Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Data ; 10(1): 291, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208349

ABSTRACT

The COVID-19 pandemic has highlighted the need for FAIR (Findable, Accessible, Interoperable, and Reusable) data more than any other scientific challenge to date. We developed a flexible, multi-level, domain-agnostic FAIRification framework, providing practical guidance to improve the FAIRness for both existing and future clinical and molecular datasets. We validated the framework in collaboration with several major public-private partnership projects, demonstrating and delivering improvements across all aspects of FAIR and across a variety of datasets and their contexts. We therefore managed to establish the reproducibility and far-reaching applicability of our approach to FAIRification tasks.


Subject(s)
COVID-19 , Datasets as Topic , Humans , Pandemics , Public-Private Sector Partnerships , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL