Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 18(2): 152-160, 2017 02.
Article in English | MEDLINE | ID: mdl-27992404

ABSTRACT

Autoimmune diseases affect 7.5% of the US population, and they are among the leading causes of death and disability. A notable feature of many autoimmune diseases is their greater prevalence in females than in males, but the underlying mechanisms of this have remained unclear. Through the use of high-resolution global transcriptome analyses, we demonstrated a female-biased molecular signature associated with susceptibility to autoimmune disease and linked this to extensive sex-dependent co-expression networks. This signature was independent of biological age and sex-hormone regulation and was regulated by the transcription factor VGLL3, which also had a strong female-biased expression. On a genome-wide level, VGLL3-regulated genes had a strong association with multiple autoimmune diseases, including lupus, scleroderma and Sjögren's syndrome, and had a prominent transcriptomic overlap with inflammatory processes in cutaneous lupus. These results identified a VGLL3-regulated network as a previously unknown inflammatory pathway that promotes female-biased autoimmunity. They demonstrate the importance of studying immunological processes in females and males separately and suggest new avenues for therapeutic development.


Subject(s)
Gene Regulatory Networks , Keratinocytes/physiology , Lupus Erythematosus, Cutaneous/genetics , Scleroderma, Systemic/genetics , Sex Factors , Sjogren's Syndrome/genetics , Skin/pathology , Transcription Factors/metabolism , Adult , Aged , Aged, 80 and over , Cells, Cultured , Female , Gene Expression Profiling , Genetic Association Studies , Genome-Wide Association Study , Humans , Male , Middle Aged , Quantitative Trait Loci , Transcription Factors/genetics , Transcriptome , Young Adult
2.
Ann Neurol ; 94(2): 384-397, 2023 08.
Article in English | MEDLINE | ID: mdl-37127916

ABSTRACT

OBJECTIVE: Psoriasis and multiple sclerosis (MS) are complex immune diseases that are mediated by T cells and share multiple comorbidities. Previous studies have suggested psoriatic patients are at higher risk of MS; however, causal relationships between the two conditions remain unclear. Through epidemiology and genetics, we provide a comprehensive understanding of the relationship, and share molecular factors between psoriasis and MS. METHODS: We used logistic regression, trans-disease meta-analysis and Mendelian randomization. Medical claims data were included from 30 million patients, including 141,544 with MS and 742,919 with psoriasis. We used genome-wide association study summary statistics from 11,024 psoriatic, 14,802 MS cases, and 43,039 controls for trans-disease meta-analysis, with additional summary statistics from 5 million individuals for Mendelian randomization. RESULTS: Psoriatic patients have a significantly higher risk of MS (4,637 patients with both diseases; odds ratio [OR] 1.07, p = 1.2 × 10-5 ) after controlling for potential confounders. Using inverse variance and equally weighted trans-disease meta-analysis, we revealed >20 shared and opposing (direction of effect) genetic loci outside the major histocompatibility complex that showed significant genetic colocalization (in COLOC and COLOC-SuSiE v5.1.0). Co-expression analysis of genes from these loci further identified distinct clusters that were enriched among pathways for interleukin-17/tumor necrosis factor-α (OR >39, p < 1.6 × 10-3 ) and Janus kinase-signal transducers and activators of transcription (OR 35, p = 1.1 × 10-5 ), including genes, such as TNFAIP3, TYK2, and TNFRSF1A. Mendelian randomization found psoriasis as an exposure has a significant causal effect on MS (OR 1.04, p = 5.8 × 10-3 ), independent of type 1 diabetes (OR 1.05, p = 4.3 × 10-7 ), type 2 diabetes (OR 1.08, p = 2.3 × 10-3 ), inflammatory bowel disease (OR 1.11, p = 1.6 × 10-11 ), and vitamin D level (OR 0.75, p = 9.4 × 10-3 ). INTERPRETATION: By investigating the shared genetics of psoriasis and MS, along with their modifiable risk factors, our findings will advance innovations in treatment for patients suffering from comorbidities. ANN NEUROL 2023;94:384-397.


Subject(s)
Multiple Sclerosis , Psoriasis , Humans , Diabetes Mellitus, Type 2/complications , Genome-Wide Association Study , Interleukin-17/genetics , Mendelian Randomization Analysis , Multiple Sclerosis/epidemiology , Multiple Sclerosis/genetics , Multiple Sclerosis/complications , Polymorphism, Single Nucleotide/genetics , Psoriasis/epidemiology , Psoriasis/genetics , Risk Factors , Janus Kinases/metabolism , STAT Transcription Factors/metabolism
3.
Br J Dermatol ; 190(1): 70-79, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37672660

ABSTRACT

BACKGROUND: Multiple treatment options are available for the management of psoriasis, but clinical response varies among individual patients and no biomarkers are available to facilitate treatment selection for improved patient outcomes. OBJECTIVES: To utilize retrospective data to conduct a pharmacogenetic study to explore the potential genetic pathways associated with drug response in the treatment of psoriasis. METHODS: We conducted a retrospective pharmacogenetic study using self-evaluated treatment response from 1942 genotyped patients with psoriasis. We examined 6 502 658 genetic markers to model their associations with response to six treatment options using linear regression, adjusting for cohort variables and demographic features. We further utilized an integrative approach incorporating epigenomics, transcriptomics and a longitudinal clinical cohort to provide biological implications for the topmost signals associated with drug response. RESULTS: Two novel markers were revealed to be associated with treatment response: rs1991820 (P = 1.30 × 10-6) for anti-tumour necrosis factor (TNF) biologics; and rs62264137 (P = 2.94 × 10-6) for methotrexate, which was also associated with cutaneous mRNA expression levels of two known psoriasis-related genes KLK7 (P = 1.0 × 10-12) and CD200 (P = 5.4 × 10-6). We demonstrated that KLK7 expression was increased in the psoriatic epidermis, as shown by immunohistochemistry, as well as single-cell RNA sequencing, and its responsiveness to anti-TNF treatment was highlighted. By inhibiting the expression of KLK7, we further illustrated that keratinocytes have decreased proinflammatory responses to TNF. CONCLUSIONS: Our study implicates the genetic regulation of cytokine responses in predicting clinical drug response and supports the association between pharmacogenetic loci and anti-TNF response, as shown here for KLK7.


Subject(s)
Psoriasis , Humans , Kallikreins/genetics , Kallikreins/therapeutic use , Pharmacogenetics , Pharmacogenomic Testing , Psoriasis/drug therapy , Psoriasis/genetics , Psoriasis/pathology , Retrospective Studies , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha/genetics
4.
Ann Rheum Dis ; 79(11): 1460-1467, 2020 11.
Article in English | MEDLINE | ID: mdl-32737104

ABSTRACT

OBJECTIVES AND METHODS: With 432 513 samples from UK Biobank dataset, multivariable linear/logistic regression were used to estimate the relationship between psoriasis/psoriatic arthritis (PsA) and estimated bone mineral density (eBMD)/osteoporosis, controlling for potential confounders. Here, confounders were set in three ways: model0 (including age, height, weight, smoking and drinking), model1 (model0 +regular physical activity) and model2 (model1 +medication treatments). The eBMD was derived from heel ultrasound measurement. And 4904 patients with psoriasis and 847 patients with PsA were included in final analysis. Mendelian randomisation (MR) approach was used to evaluate the causal effect between them. RESULTS: Lower eBMD were observed in patients with PsA than in controls in both model0 (ß-coefficient=-0.014, p=0.0006) and model1 (ß-coefficient=-0.013, p=0.002); however, the association disappeared when conditioning on treatment with methotrexate or ciclosporin (model2) (ß-coefficient=-0.005, p=0.28), mediation analysis showed that 63% of the intermediary effect on eBMD was mediated by medication treatment (p<2E-16). Patients with psoriasis without arthritis showed no difference of eBMD compared with controls. Similarly, the significance of higher risk of osteopenia in patients with PsA (OR=1.27, p=0.002 in model0) could be eliminated by conditioning on medication treatment (p=0.244 in model2). Psoriasis without arthritis was not related to osteopenia and osteoporosis. The weighted Genetic Risk Score analysis found that genetically determined psoriasis/PsA were not associated with eBMD (p=0.24 and p=0.88). Finally, MR analysis showed that psoriasis/PsA had no causal effect on eBMD, osteoporosis and fracture. CONCLUSIONS: The effect of PsA on osteoporosis was secondary (eg, medication) but not causal. Under this hypothesis, psoriasis without arthritis was not a risk factor for osteoporosis.


Subject(s)
Antirheumatic Agents/therapeutic use , Bone Density/drug effects , Osteoporosis/epidemiology , Psoriasis/complications , Psoriasis/drug therapy , Humans , Mendelian Randomization Analysis
5.
Hum Mol Genet ; 26(21): 4301-4313, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28973304

ABSTRACT

Psoriasis is a common inflammatory skin disorder for which multiple genetic susceptibility loci have been identified, but few resolved to specific functional variants. In this study, we sought to identify common and rare psoriasis-associated gene-centric variation. Using exome arrays we genotyped four independent cohorts, totalling 11 861 psoriasis cases and 28 610 controls, aggregating the dataset through statistical meta-analysis. Single variant analysis detected a previously unreported risk locus at TNFSF15 (rs6478108; P = 1.50 × 10-8, OR = 1.10), and association of common protein-altering variants at 11 loci previously implicated in psoriasis susceptibility. We validate previous reports of protective low-frequency protein-altering variants within IFIH1 (encoding an innate antiviral receptor) and TYK2 (encoding a Janus kinase), in each case establishing a further series of protective rare variants (minor allele frequency < 0.01) via gene-wide aggregation testing (IFIH1: pburden = 2.53 × 10-7, OR = 0.707; TYK2: pburden = 6.17 × 10-4, OR = 0.744). Both genes play significant roles in type I interferon (IFN) production and signalling. Several of the protective rare and low-frequency variants in IFIH1 and TYK2 disrupt conserved protein domains, highlighting potential mechanisms through which their effect may be exerted.


Subject(s)
Psoriasis/genetics , Tumor Necrosis Factor Ligand Superfamily Member 15/genetics , Alleles , Case-Control Studies , Cohort Studies , Exome , Female , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Genotype , Humans , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Male , Polymorphism, Single Nucleotide/genetics , Psoriasis/physiopathology , Risk Factors , TYK2 Kinase/genetics , TYK2 Kinase/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 15/metabolism , Exome Sequencing
6.
Am J Hum Genet ; 97(6): 816-36, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26626624

ABSTRACT

Psoriasis vulgaris (PsV) is a common inflammatory and hyperproliferative skin disease. Up to 30% of people with PsV eventually develop psoriatic arthritis (PsA), an inflammatory musculoskeletal condition. To discern differences in genetic risk factors for PsA and cutaneous-only psoriasis (PsC), we carried out a genome-wide association study (GWAS) of 1,430 PsA case subjects and 1,417 unaffected control subjects. Meta-analysis of this study with three other GWASs and two targeted genotyping studies, encompassing a total of 9,293 PsV case subjects, 3,061 PsA case subjects, 3,110 PsC case subjects, and 13,670 unaffected control subjects of European descent, detected 10 regions associated with PsA and 11 with PsC at genome-wide (GW) significance. Several of these association signals (IFNLR1, IFIH1, NFKBIA for PsA; TNFRSF9, LCE3C/B, TRAF3IP2, IL23A, NFKBIA for PsC) have not previously achieved GW significance. After replication, we also identified a PsV-associated SNP near CDKAL1 (rs4712528, odds ratio [OR] = 1.16, p = 8.4 × 10(-11)). Among identified psoriasis risk variants, three were more strongly associated with PsC than PsA (rs12189871 near HLA-C, p = 5.0 × 10(-19); rs4908742 near TNFRSF9, p = 0.00020; rs10888503 near LCE3A, p = 0.0014), and two were more strongly associated with PsA than PsC (rs12044149 near IL23R, p = 0.00018; rs9321623 near TNFAIP3, p = 0.00022). The PsA-specific variants were independent of previously identified psoriasis variants near IL23R and TNFAIP3. We also found multiple independent susceptibility variants in the IL12B, NOS2, and IFIH1 regions. These results provide insights into the pathogenetic similarities and differences between PsC and PsA.


Subject(s)
Arthritis, Psoriatic/genetics , Genetic Loci , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Psoriasis/genetics , Adolescent , Adult , Arthritis, Psoriatic/pathology , Bayes Theorem , Case-Control Studies , Cornified Envelope Proline-Rich Proteins/genetics , DNA-Binding Proteins/genetics , Female , Genome-Wide Association Study , HLA-C Antigens/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Linkage Disequilibrium , Male , Nuclear Proteins/genetics , Psoriasis/pathology , Receptors, Interleukin/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics , Tumor Necrosis Factor alpha-Induced Protein 3
7.
Am J Hum Genet ; 96(1): 104-20, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25574825

ABSTRACT

Atopic dermatitis and psoriasis are the two most common immune-mediated inflammatory disorders affecting the skin. Genome-wide studies demonstrate a high degree of genetic overlap, but these diseases have mutually exclusive clinical phenotypes and opposing immune mechanisms. Despite their prevalence, atopic dermatitis and psoriasis very rarely co-occur within one individual. By utilizing genome-wide association study and ImmunoChip data from >19,000 individuals and methodologies developed from meta-analysis, we have identified opposing risk alleles at shared loci as well as independent disease-specific loci within the epidermal differentiation complex (chromosome 1q21.3), the Th2 locus control region (chromosome 5q31.1), and the major histocompatibility complex (chromosome 6p21-22). We further identified previously unreported pleiotropic alleles with opposing effects on atopic dermatitis and psoriasis risk in PRKRA and ANXA6/TNIP1. In contrast, there was no evidence for shared loci with effects operating in the same direction on both diseases. Our results show that atopic dermatitis and psoriasis have distinct genetic mechanisms with opposing effects in shared pathways influencing epidermal differentiation and immune response. The statistical analysis methods developed in the conduct of this study have produced additional insight from previously published data sets. The approach is likely to be applicable to the investigation of the genetic basis of other complex traits with overlapping and distinct clinical features.


Subject(s)
Comparative Genomic Hybridization , Dermatitis, Atopic/genetics , Genome-Wide Association Study , Psoriasis/genetics , Alleles , Case-Control Studies , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 5/genetics , Chromosomes, Human, Pair 6/genetics , Cohort Studies , Genetic Loci , Humans , Logistic Models , Major Histocompatibility Complex/genetics , Polymorphism, Single Nucleotide , Quality Control , Reproducibility of Results
8.
Am J Hum Genet ; 95(2): 162-72, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25087609

