pathology , Skin Neoplasms/pathology , Acute Disease , North AmericaABSTRACT
The phase 3 ADMIRAL (NCT02421939; Study ID: 2215-CL-0301) trial showed superior overall survival in patients with relapsed/refractory FLT3-mutation-positive acute myeloid leukemia (AML) randomized 2:1 to receive the oral FMS-like tyrosine kinase 3 inhibitor gilteritinib vs those randomized to receive salvage chemotherapy (SC). Here we provide a follow-up of the ADMIRAL trial 2 years after the primary analysis to clarify the long-term treatment effects and safety of gilteritinib in these patients with AML. At the time of this analysis, the median survival follow-up was 37.1 months, with deaths in 203 of 247 and 97 of 124 patients in the gilteritinib and SC arms, respectively; 16 gilteritinib-treated patients remained on treatment. The median overall survival for the gilteritinib and SC arms was 9.3 and 5.6 months, respectively (hazard ratio, 0.665; 95% confidence interval [CI], 0.518, 0.853; two-sided P = .0013); 2-year estimated survival rates were 20.6% (95% CI, 15.8, 26.0) and 14.2% (95% CI, 8.3, 21.6). The gilteritinib-arm 2-year cumulative incidence of relapse after composite complete remission was 75.7%, with few relapses occurring after 18 months. Overall, 49 of 247 patients in the gilteritinib arm and 14 of 124 patients in the SC arm were alive for ≥2 years. Twenty-six gilteritinib-treated patients remained alive for ≥2 years without relapse; 18 of these patients underwent transplantation (hematopoietic stem cell transplantation [HSCT]) and 16 restarted gilteritinib as post-HSCT maintenance therapy. The most common adverse events of interest during years 1 and 2 of gilteritinib therapy were increased liver transaminase levels; adverse event incidence decreased in year 2. Thus, continued and post-HSCT gilteritinib maintenance treatment sustained remission with a stable safety profile. These findings confirm that prolonged gilteritinib therapy is safe and is associated with superior survival vs SC. This trial was registered at www.clinicaltrials.gov as #NCT02421939.
Subject(s)
Aniline Compounds , Leukemia, Myeloid, Acute , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Follow-Up Studies , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Pyrazines , Recurrence , fms-Like Tyrosine Kinase 3/geneticsABSTRACT
BACKGROUND: This report summarizes three phase I studies evaluating volasertib, a polo-like kinase inhibitor, plus azacitidine in adults with myelodysplastic syndromes (MDS), chronic myelomonocytic leukemia, or acute myeloid leukemia. METHODS: Patients received intravenous volasertib in 28-day cycles (dose-escalation schedules). In Part 1 of 1230.33 (Study 1; NCT01957644), patients received 250-350 mg volasertib on day (D)1 and D15; in Part 2, patients received different schedules [A, D1: 170 mg/m2; B, D7: 170 mg/m2; C, D1 and D7: 110 mg/m2]. In 1230.35 (Study 2; NCT02201329), patients received 200-300 mg volasertib on D1 and D15. In 1230.43 (Study 3; NCT02721875), patients received 110 mg/m2 volasertib on D1 and D8. All patients in Studies 1 and 2, and approximately half of the patients in Study 3, were scheduled to receive subcutaneous azacitidine 75 mg/m2 on D1-7. RESULTS: Overall, 22 patients were treated (17 with MDS; 12 previously untreated). Across Studies 1 and 2 (n = 21), the most common drug-related adverse events were hematological (thrombocytopenia [n = 11]; neutropenia [n = 8]). All dose-limiting toxicities were grade 4 thrombocytopenia. The only treated patient in Study 3 experienced 18 adverse events following volasertib monotherapy. Studies 1 and 2 showed preliminary activity (objective response rates: 25 and 40%). CONCLUSIONS: The safety of volasertib with azacitidine in patients with MDS was consistent with other volasertib studies. All studies were terminated prematurely following the discontinuation of volasertib for non-clinical reasons by Boehringer Ingelheim; however, safety information on volasertib plus azacitidine are of interest for future studies in other diseases.
Subject(s)
Leukemia, Myeloid, Acute , Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Thrombocytopenia , Adult , Azacitidine/therapeutic use , Clinical Trials, Phase I as Topic , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myelomonocytic, Chronic/chemically induced , Leukemia, Myelomonocytic, Chronic/drug therapy , Myelodysplastic Syndromes/chemically induced , Myelodysplastic Syndromes/drug therapy , Pteridines , Thrombocytopenia/chemically inducedABSTRACT
BACKGROUND: Acute myeloid leukemia (AML) is fatal in elderly patients who are unfit for standard induction chemotherapy. The objective of this study was to evaluate the survival benefit of administering sapacitabine, an oral nucleoside analogue, in alternating cycles with decitabine, a low-intensity therapy, to elderly patients with newly diagnosed AML. METHODS: This randomized, open-label, phase 3 study (SEAMLESS) was conducted at 87 sites in 11 countries. Patients aged ≥70 years who were not candidates for or chose not to receive standard induction chemotherapy were randomized 1:1 to arm A (decitabine in alternating cycles with sapacitabine) received 1-hour intravenous infusions of decitabine 20 mg/m2 once daily for 5 consecutive days every 8 weeks (first cycle and subsequent odd cycles) and sapacitabine 300 mg twice daily on 3 consecutive days per week for 2 weeks every 8 weeks (second cycle and subsequent even cycles) or to control arm C who received 1-hour infusions of decitabine 20 mg/m2 once daily for 5 consecutive days every 4 weeks. Prior hypomethylating agent therapy for preexisting myelodysplastic syndromes or myeloproliferative neoplasms was an exclusion criterion. Randomization was stratified by antecedent myelodysplastic syndromes or myeloproliferative neoplasms, white blood cell count (<10 × 109 /L and ≥10 × 109 /L), and bone marrow blast percentage (≥50% vs <50%). The primary end point was overall survival (OS). Secondary end points were the rates of complete remission (CR), CR with incomplete platelet count recovery, partial remission, hematologic improvement, and stable disease along with the corresponding durations, transfusion requirements, number of hospitalized days, and 1-year survival. The trial is registered at ClinicalTrials.gov (NCT01303796). RESULTS: Between October 2011 and December 2014, 482 patients were enrolled and randomized to receive decitabine administered in alternating cycles with sapacitabine (study arm, n = 241) or decitabine monotherapy (control arm, n = 241). The median OS was 5.9 months on the study arm versus 5.7 months on the control arm (P = .8902). The CR rate was 16.6% on the study arm and 10.8% on the control arm (P = .1468). In patients with white blood cell counts <10 × 109 /L (n = 321), the median OS was higher on the study arm versus the control arm (8.0 vs 5.8 months; P = .145), as was the CR rate (21.5% vs 8.6%; P = .0017). CONCLUSIONS: The regimen of decitabine administered in alternating cycles with sapacitabine was active but did not significantly improve OS compared with decitabine monotherapy. Subgroup analyses suggest that patients with baseline white blood cell counts <10 × 109 /L might benefit from decitabine alternating with sapacitabine, with an improved CR rate and the convenience of an oral drug. These findings should be prospectively confirmed.
Subject(s)
Arabinonucleosides , Leukemia, Myeloid, Acute , Aged , Azacitidine , Cytosine/analogs & derivatives , Cytosine/therapeutic use , Decitabine , Humans , Treatment OutcomeABSTRACT
The NCCN Guidelines for Acute Myeloid Leukemia (AML) provide recommendations for the diagnosis and treatment of adults with AML based on clinical trials that have led to significant improvements in treatment, or have yielded new information regarding factors with prognostic importance, and are intended to aid physicians with clinical decision-making. These NCCN Guidelines Insights focus on recent select updates to the NCCN Guidelines, including familial genetic alterations in AML, postinduction or postremission treatment strategies in low-risk acute promyelocytic leukemia or favorable-risk AML, principles surrounding the use of venetoclax-based therapies, and considerations for patients who prefer not to receive blood transfusions during treatment.
Subject(s)
Leukemia, Myeloid, Acute , Adult , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , PrognosisABSTRACT
Daily intravenous arsenic trioxide administered with all-trans retinoid acid, the standard-of-care for acute promyelocytic leukemia, is costly and challenging to administer. ORH-2014 is a novel, oral arsenic trioxide formulation, consisting of micron-size drug particles with rapid dissolution and high bioavailability. We conducted a multicenter phase 1 dose-escalating study in patients with advanced hematologic malignancies. Twelve patients received ORH-2014 at 5 mg (n=3), 10 mg (n=6), or 15 mg (n=3) orally once a day (fasted state). Objectives were to assess the safety, tolerability and pharmacokinetics of ORH-2014 to support a dose recommendation for future trials. The median age of the patients was 77 years (range: 45-81) and they had received a median of two (range: 1-5) prior therapies. There were no dose limiting toxicities and no drug-related severe adverse events, except one grade III QT prolongation occurring beyond the dose limiting toxicity assessment period and resolving after treatment interruption. ORH-2014 steady-state plasma concentration was reached on day 15. ORH-2014, 15 mg Cmax was comparable to the calculated approved dose of intravenous arsenic trioxide (mean [% coefficient of variation]: 114 [21%] vs 124 [60%] ng/mL) and area under the curve from 0 to 24 hours was 2,140 (36%) versus 1,302 (30%) h*ng/mL. These results indicate that ORH-2014 at 15 mg is safe, bioavailable, and provides the required arsenic exposure compared to intravenous arsenic trioxide at the approved dose (0.15 mg/kg); this ORH-2014 dose is recommended for future trials. (NCT03048344; www.clin-icaltrials.gov).
