Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
2.
Cell Genom ; 3(12): 100426, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38116120

ABSTRACT

Acute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However, our understanding of mutational effects remains limited to the resolution attainable within immunophenotypically and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleukemic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models with driver mutations of myeloid malignancies, generating 269,048 single-cell profiles. Our analysis infers mutation-driven perturbations in cell abundance, cellular lineage fate, cellular metabolism, and gene expression at the continuous resolution, pinpointing cell populations with transcriptional alterations associated with differentiation bias. We further develop an 11-gene scoring system (Stem11) on the basis of preleukemic transcriptional signatures that predicts AML patient outcomes. Our results demonstrate that a single-cell-resolution deep characterization of preleukemic biology has the potential to enhance our understanding of AML heterogeneity and inform more effective risk stratification strategies.

3.
Methods Mol Biol ; 2308: 301-337, 2021.
Article in English | MEDLINE | ID: mdl-34057731

ABSTRACT

The study of hematopoiesis has been revolutionized in recent years by the application of single-cell RNA sequencing technologies. The technique coupled with rapidly developing bioinformatic analysis has provided great insight into the cell type compositions of many populations previously defined by their cell surface phenotype. Moreover, transcriptomic information enables the identification of individual molecules and pathways which define novel cell populations and their transitions including cell lineage decisions. Combining single-cell transcriptional profiling with molecular perturbations allows functional analysis of individual factors in gene regulatory networks and better understanding of the earliest stages of malignant transformation. In this chapter we describe a comprehensive protocol for scRNA-Seq analysis of the mouse bone marrow, using both plate-based (low throughput) and droplet-based (high throughput) methods. The protocol includes instructions for sample preparation, an antibody panel for flow cytometric purification of hematopoietic progenitors with index sorting for plate-based analysis or in bulk for droplet-based methods. The plate-based protocol described in this chapter is a combination of the Smart-Seq2 and mcSCRB-Seq protocols, optimized in our laboratory. It utilizes off-the-shelf reagents for cDNA preparation, is amenable to automation using a liquid handler, and takes 4 days from preparation of the cells for sorting to producing a sequencing-ready library. The droplet-based method (using for instance the 10× Genomics platform) relies on the manufacturer's user guide and commercial reagents, and takes 3 days from isolation of the cells to the production of a library ready for sequencing.


Subject(s)
Gene Expression Profiling , Hematopoiesis , Hematopoietic Stem Cells/physiology , Single-Cell Analysis , Transcriptome , Animals , Cell Lineage , Cell Separation , Flow Cytometry , Gene Library , Gene Regulatory Networks , Hematopoiesis/genetics , Mice , Phenotype , RNA-Seq
SELECTION OF CITATIONS
SEARCH DETAIL