ABSTRACT

Psoriasis vulgaris (PsV) risk is strongly associated with variation within the major histocompatibility complex (MHC) region, but its genetic architecture has yet to be fully elucidated. Here, we conducted a large-scale fine-mapping study of PsV risk in the MHC region in 9,247 PsV-affected individuals and 13,589 controls of European descent by imputing class I and II human leukocyte antigen (HLA) genes from SNP genotype data. In addition, we imputed sequence variants for MICA, an MHC HLA-like gene that has been associated with PsV, to evaluate association at that locus as well. We observed that HLA-C(∗)06:02 demonstrated the lowest p value for overall PsV risk (p = 1.7 × 10(-364)). Stepwise analysis revealed multiple HLA-C(∗)06:02-independent risk variants in both class I and class II HLA genes for PsV susceptibility (HLA-C(∗)12:03, HLA-B amino acid positions 67 and 9, HLA-A amino acid position 95, and HLA-DQα1 amino acid position 53; p < 5.0 × 10(-8)), but no apparent risk conferred by MICA. We further evaluated risk of two major clinical subtypes of PsV, psoriatic arthritis (PsA; n = 3,038) and cutaneous psoriasis (PsC; n = 3,098). We found that risk heterogeneity between PsA and PsC might be driven by HLA-B amino acid position 45 (Pomnibus = 2.2 × 10(-11)), indicating that different genetic factors underlie the overall risk of PsV and the risk of specific PsV subphenotypes. Our study illustrates the value of high-resolution HLA and MICA imputation for fine mapping causal variants in the MHC.


Subject(s)
Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Major Histocompatibility Complex/genetics , Psoriasis/genetics , Amino Acid Sequence , Arthritis, Psoriatic/genetics , Base Sequence , Chromosome Mapping/methods , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , HLA-B Antigens/genetics , HLA-C Antigens/genetics , Humans , Polymorphism, Single Nucleotide , Psoriasis/classification , Psoriasis/immunology
9.
Ann Rheum Dis ; 76(7): 1321-1324, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28501801

ABSTRACT

OBJECTIVES: Psoriatic arthritis (PsA) is an inflammatory arthritis associated with psoriasis. While many common risk alleles have been reported for association with PsA as well as psoriasis, few rare coding alleles have yet been identified. METHODS: To identify rare coding variation associated with PsA risk or protection, we genotyped 41 267 variants with the exome chip and investigated association within an initial cohort of 1980 PsA cases and 5913 controls. Genotype data for an independent cohort of 2234 PsA cases and 5708 controls was also made available, allowing for a meta-analysis to be performed with the discovery dataset. RESULTS: We identified an association with the rare variant rs35667974 (p=2.39x10-6, OR=0.47), encoding an Ile923Val amino acid change in the IFIH1 gene protein product. The association was reproduced in our independent cohort, which reached a high level of significance on meta-analysis with the discovery and replication datasets (p=4.67x10-10). We identified a strong association with IFIH1 when performing multiple-variant analysis (p=6.77x10-6), and found evidence of independent effects between the rare allele and the common PsA variant at the same locus. CONCLUSION: For the first time, we report a rare coding allele in IFIH1 to be protective for PsA. This rare allele has also been identified to have the same direction of effect on type I diabetes and psoriasis. While this association further supports existing evidence for IFIH1 as a causal gene for PsA, mechanistic studies will need to be pursued to confirm that IFIH1 is indeed causal.


Subject(s)
Arthritis, Psoriatic/genetics , Interferon-Induced Helicase, IFIH1/genetics , Alleles , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Humans , Logistic Models , Polymorphism, Single Nucleotide , Principal Component Analysis , Protective Factors
10.
PLoS Med ; 13(6): e1001976, 2016 06.
Article in English | MEDLINE | ID: mdl-27327646

ABSTRACT

BACKGROUND: C-reactive protein (CRP) is associated with immune, cardiometabolic, and psychiatric traits and diseases. Yet it is inconclusive whether these associations are causal. METHODS AND FINDINGS: We performed Mendelian randomization (MR) analyses using two genetic risk scores (GRSs) as instrumental variables (IVs). The first GRS consisted of four single nucleotide polymorphisms (SNPs) in the CRP gene (GRSCRP), and the second consisted of 18 SNPs that were significantly associated with CRP levels in the largest genome-wide association study (GWAS) to date (GRSGWAS). To optimize power, we used summary statistics from GWAS consortia and tested the association of these two GRSs with 32 complex somatic and psychiatric outcomes, with up to 123,865 participants per outcome from populations of European ancestry. We performed heterogeneity tests to disentangle the pleiotropic effect of IVs. A Bonferroni-corrected significance level of less than 0.0016 was considered statistically significant. An observed p-value equal to or less than 0.05 was considered nominally significant evidence for a potential causal association, yet to be confirmed. The strengths (F-statistics) of the IVs were 31.92-3,761.29 and 82.32-9,403.21 for GRSCRP and GRSGWAS, respectively. CRP GRSGWAS showed a statistically significant protective relationship of a 10% genetically elevated CRP level with the risk of schizophrenia (odds ratio [OR] 0.86 [95% CI 0.79-0.94]; p < 0.001). We validated this finding with individual-level genotype data from the schizophrenia GWAS (OR 0.96 [95% CI 0.94-0.98]; p < 1.72 × 10-6). Further, we found that a standardized CRP polygenic risk score (CRPPRS) at p-value thresholds of 1 × 10-4, 0.001, 0.01, 0.05, and 0.1 using individual-level data also showed a protective effect (OR < 1.00) against schizophrenia; the first CRPPRS (built of SNPs with p < 1 × 10-4) showed a statistically significant (p < 2.45 × 10-4) protective effect with an OR of 0.97 (95% CI 0.95-0.99). The CRP GRSGWAS showed that a 10% increase in genetically determined CRP level was significantly associated with coronary artery disease (OR 0.88 [95% CI 0.84-0.94]; p < 2.4 × 10-5) and was nominally associated with the risk of inflammatory bowel disease (OR 0.85 [95% CI 0.74-0.98]; p < 0.03), Crohn disease (OR 0.81 [95% CI 0.70-0.94]; p < 0.005), psoriatic arthritis (OR 1.36 [95% CI 1.00-1.84]; p < 0.049), knee osteoarthritis (OR 1.17 [95% CI 1.01-1.36]; p < 0.04), and bipolar disorder (OR 1.21 [95% CI 1.05-1.40]; p < 0.007) and with an increase of 0.72 (95% CI 0.11-1.34; p < 0.02) mm Hg in systolic blood pressure, 0.45 (95% CI 0.06-0.84; p < 0.02) mm Hg in diastolic blood pressure, 0.01 ml/min/1.73 m2 (95% CI 0.003-0.02; p < 0.005) in estimated glomerular filtration rate from serum creatinine, 0.01 g/dl (95% CI 0.0004-0.02; p < 0.04) in serum albumin level, and 0.03 g/dl (95% CI 0.008-0.05; p < 0.009) in serum protein level. However, after adjustment for heterogeneity, neither GRS showed a significant effect of CRP level (at p < 0.0016) on any of these outcomes, including coronary artery disease, nor on the other 20 complex outcomes studied. Our study has two potential limitations: the limited variance explained by our genetic instruments modeling CRP levels in blood and the unobserved bias introduced by the use of summary statistics in our MR analyses. CONCLUSIONS: Genetically elevated CRP levels showed a significant potentially protective causal relationship with risk of schizophrenia. We observed nominal evidence at an observed p < 0.05 using either GRSCRP or GRSGWAS-with persistence after correction for heterogeneity-for a causal relationship of elevated CRP levels with psoriatic osteoarthritis, rheumatoid arthritis, knee osteoarthritis, systolic blood pressure, diastolic blood pressure, serum albumin, and bipolar disorder. These associations remain yet to be confirmed. We cannot verify any causal effect of CRP level on any of the other common somatic and neuropsychiatric outcomes investigated in the present study. This implies that interventions that lower CRP level are unlikely to result in decreased risk for the majority of common complex outcomes.