Subject(s)
Antineoplastic Agents , Leukemia, Promyelocytic, Acute , Neoplasms , Administration, Intravenous , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Arsenic Trioxide , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Middle AgedABSTRACT
For patients with high risk myeloid disease, allogeneic hematopoietic cell transplantation (HCT) is the only potentially curative therapy. Unfortunately, many of these patients relapse after HCT and have a limited survival. The recent approval of venetoclax, an orally bioavailable BCL-2 inhibitor, resulted in significant responses in treatment naïve acute myeloid leukemia (AML), and off-label use in the relapsed/refractory setting is increasing. We report the outcomes of 21 patients who underwent allogeneic HCT for myeloid disease, relapsed with AML, and were treated with venetoclax. Several patients had poor risk features including antecedent hematologic malignancy (6/21), complex karyotype (6/21), and TP53 mutations (5/21). The median age was 64.5 years and time from HCT to relapse was 5.7 months (range: 0.9 to 44.9 months). Of the 19 patients who were assessed for response, there were meaningful treatment responses seen in eight patients: five CR, three CRi, zero PR, for an ORR of 42.1%. Treatment effect was seen in six additional patients, including four in the morphologic leukemia-free state. Nine patients maintained their response for ≥3 months and eight were receiving therapy at data cut. Post-HCT AML relapse has an exceedingly poor outcome, and venetoclax-based therapy is a potent therapy option that should be studied prospectively in this setting.
Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Salvage Therapy , Sulfonamides/administration & dosage , Adult , Aged , Allografts , Disease-Free Survival , Female , Humans , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Survival RateABSTRACT
Acute myeloid leukemia (AML) is the most common form of acute leukemia among adults and accounts for the largest number of annual deaths due to leukemias in the United States. Recent advances have resulted in an expansion of treatment options for AML, especially concerning targeted therapies and low-intensity regimens. This portion of the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for AML focuses on the management of AML and provides recommendations on the workup, diagnostic evaluation and treatment options for younger (age <60 years) and older (age ≥60 years) adult patients.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/analysis , Hematopoietic Stem Cell Transplantation/standards , Leukemia, Myeloid, Acute/therapy , Medical Oncology/standards , Age Factors , Aged , Antineoplastic Combined Chemotherapy Protocols/standards , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Cytogenetic Analysis/standards , Disease-Free Survival , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , HLA Antigens/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Histocompatibility Testing/standards , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/mortality , Middle Aged , Remission Induction/methods , Risk Assessment/standards , Transplantation, Homologous/adverse effects , United StatesABSTRACT
BACKGROUND: Old age and FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutations in patients with acute myeloid leukaemia are associated with early relapse and poor survival. Quizartinib is an oral, highly potent, and selective next-generation FLT3 inhibitor with clinical antileukaemic activity in relapsed or refractory acute myeloid leukaemia. We aimed to assess the efficacy and safety of single-agent quizartinib in patients with relapsed or refractory acute myeloid leukaemia. METHODS: We did an open-label, multicentre, single-arm, phase 2 trial at 76 hospitals and cancer centres in the USA, Europe, and Canada. We enrolled patients with morphologically documented primary acute myeloid leukaemia or acute myeloid leukaemia secondary to myelodysplastic syndromes and an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2 into two predefined, independent cohorts: patients who were aged 60 years or older with relapsed or refractory acute myeloid leukaemia within 1 year after first-line therapy (cohort 1), and those who were 18 years or older with relapsed or refractory disease following salvage chemotherapy or haemopoietic stem cell transplantation (cohort 2). Patients with an FLT3-ITD allelic frequency of more than 10% were considered as FLT3-ITD positive, whereas all other patients were considered as FLT3-ITD negative. Patients received quizartinib once daily as an oral solution; the initial 17 patients received 200 mg per day but the QTcF interval was prolonged for more than 60 ms above baseline in some of these patients. Subsequently, doses were amended for all patients to 135 mg per day for men and 90 mg per day for women. The co-primary endpoints were the proportion of patients who achieved a composite complete remission (defined as complete remissionâ+âcomplete remission with incomplete platelet recoveryâ+âcomplete remission with incomplete haematological recovery) and the proportion of patients who achieved a complete remission. Efficacy and safety analyses included all patients who received at least one dose of quizartinib (ie, the intention-to-treat population). Patients with a locally assessed post-treatment bone marrow aspirate or biopsy were included in efficacy analyses by response; all other patients were considered to have an unknown response. This study is registered with ClinicalTrials.gov, number NCT00989261, and with the European Clinical Trials Database, EudraCT 2009-013093-41, and is completed. FINDINGS: Between Nov 19, 2009, and Oct 31, 2011, a total of 333 patients were enrolled (157 in cohort 1 and 176 in cohort 2). In cohort 1, 63 (56%) of 112 FLT3-ITD-positive patients and 16 (36%) of 44 FLT3-ITD-negative patients achieved composite complete remission, with three (3%) FLT3-ITD-positive patients and two (5%) FLT3-ITD-negative patients achieving complete remission. In cohort 2, 62 (46%) of 136 FLT3-ITD-positive patients achieved composite complete remission with five (4%) achieving complete remission, whereas 12 (30%) of 40 FLT3-ITD-negative patients achieved composite complete remission with one (3%) achieving complete remission. Across both cohorts (ie, the intention-to-treat population of 333 patients), grade 3 or worse treatment-related treatment-emergent adverse events in 5% or more of patients were febrile neutropenia (76 [23%] of 333), anaemia (75 [23%]), thrombocytopenia (39 [12%]), QT interval corrected using Fridericia's formula (QTcF) prolongation (33 [10%]), neutropenia (31 [9%]), leucopenia (22 [7%]), decreased platelet count (20 [6%]), and pneumonia (17 [5%]). Serious adverse events occurring in 5% or more of patients were febrile neutropenia (126 [38%] of 333; 76 treatment related), acute myeloid leukaemia progression (73 [22%]), pneumonia (40 [12%]; 14 treatment related), QTcF prolongation (33 [10%]; 32 treatment related), sepsis (25 [8%]; eight treatment related), and pyrexia (18 [5%]; nine treatment related). Notable serious adverse events occurring in less than 5% of patients were torsades de pointes (one [<1%]) and hepatic failure (two [1%]). In total, 125 (38%) of 333 patients died within the study treatment period, including the 30-day follow-up. 18 (5%) patients died because of an adverse event considered by the investigator to be treatment related (ten [6%] of 157 patients in cohort 1 and eight [5%] of 176 in cohort 2. INTERPRETATION: Single-agent quizartinib was shown to be highly active and generally well tolerated in patients with relapsed or refractory acute myeloid leukaemia, particularly those with FLT3-ITD mutations. These findings confirm that targeting the FLT3-ITD driver mutation with a highly potent and selective FLT3 inhibitor is a promising clinical strategy to help improve clinical outcomes in patients with very few options. Phase 3 studies (NCT02039726; NCT02668653) will examine quizartinib at lower starting doses. FUNDING: Ambit Biosciences/Daiichi Sankyo.
Subject(s)
Benzothiazoles/therapeutic use , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Neoplasm Recurrence, Local/drug therapy , Phenylurea Compounds/therapeutic use , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Administration, Oral , Adult , Aged , Canada , Disease-Free Survival , Dose-Response Relationship, Drug , Drug Administration Schedule , Europe , Female , Humans , Internationality , Leukemia, Myeloid, Acute/mortality , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/mortality , Prognosis , Survival Rate , Treatment Outcome , United States , Young Adult , fms-Like Tyrosine Kinase 3/administration & dosageABSTRACT
BACKGROUND: Internal tandem duplication mutations in FLT3 are common in acute myeloid leukaemia and are associated with rapid relapse and short overall survival. The clinical benefit of FLT3 inhibitors in patients with acute myeloid leukaemia has been limited by rapid generation of resistance mutations, particularly in codon Asp835 (D835). We aimed to assess the highly selective oral FLT3 inhibitor gilteritinib in patients with relapsed or refractory acute myeloid leukaemia. METHODS: In this phase 1-2 trial, we enrolled patients aged 18 years or older with acute myeloid leukaemia who either were refractory to induction therapy or had relapsed after achieving remission with previous treatment. Patients were enrolled into one of seven dose-escalation or dose-expansion cohorts assigned to receive once-daily doses of oral gilteritinib (20 mg, 40 mg, 80 mg, 120 mg, 200 mg, 300 mg, or 450 mg). Cohort expansion was based on safety and tolerability, FLT3 inhibition in correlative assays, and antileukaemic activity. Although the presence of an FLT3 mutation was not an inclusion criterion, we required ten or more patients with locally confirmed FLT3 mutations (FLT3mut+) to be enrolled in expansion cohorts at each dose level. On the basis of emerging findings, we further expanded the 120 mg and 200 mg dose cohorts to include FLT3mut+ patients only. The primary endpoints were the safety, tolerability, and pharmacokinetics of gilteritinib. Safety and tolerability were assessed in the safety analysis set (all patients who received at least one dose of gilteritinib). Responses were assessed in the full analysis set (all patients who received at least one dose of study drug and who had at least one datapoint post-treatment). Pharmacokinetics were assessed in a subset of the safety analysis set for which sufficient data for concentrations of gilteritinib in plasma were available to enable derivation of one or more pharmacokinetic variables. This study is registered with ClinicalTrials.gov, number NCT02014558, and is ongoing. FINDINGS: Between Oct 15, 2013, and Aug 27, 2015, 252 adults with relapsed or refractory acute myeloid