Subject(s)
C-Reactive Protein/genetics , Genome-Wide Association Study , Heart Diseases/genetics , Immune System Diseases/genetics , Mendelian Randomization Analysis , Mental Disorders/genetics , Metabolic Diseases/genetics , C-Reactive Protein/metabolism , Genotype , Humans , Polymorphism, Single Nucleotide
11.
Hum Mol Genet ; 22(9): 1807-15, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23376980

ABSTRACT

The IL12B gene encodes the common p40 subunit of IL-12 and IL-23, cytokines with key roles in Th1 and Th17 biology, respectively, and genetic variation in this region significantly influences risk of psoriasis. Here, we demonstrate that a psoriasis-associated risk haplotype at the IL12B locus leads to increased expression of IL12B by monocytes and correlated with increased serum levels of IL-12, IFN-γ and the IFN-γ induced chemokine, CXCL10. In contrast, serum IL-23 levels were decreased in risk carriers when compared with non-carriers. We further demonstrate that IL-12 is increased in psoriatic skin and that risk carriers manifest a skewing of the inflammatory network toward stronger IFN-γ responses. Taken together, our data demonstrate that the risk variant in IL12B associates with its increased expression and predisposes to stronger Th1 polarization through deviation of the local inflammatory environment toward increased IL-12/IFN-γ at the expense of IL-23/IL-17 responses.


Subject(s)
Genetic Predisposition to Disease , Genetic Variation , Interleukin-12 Subunit p40/genetics , Psoriasis/genetics , Th1 Cells/immunology , Alleles , Case-Control Studies , Cell Line , Chemokine CXCL10/blood , Genetic Loci , Haplotypes , Humans , Interferon-gamma/blood , Interleukin-12 Subunit p40/metabolism , Interleukin-17/blood , Interleukin-23/blood , Keratinocytes/metabolism , Monocytes/immunology , Psoriasis/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Risk Factors , Th17 Cells/immunology , Up-Regulation
12.
Am J Hum Genet ; 90(4): 636-47, 2012 Apr 06.
Article in English | MEDLINE | ID: mdl-22482804

ABSTRACT

Psoriasis (PS) and Crohn disease (CD) have been shown to be epidemiologically, pathologically, and therapeutically connected, but little is known about their shared genetic causes. We performed meta-analyses of five published genome-wide association studies on PS (2,529 cases and 4,955 controls) and CD (2,142 cases and 5,505 controls), followed up 20 loci that showed strongest evidence for shared disease association and, furthermore, tested cross-disease associations for previously reported PS and CD risk alleles in additional 6,115 PS cases, 4,073 CD cases, and 10,100 controls. We identified seven susceptibility loci outside the human leukocyte antigen region (9p24 near JAK2, 10q22 at ZMIZ1, 11q13 near PRDX5, 16p13 near SOCS1, 17q21 at STAT3, 19p13 near FUT2, and 22q11 at YDJC) shared between PS and CD with genome-wide significance (p < 5 × 10(-8)) and confirmed four already established PS and CD risk loci (IL23R, IL12B, REL, and TYK2). Three of the shared loci are also genome-wide significantly associated with PS alone (10q22 at ZMIZ1, p(rs1250544) = 3.53 × 10(-8), 11q13 near PRDX5, p(rs694739) = 3.71 × 10(-09), 22q11 at YDJC, p(rs181359) = 8.02 × 10(-10)). In addition, we identified one susceptibility locus for CD (16p13 near SOCS1, p(rs4780355) = 4.99 × 10(-8)). Refinement of association signals identified shared genome-wide significant associations for exonic SNPs at 10q22 (ZMIZ1) and in silico expression quantitative trait locus analyses revealed that the associations at ZMIZ1 and near SOCS1 have a potential functional effect on gene expression. Our results show the usefulness of joint analyses of clinically distinct immune-mediated diseases and enlarge the map of shared genetic risk loci.