leukaemia received oral gilteritinib once daily in one of seven dose-escalation (n=23) or dose-expansion (n=229) cohorts. Gilteritinib was well tolerated; the maximum tolerated dose was established as 300 mg/day when two of three patients enrolled in the 450 mg dose-escalation cohort had two dose-limiting toxicities (grade 3 diarrhoea and grade 3 elevated aspartate aminotransferase). The most common grade 3-4 adverse events irrespective of relation to treatment were febrile neutropenia (97 [39%] of 252), anaemia (61 [24%]), thrombocytopenia (33 [13%]), sepsis (28 [11%]), and pneumonia (27 [11%]). Commonly reported treatment-related adverse events were diarrhoea (92 [37%] of 252]), anaemia (86 [34%]), fatigue (83 [33%]), elevated aspartate aminotransferase (65 [26%]), and increased alanine aminotransferase (47 [19%]). Serious adverse events occurring in 5% or more of patients were febrile neutropenia (98 [39%] of 252; five related to treatment), progressive disease (43 [17%]), sepsis (36 [14%]; two related to treatment), pneumonia (27 [11%]), acute renal failure (25 [10%]; five related to treatment), pyrexia (21 [8%]; three related to treatment), bacteraemia (14 [6%]; one related to treatment), and respiratory failure (14 [6%]). 95 people died in the safety analysis set, of which seven deaths were judged possibly or probably related to treatment (pulmonary embolism [200 mg/day], respiratory failure [120 mg/day], haemoptysis [80 mg/day], intracranial haemorrhage [20 mg/day], ventricular fibrillation [120 mg/day], septic shock [80 mg/day], and neutropenia [120 mg/day]). An exposure-related increase in inhibition of FLT3 phosphorylation was noted with increasing concentrations in plasma of gilteritinib. In-vivo inhibition of FLT3 phosphorylation occurred at all dose levels. At least 90% of FLT3 phosphorylation inhibition was seen by day 8 in most patients receiving a daily dose of 80 mg or higher. 100 (40%) of 249 patients in the full analysis set achieved a response, with 19 (8%) achieving complete remission, ten (4%) complete remission with incomplete platelet recovery, 46 (18%) complete remission with incomplete haematological recovery, and 25 (10%) partial remission INTERPRETATION: Gilteritinib had a favourable safety profile and showed consistent FLT3 inhibition in patients with relapsed or refractory acute myeloid leukaemia. These findings confirm that FLT3 is a high-value target for treatment of relapsed or refractory acute myeloid leukaemia; based on activity data, gilteritinib at 120 mg/day is being tested in phase 3 trials. FUNDING: Astellas Pharma, National Cancer Institute (Leukemia Specialized Program of Research Excellence grant), Associazione Italiana Ricerca sul Cancro.
Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Pyrazines/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , Aged , Aniline Compounds/blood , Aniline Compounds/therapeutic use , Antineoplastic Agents/blood , Antineoplastic Agents/therapeutic use , Blood Platelets , Female , Humans , Leukemia, Myeloid, Acute/genetics , Male , Maximum Tolerated Dose , Middle Aged , Phosphorylation/drug effects , Pyrazines/blood , Pyrazines/therapeutic use , Recurrence , Retreatment , fms-Like Tyrosine Kinase 3/metabolismABSTRACT
Acute myeloid leukemia (AML) is the most common form of acute leukemia among adults and accounts for the largest number of annual deaths due to leukemias in the United States. This portion of the NCCN Guidelines for AML focuses on management and provides recommendations on the workup, diagnostic evaluation, and treatment options for younger (age <60 years) and older (age ≥60 years) adult patients.
Subject(s)
Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/therapy , Age Factors , Disease Management , HumansABSTRACT
PURPOSE OF REVIEW: Acute myeloid leukemia (AML) is an immensely heterogeneous disease based on the presence of varying combinations of morphologic, immunophenotypic, genetic, and molecular characteristics identified among those diagnosed with this disease. Although current therapeutic strategies provide a reasonable likelihood of achieving a complete remission for the majority of patients, relapse rates and subsequent disease-related mortality remain unacceptably high. Improved methods of risk stratification are needed to better identify patients at considerable risk of relapse in hopes of allowing for early therapeutic intervention and/or intensification that may lead to a higher likelihood of cure. The current status of risk stratification of AML and emerging technologies with potential to improve prognostic classification and outcomes are summarized in this review. RECENT FINDINGS: Refinement of our understanding of the impact of current pretreatment AML cytogenetic, immunophenotypic, and molecular aberrations to predict outcomes and guide therapeutic decision-making is ongoing. Emerging data suggest that incorporation of the degree of posttreatment response and/or the detection of minimal residual disease can improve the accuracy of risk stratification for individual patients. SUMMARY: Although pretreatment disease characteristics remain the hallmark of prognostication for AML patients, posttreatment parameters such as minimal residual disease assessment and degree of response to therapy possess the ability to further refine our identification of patients with unfavorable disease and thereby influence decisions regarding therapeutic planning.
Subject(s)
Leukemia, Myeloid, Acute/diagnosis , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor , Clinical Decision-Making , Genetic Testing , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Neoplasm, Residual , Prognosis , Remission Induction , Risk , Treatment OutcomeSubject(s)
Enzyme Inhibitors/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Isocitrate Dehydrogenase/antagonists & inhibitors , Leukemia, Myeloid, Acute/therapy , Cell Differentiation/drug effects , Female , Graft vs Host Disease/etiology , Humans , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/therapy , Transplantation, Homologous/adverse effectsABSTRACT
Although recent observations implicate the importance of telomerase activity in acute myeloid leukaemia (AML), the roles of epigenetic regulations of the TERT gene in leukaemogenesis, drug resistance and clinical prognosis in AML are not fully understood. We developed a quantitative pyrosequencing-based methylation assay covering the TERT proximal promoter and a partial exon 1 (TERTpro/Ex1) region and tested both cell lines and primary leukaemia cells derived from AML and AML with preceding myelodysplastic syndrome (AML/MDS) patients (n = 43). Prognostic impact of methylation status of the upstream TERT promoter region was assessed by the Kaplan-Meier method. The activity of the telomerase inhibitor, imetelstat, was measured using leukaemia cell lines. The TERTpro/Ex1 region was highly methylated in all cell lines and primary leukaemia cells showed diverse methylation profiles. Most cases showed hypermethylated regions at the upstream TERTpro/Ex1 region, which were associated with inferior patient survival. TERTpro/Ex1 methylation status was correlated with the cytotoxicity to imetelstat and its combination with hypomethylating agent enhanced the cytotoxicity of imetelstat. AML cell lines and primary blasts harbour distinct TERTpro/Ex1 methylation profiles that could serve as a prognostic biomarker of AML. However, validation in a large cohort of patients is necessary to confirm our findings.
Subject(s)
Epigenesis, Genetic , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Promoter Regions, Genetic , Telomerase/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Cell Line , Cluster Analysis , CpG Islands , DNA Methylation , Drug Resistance, Neoplasm/genetics , Exons , Female , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Humans , Immunophenotyping , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/mortality , Prognosis , Telomerase/antagonists & inhibitors , Telomere Homeostasis , Transcription Initiation Site , Treatment Outcome , Young AdultABSTRACT
BACKGROUND: Safe and effective treatments are urgently needed for patients with relapsed or refractory acute myeloid leukaemia. We investigated the efficacy and safety of vosaroxin, a first-in-class anticancer quinolone derivative, plus cytarabine in patients with relapsed or refractory acute myeloid leukaemia. METHODS: This phase 3, double-blind, placebo-controlled trial was undertaken at 101 international sites. Eligible patients with acute myeloid leukaemia were aged 18 years of age or older and had refractory disease or were in first relapse after one or two cycles of previous induction chemotherapy, including at least one cycle of anthracycline (or anthracenedione) plus cytarabine. Patients were randomly assigned 1:1 to vosaroxin (90 mg/m(2) intravenously on days 1 and 4 in a first cycle; 70 mg/m(2) in subsequent cycles) plus cytarabine (1 g/m(2) intravenously on days 1-5) or placebo plus cytarabine through a central interactive voice system with a permuted block procedure stratified by disease status, age, and geographical location. All participants were masked to treatment assignment. The primary efficacy endpoint was overall survival and the primary safety endpoint was 30-day and 60-day all-cause mortality. Efficacy analyses were done by intention to treat; safety analyses included all treated patients. This study is registered with ClinicalTrials.gov, number NCT01191801. FINDINGS: Between Dec 17, 2010, and Sept 25, 2013, 711 patients were randomly assigned to vosaroxin plus cytarabine (n=356) or placebo plus cytarabine (n=355). At the final analysis, median overall survival was 7·5 months (95% CI 6·4-8·5) in the vosaroxin plus cytarabine group and 6·1 months (5·2-7·1) in the placebo plus cytarabine group (hazard ratio 0·87, 95% CI 0·73-1·02; unstratified log-rank p=0·061; stratified p=0·024). A higher proportion of patients achieved complete remission in the vosaroxin plus cytarabine group than in the placebo plus cytarabine group (107 [30%] of 356 patients vs 58 [16%] of 355 patients, p<0·0001). Early mortality was similar between treatment groups (30-day: 28 [8%] of 355 patients in the vosaroxin plus cytarabine group vs 23 [7%] of 350 in the placebo plus cytarabine group; 60-day: 70 [20%] vs 68 [19%]). Treatment-related deaths occurred at any time in 20 (6%) of 355 patients given vosaroxin plus cytarabine and in eight (2%) of 350 patients given placebo plus cytarabine. Treatment-related serious adverse events occurred in 116 (33%) and 58 (17%) patients in each group, respectively. Grade 3 or worse adverse events that were more frequent in the vosaroxin plus cytarabine group than in the placebo plus cytarabine group included febrile neutropenia (167 [47%] vs 117 [33%]), neutropenia (66 [19%] vs 49 [14%]), stomatitis (54 [15%] vs 10 [3%]), hypokalaemia (52 [15%] vs 21 [6%]), bacteraemia (43 [12%] vs 16 [5%]), sepsis (42 [12%] vs 18 [5%]), and pneumonia (39 [11%] vs 26 [7%]). INTERPRETATION: Although there was no significant difference in the primary endpoint between groups, the prespecified secondary analysis stratified by randomisation factors suggests that the addition of vosaroxin to cytarabine might be of clinical benefit to some patients with relapsed or refractory acute myeloid leukaemia. FUNDING: Sunesis Pharmaceuticals.