Subject(s)
Crohn Disease/genetics , Genetic Loci , Genetic Predisposition to Disease/genetics , Psoriasis/genetics , Exons/genetics , Female , Gene Expression/genetics , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
13.
Am J Hum Genet ; 90(5): 796-808, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22521419

ABSTRACT

Psoriasis is a common inflammatory disorder of the skin and other organs. We have determined that mutations in CARD14, encoding a nuclear factor of kappa light chain enhancer in B cells (NF-kB) activator within skin epidermis, account for PSORS2. Here, we describe fifteen additional rare missense variants in CARD14, their distribution in seven psoriasis cohorts (>6,000 cases and >4,000 controls), and their effects on NF-kB activation and the transcriptome of keratinocytes. There were more CARD14 rare variants in cases than in controls (burden test p value = 0.0015). Some variants were only seen in a single case, and these included putative pathogenic mutations (c.424G>A [p.Glu142Lys] and c.425A>G [p.Glu142Gly]) and the generalized-pustular-psoriasis mutation, c.413A>C (p.Glu138Ala); these three mutations lie within the coiled-coil domain of CARD14. The c.349G>A (p.Gly117Ser) familial-psoriasis mutation was present at a frequency of 0.0005 in cases of European ancestry. CARD14 variants led to a range of NF-kB activities; in particular, putative pathogenic variants led to levels >2.5× higher than did wild-type CARD14. Two variants (c.511C>A [p.His171Asn] and c.536G>A [p.Arg179His]) required stimulation with tumor necrosis factor alpha (TNF-α) to achieve significant increases in NF-kB levels. Transcriptome profiling of wild-type and variant CARD14 transfectants in keratinocytes differentiated probably pathogenic mutations from neutral variants such as polymorphisms. Over 20 CARD14 polymorphisms were also genotyped, and meta-analysis revealed an association between psoriasis and rs11652075 (c.2458C>T [p.Arg820Trp]; p value = 2.1 × 10(-6)). In the two largest psoriasis cohorts, evidence for association increased when rs11652075 was conditioned on HLA-Cw*0602 (PSORS1). These studies contribute to our understanding of the genetic basis of psoriasis and illustrate the challenges faced in identifying pathogenic variants in common disease.


Subject(s)
CARD Signaling Adaptor Proteins/genetics , Guanylate Cyclase/genetics , Membrane Proteins/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Psoriasis/genetics , CARD Signaling Adaptor Proteins/metabolism , Case-Control Studies , Epidermis/metabolism , Gene Expression Regulation , Genetic Predisposition to Disease , Guanylate Cyclase/metabolism , HLA-C Antigens/genetics , HLA-C Antigens/metabolism , Humans , Keratinocytes , Membrane Proteins/metabolism , Mutation, Missense , Polymorphism, Genetic , Skin/pathology , Transcriptome , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , White People/genetics
14.
Am J Hum Genet ; 87(6): 779-89, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21129726

ABSTRACT

Psoriasis, an immune-mediated, inflammatory disease of the skin and joints, provides an ideal system for expression quantitative trait locus (eQTL) analysis, because it has a strong genetic basis and disease-relevant tissue (skin) is readily accessible. To better understand the role of genetic variants regulating cutaneous gene expression, we identified 841 cis-acting eQTLs using RNA extracted from skin biopsies of 53 psoriatic individuals and 57 healthy controls. We found substantial overlap between cis-eQTLs of normal control, uninvolved psoriatic, and lesional psoriatic skin. Consistent with recent studies and with the idea that control of gene expression can mediate relationships between genetic variants and disease risk, we found that eQTL SNPs are more likely to be associated with psoriasis than are randomly selected SNPs. To explore the tissue specificity of these eQTLs and hence to quantify the benefits of studying eQTLs in different tissues, we developed a refined statistical method for estimating eQTL overlap and used it to compare skin eQTLs to a published panel of lymphoblastoid cell line (LCL) eQTLs. Our method accounts for the fact that most eQTL studies are likely to miss some true eQTLs as a result of power limitations and shows that ∼70% of cis-eQTLs in LCLs are shared with skin, as compared with the naive estimate of < 50% sharing. Our results provide a useful method for estimating the overlap between various eQTL studies and provide a catalog of cis-eQTLs in skin that can facilitate efforts to understand the functional impact of identified susceptibility variants on psoriasis and other skin traits.


Subject(s)
Gene Expression Profiling , Lymphocytes/metabolism , Psoriasis/genetics , Quantitative Trait Loci , Skin/metabolism , Biopsy , Case-Control Studies , Cell Line , Humans , Polymorphism, Single Nucleotide , Psoriasis/pathology , Skin/pathology
15.
medRxiv ; 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37873414

ABSTRACT

Psoriasis is a common, debilitating immune-mediated skin disease. Genetic studies have identified biological mechanisms of psoriasis risk, including those targeted by effective therapies. However, the genetic liability to psoriasis is not fully explained by variation at robustly identified risk loci. To move towards a saturation map of psoriasis susceptibility we meta-analysed 18 GWAS comprising 36,466 cases and 458,078 controls and identified 109 distinct psoriasis susceptibility loci, including 45 that have not been previously reported. These include susceptibility variants at loci in which the therapeutic targets IL17RA and AHR are encoded, and deleterious coding variants supporting potential new drug targets (including in STAP2, CPVL and POU2F3). We conducted a transcriptome-wide association study to identify regulatory effects of psoriasis susceptibility variants and cross-referenced these against single cell expression profiles in psoriasis-affected skin, highlighting roles for the transcriptional regulation of haematopoietic cell development and epigenetic modulation of interferon signalling in psoriasis pathobiology.

16.
Elife ; 112022 01 25.
Article in English | MEDLINE | ID: mdl-35074047

ABSTRACT

Background: Some individuals living with obesity may be relatively metabolically healthy, whilst others suffer from multiple conditions that may be linked to adverse metabolic effects or other factors. The extent to which the adverse metabolic component of obesity contributes to disease compared to the non-metabolic components is often uncertain. We aimed to use Mendelian randomisation (MR) and specific genetic variants to separately test the causal roles of higher adiposity with and without its adverse metabolic effects on diseases. Methods: We selected 37 chronic diseases associated with obesity and genetic variants associated with different aspects of excess weight. These genetic variants included those associated with metabolically 'favourable adiposity' (FA) and 'unfavourable adiposity' (UFA) that are both associated with higher adiposity but with opposite effects on metabolic risk. We used these variants and two sample MR to test the effects on the chronic diseases. Results: MR identified two sets of diseases. First, 11 conditions where the metabolic effect of higher adiposity is the likely primary cause of the disease. Here, MR with the FA and UFA genetics showed opposing effects on risk of disease: coronary artery disease, peripheral artery disease, hypertension, stroke, type 2 diabetes, polycystic ovary syndrome, heart failure, atrial fibrillation, chronic kidney disease, renal cancer, and gout. Second, 9 conditions where the non-metabolic effects of excess weight (e.g. mechanical effect) are likely a cause. Here, MR with the FA genetics, despite leading to lower metabolic risk, and MR with the UFA genetics, both indicated higher disease risk: osteoarthritis, rheumatoid arthritis, osteoporosis, gastro-oesophageal reflux disease, gallstones, adult-onset asthma, psoriasis, deep vein thrombosis, and venous thromboembolism. Conclusions: Our results assist in understanding the consequences of higher adiposity uncoupled from its adverse metabolic effects, including the risks to individuals with high body mass index who may be relatively metabolically healthy. Funding: Diabetes UK, UK Medical Research Council, World Cancer Research Fund, National Cancer Institute.


Subject(s)
Adiposity/genetics , Mendelian Randomization Analysis/methods , Obesity/genetics , Adult , Aged , Aged, 80 and over , Body Mass Index , Cardiometabolic Risk Factors , Female , Genome-Wide Association Study , Humans , Male , Middle Aged
17.
HGG Adv ; 3(1)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34927100

ABSTRACT

Because transethnic analysis may facilitate prioritization of causal genetic variants, we performed a genomewide association study (GWAS) of psoriasis in South Asians (SAS), consisting of 2,590 cases and 1,720 controls. Comparison with our existing European-origin (EUR) GWAS showed that effect sizes of known psoriasis signals were highly correlated in SAS and EUR (Spearman ρ = 0.78; p < 2 × 10-14). Transethnic meta-analysis identified two non-MHC psoriasis loci (1p36.22 and 1q24.2) not previously identified in EUR, which may have regulatory roles. For these two loci, the transethnic GWAS provided higher genetic resolution and reduced the number of potential causal variants compared to using the EUR sample alone. We then explored multiple strategies to develop reference panels for accurately imputing MHC genotypes in both SAS and EUR populations and conducted a fine-mapping of MHC psoriasis associations in SAS and the largest such effort for EUR. HLA-C*06 was the top-ranking MHC locus in both populations but was even more prominent in SAS based on odds ratio, disease liability, model fit and predictive power. Transethnic modeling also substantially boosted the probability that the HLA-C*06 protein variant is causal. Secondary MHC signals included coding variants of HLA-C and HLA-B, but also potential regulatory variants of these two genes as well as HLA-A and several HLA class II genes, with effects on both chromatin accessibility and gene expression. This study highlights the shared genetic basis of psoriasis in SAS and EUR populations and the value of transethnic meta-analysis for discovery and fine-mapping of susceptibility loci.