Subject(s)
Cytarabine/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Naphthyridines/administration & dosage , Neoplasm Recurrence, Local/drug therapy , Thiazoles/administration & dosage , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols , Disease-Free Survival , Double-Blind Method , Female , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Neoplasm Recurrence, Local/pathology , Remission Induction , Treatment OutcomeABSTRACT
BACKGROUND: Although advances in sequencing technologies have popularized the use of microRNA (miRNA) sequencing (miRNA-seq) for the quantification of miRNA expression, questions remain concerning the optimal methodologies for analysis and utilization of the data. The construction of a miRNA sequencing library selects RNA by length rather than type. However, as we have previously described, miRNAs represent only a subset of the species obtained by size selection. Consequently, the libraries obtained for miRNA sequencing also contain a variety of additional species of small RNAs. This study looks at the prevalence of these other species obtained from bone marrow aspirate specimens and explores the predictive value of these small RNAs in the determination of response to therapy in myelodysplastic syndromes (MDS). METHODS: Paired pre and post treatment bone marrow aspirate specimens were obtained from patients with MDS who were treated with either azacytidine or decitabine (24 pre-treatment specimens, 23 post-treatment specimens) with 22 additional non-MDS control specimens. Total RNA was extracted from these specimens and submitted for next generation sequencing after an additional size exclusion step to enrich for small RNAs. The species of small RNAs were enumerated, single nucleotide variants (SNVs) identified, and finally the differential expression of tRNA-derived species (tDRs) in the specimens correlated with diseasestatus and response to therapy. RESULTS: Using miRNA sequencing data generated from bone marrow aspirate samples of patients with known MDS (N = 47) and controls (N = 23), we demonstrated that transfer RNA (tRNA) fragments (specifically tRNA halves, tRHs) are one of the most common species of small RNA isolated from size selection. Using tRNA expression values extracted from miRNA sequencing data, we identified six tRNA fragments that are differentially expressed between MDS and normal samples. Using the elastic net method, we identified four tRNAs-derived small RNAs (tDRs) that together can explain 67 % of the variation in treatment response for MDS patients. Similar analysis of specifically mitochondrial tDRs (mt-tDRs) identified 13 mt-tDRs which distinguished disease status in the samples and a single mt-tDR which predited response. Finally, 14 SNVs within the tDRs were found in at least 20 % of the MDS samples and were not observed in any of the control specimens. DISCUSSION: This study highlights the prevalence of tDRs in RNA-seq studies focused on small RNAs. The potential etiologies of these species, both technical and biologic, are discussed as well as important challenges in the interpretation of tDR data. CONCLUSIONS: Our analysis results suggest that tRNA fragments can be accurately detected through miRNA sequencing data and that the expression of these species may be useful in the diagnosis of MDS and the prediction of response to therapy.
Subject(s)
High-Throughput Nucleotide Sequencing/methods , Myelodysplastic Syndromes/genetics , RNA, Transfer/genetics , Aged , Base Sequence , Female , Gene Expression Regulation , Humans , Male , MicroRNAs/genetics , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/pathology , RNA, Transfer/isolation & purificationABSTRACT
This phase 2 study (N = 116) evaluated single-agent vosaroxin, a first-in-class anticancer quinolone derivative, in patients ≥60 years of age with previously untreated unfavourable prognosis acute myeloid leukaemia. Dose regimen optimization was explored in sequential cohorts (A: 72 mg/m(2) d 1, 8, 15; B: 72 mg/m(2) d 1, 8; C: 72 mg/m(2) or 90 mg/m(2) d 1, 4). The primary endpoint was combined complete remission rate (complete remission [CR] plus CR with incomplete platelet recovery [CRp]). Common (>20%) grade ≥3 adverse events were thrombocytopenia, febrile neutropenia, anaemia, neutropenia, sepsis, pneumonia, stomatitis and hypokalaemia. Overall CR and CR/CRp rates were 29% and 32%; median overall survival (OS) was 7·0 months; 1-year OS was 34%. Schedule C (72 mg/m(2) ) had the most favourable safety and efficacy profile, with faster haematological recovery (median 27 d) and lowest incidence of aggregate sepsis (24%) and 30-d (7%) and 60-d (17%) all-cause mortality; at this dose and schedule, CR and CR/CRp rates were 31% and 35%, median OS was 7·7 months and 1-year OS was 38%. Overall, vosaroxin resulted in low early mortality and an encouraging response rate; vosaroxin 72 mg/m(2) d 1, 4 is recommended for further study in this population. Registered at www.clinicaltrials.gov: #NCT00607997.
Subject(s)
Antineoplastic Agents/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Naphthyridines/administration & dosage , Thiazoles/administration & dosage , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Antineoplastic Agents/blood , Antineoplastic Agents/therapeutic use , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Infusions, Intravenous , Leukemia, Myeloid, Acute/blood , Male , Middle Aged , Naphthyridines/adverse effects , Naphthyridines/blood , Naphthyridines/therapeutic use , Prognosis , Survival Analysis , Thiazoles/adverse effects , Thiazoles/blood , Thiazoles/therapeutic use , Treatment OutcomeABSTRACT
Serial studies have demonstrated that induction therapy with FLAM [flavopiridol (alvocidib) 50 mg/m(2) days 1-3, cytarabine 667 mg/m(2)/day continuous infusion days 6-8, and mitoxantrone (FLAM) 40 mg/m(2) day 9] yields complete remission rates of nearly 70% in newly diagnosed poor-risk acute myeloid leukemia. Between May 2011-July 2013, 165 newly diagnosed acute myeloid leukemia patients (age 18-70 years) with intermediate/adverse-risk cytogenetics were randomized 2:1 to receive FLAM or 7+3 (cytarabine 100 mg/m(2)/day continuous infusion days 1-7 and daunorubicin 90 mg/m(2) days 1-3), across 10 institutions. Some patients on 7+3 with residual leukemia on day 14 received 5+2 (cytarabine 100 mg/m(2)/day continuous infusion days 1-5 and daunorubicin 45 mg/m(2) days 1-2), whereas patients on FLAM were not re-treated based on day 14 bone marrow findings. The primary objective was to compare complete remission rates between one cycle of FLAM and one cycle of 7+3. Secondary end points included safety, overall survival and event-free survival. FLAM led to higher complete remission rates than 7+3 alone (70% vs. 46%; P=0.003) without an increase in toxicity, and this improvement persisted after 7+3+/-5+2 (70% vs. 57%; P=0.08). There were no significant differences in overall survival and event-free survival in both arms but post-induction strategies were not standardized. These results substantiate the efficacy of FLAM induction in newly diagnosed AML. A phase III study is currently in development. This study is registered with clinicaltrials.gov identifier: 01349972.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Leukemia, Myeloid, Acute , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cytarabine/administration & dosage , Cytarabine/adverse effects , Daunorubicin/administration & dosage , Daunorubicin/adverse effects , Disease-Free Survival , Female , Flavonoids/administration & dosage , Flavonoids/adverse effects , Follow-Up Studies , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Mitoxantrone/administration & dosage , Mitoxantrone/adverse effects , Piperidines/administration & dosage , Piperidines/adverse effects , Survival RateABSTRACT
Prior experience indicated that use of higher doses of cytarabine during induction for acute myeloid leukemia (AML) with a histone deacetylase inhibitor resulted in high response rates. S1203 was a randomized multicenter trial for previously untreated patients aged 18-60 with AML which compared daunorubicin and cytarabine (DA), idarubicin with higher dose cytarabine (IA) and IA with vorinostat (IA + V). The primary endpoint was event free survival (EFS). 738 patients were randomized: 261 to each DA and IA arms and 216 to the IA + V arm. 96, 456, and 150 patients had favorable-, intermediate-, and unfavorable-risk cytogenetics, respectively. 152 were NPM1 and 158 FLT3 mutated. The overall remission rate was 77.5% including 62.5% CR and 15.0% CRi. No differences in remission, EFS, or overall survival were observed among the 3 arms except for the favorable cytogenetics subset who had improved outcomes with DA and postremission high dose cytarabine. A trend towards increased toxicity was observed with the IA and IA + V arms. The use of higher dose cytarabine during induction therapy in younger patients with AML, with or without vorinostat, does not result in improved outcomes. (Funded by the US National Institutes of Health and others, ClinicalTrials.gov number, NCT01802333.).