18.
J Invest Dermatol ; 141(6): 1493-1502, 2021 06.
Article in English | MEDLINE | ID: mdl-33385400

ABSTRACT

Psoriasis and type 2 diabetes (T2D) are complex conditions with significant impacts on health. Patients with psoriasis have a higher risk of T2D (∼1.5 OR) and vice versa, controlling for body mass index; yet, there has been a limited study comparing their genetic architecture. We hypothesized that there are shared genetic components between psoriasis and T2D. Trans-disease meta-analysis was applied to 8,016,731 well-imputed genetic markers from large-scale meta-analyses of psoriasis (11,024 cases and 16,336 controls) and T2D (74,124 cases and 824,006 controls), adjusted for body mass index. We confirmed our findings in a hospital-based study (42,112 patients) and tested for causal relationships with multivariable Mendelian randomization. Mendelian randomization identified a causal relationship between psoriasis and T2D (P = 1.6 × 10‒4, OR = 1.01) and highlighted the impact of body mass index. Trans-disease meta-analysis further revealed four genome-wide significant loci (P < 5 × 10‒8) with evidence of colocalization and shared directions of effect between psoriasis and T2D not present in body mass index. The proteins coded by genes in these loci (ACTR2, ERLIN1, TRMT112, and BECN1) are connected through NF-κB signaling. Our results provide insight into the immunological components that connect immune-mediated skin conditions and metabolic diseases, independent of confounding factors.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Genetic Loci/immunology , Psoriasis/genetics , Body Mass Index , Causality , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/immunology , Genetic Predisposition to Disease/epidemiology , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , NF-kappa B/metabolism , Polymorphism, Single Nucleotide , Psoriasis/epidemiology , Psoriasis/immunology , Signal Transduction/genetics , Signal Transduction/immunology
19.
Nat Genet ; 53(10): 1504-1516, 2021 10.
Article in English | MEDLINE | ID: mdl-34611364

ABSTRACT

Fine-mapping to plausible causal variation may be more effective in multi-ancestry cohorts, particularly in the MHC, which has population-specific structure. To enable such studies, we constructed a large (n = 21,546) HLA reference panel spanning five global populations based on whole-genome sequences. Despite population-specific long-range haplotypes, we demonstrated accurate imputation at G-group resolution (94.2%, 93.7%, 97.8% and 93.7% in admixed African (AA), East Asian (EAS), European (EUR) and Latino (LAT) populations). Applying HLA imputation to genome-wide association study data for HIV-1 viral load in three populations (EUR, AA and LAT), we obviated effects of previously reported associations from population-specific HIV studies and discovered a novel association at position 156 in HLA-B. We pinpointed the MHC association to three amino acid positions (97, 67 and 156) marking three consecutive pockets (C, B and D) within the HLA-B peptide-binding groove, explaining 12.9% of trait variance.


Subject(s)
Genetic Variation , Genetics, Population , HIV Infections/genetics , HLA Antigens/genetics , Host-Pathogen Interactions/genetics , Physical Chromosome Mapping , Alleles , Amino Acids/genetics , Gene Frequency/genetics , HIV-1/genetics , Haplotypes/genetics , Humans , Linkage Disequilibrium/genetics , Reference Standards , Selection, Genetic , Viral Load
20.
J Invest Dermatol ; 139(6): 1245-1253, 2019 06.
Article in English | MEDLINE | ID: mdl-30528823

ABSTRACT

Psoriasis lesions are rich in IL-17-producing T cells as well as neutrophils, which release webs of DNA-protein complexes known as neutrophil extracellular traps (NETs). Because we and others have observed increased NETosis in psoriatic lesions, we hypothesized that NETs contribute to increased T helper type 17 (Th17) cells in psoriasis. After stimulating peripheral blood mononuclear cells with anti-CD3/CD28 beads for 7 days, we found significantly higher percentages of CD3+CD4+IL-17+ (Th17) cells in the presence versus absence of NETs, as assessed by flow cytometry, IL-17 ELISA, and IL17A/F and RORC mRNAs. Memory, but not naïve, T cells were competent and monocytes were required for CD3/CD28-mediated Th17 induction, with or without NETs. Th17 induction was enhanced by the T allele of rs33980500 (T/C), a psoriasis risk-associated variant in the TRAF3IP2 gene encoding the D10N variant of Act1, a key mediator of IL-17 signal transduction. Global transcriptome analysis of CD3/CD28-stimulated peripheral blood mononuclear cells by RNA sequencing confirmed the stimulatory effects of NETs, demonstrated NET-induced enhancement of cytokine gene expression, and verified that the effect of Act1 D10N was greater in the presence of NETs. Collectively, these results implicate NETs and the Act1 D10N variant in human Th17 induction from peripheral blood mononuclear cells, with ramifications for immunogenetic studies of psoriasis and other autoimmune diseases.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Extracellular Traps/immunology , Neutrophils/metabolism , Psoriasis/immunology , Th17 Cells/immunology , Adaptor Proteins, Signal Transducing/metabolism , Cell Communication/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Extracellular Traps/metabolism , Humans , Immunity, Innate/genetics , Interleukin-17/immunology , Interleukin-17/metabolism , Lymphocyte Activation/genetics , Mutation, Missense , Neutrophils/immunology , Polymorphism, Single Nucleotide , Primary Cell Culture , Psoriasis/genetics , RNA-Seq , Signal Transduction/genetics , Signal Transduction/immunology , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL