Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Planta Med ; 88(1): 20-32, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33434938

ABSTRACT

The content of the flavonolignan mixture silymarin and its individual components (silichristin, silidianin, silibinin A, silibinin B, isosilibinin A, and isosilibinin B) in whole and milled milk thistle seeds (Silybi mariani fructus) was analyzed with near-infrared spectroscopy. The analytical performance of one benchtop and two handheld near-infrared spectrometers was compared. Reference analysis was performed with HPLC following a Soxhlet extraction (European Pharmacopoeia) and a more resource-efficient ultrasonic extraction. The reliability of near-infrared spectral analysis determined through partial least squares regression models constructed independently for the spectral datasets obtained by the three spectrometers was as follows. The benchtop device NIRFlex N-500 performed the best both for milled and whole seeds with a root mean square error of CV between 0.01 and 0.17%. The handheld spectrometer MicroNIR 2200 as well as the microPHAZIR provided a similar performance (root mean square error of CV between 0.01 and 0.18% and between 0.01 and 0.23%, respectively). We carried out quantum chemical simulation of near-infrared spectra of silichristin, silidianin, silibinin, and isosilibinin for interpretation of the results of spectral analysis. This provided understanding of the absorption regions meaningful for the calibration. Further, it helped to better separate how the chemical and physical properties of the samples affect the analysis. While the study demonstrated that milling of samples slightly improves the performance, it was deemed to be critical only for the analysis carried out with the microPHAZIR. This study evidenced that rapid and nondestructive quantification of silymarin and individual flavonolignans is possible with miniaturized near-infrared spectroscopy in whole milk thistle seeds.


Subject(s)
Seeds , Silymarin , Least-Squares Analysis , Silybum marianum , Plant Extracts , Reproducibility of Results
2.
J Sci Food Agric ; 101(6): 2380-2388, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33011987

ABSTRACT

BACKGROUND: A promising way to overcome the susceptibility of Vitis vinifera L. to fungal diseases is the integration of genetic resistance by the interspecific crossing between V. vinifera varieties and resistant species. However, the products of such hybrids are still not accepted by customers, particularly due to their organoleptic characteristics, not least influenced by their polyphenolic profile. RESULTS: A total of 58 resistant breeding lines, 41 from international programs and 17 new progeny individuals, were grown in one untreated vineyard to exclude any variances by climatic and pedologic conditions or vineyard practice. A total of 60 polyphenols (including acids, anthocyanins, flavonols, flavan-3-ols, and stilbenoids) were determined in grapevine berries by ultrahigh-performance liquid chromatography-mass spectrometry in two consecutive years. The overall profiles were rather consistent (variation P > 0.05) within the two harvests, with the exceptions of epicatechin and caftaric acid. Anthocyanin diglucosides were found in ten of the red breeding lines, malvidin-3,5-O-diglucoside being predominant in nine of them. Total polyphenol content of the unknown progeny individuals and international breeding lines was comparable, with the exception of significantly increased amounts of gallic acid and some flavonoids. CONCLUSION: The comprehensive study reported herein of the polyphenolic profile of hybrids from international breeding programs, but also of new breeds from private initiatives, all cultivated in the same vineyard, will support the selection of promising candidates for further breeding programs to overcome impairment due to undesired sensory characteristics of new highly resistant varieties.


Subject(s)
Fruit/chemistry , Polyphenols/chemistry , Vitis/genetics , Chromatography, High Pressure Liquid , Disease Resistance , Fruit/genetics , Fruit/immunology , Fruit/microbiology , Fungi/physiology , Hybridization, Genetic , Italy , Mass Spectrometry , Plant Breeding , Plant Diseases/immunology , Plant Diseases/microbiology , Vitis/chemistry , Vitis/immunology , Vitis/microbiology
3.
J Sep Sci ; 43(4): 829-838, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31769179

ABSTRACT

This report presents the first ultra high performance supercritical fluid chromatography diode array detector based assay for simultaneous determination of iridoid glucosides, flavonoid glucuronides, and phenylpropanoid glycosides in Verbena officinalis (Verbenaceae) extracts. Separation of the key metabolites was achieved in less than 7 min on an Acquity UPC2 Torus Diol column using a mobile phase gradient comprising subcritical carbon dioxide and methanol with 0.15% phosphoric acid. Method validation for seven selected marker compounds (hastatoside, verbenalin, apigenin-7-O-glucuronide, luteolin-7-O-glucuronide, apigenin-7-O-diglucuronide, verbascoside, and luteolin-7-O-diglucuronide) confirmed the assay to be sensitive, linear, precise, and accurate. Head-to-head comparison to an ultra high performance liquid chromatography comparator assay did prove the high orthogonality of the methods. Quantitative result equivalence was evaluated by Passing-Bablok-correlation and Bland-Altman-plot analysis. This cross-validation revealed, that one of the investigated marker compound peaks was contaminated in the ultra high performance liquid chromatography assay by a structurally related congener. Taken together, it was proven that the ultra high performance supercritical fluid chromatography instrument setup with its orthogonal selectivity is a true alternative to conventional reversed phase liquid chromatography in quantitative secondary metabolite analysis. For regulatory purposes, assay cross-validation with highly orthogonal methods seems a viable approach to avoid analyte overestimation due to coeluting, analytically indistinguishable contaminants.


Subject(s)
Chromatography, Supercritical Fluid/methods , Plant Extracts/analysis , Verbena/chemistry , Chromatography, High Pressure Liquid , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Secondary Metabolism , Verbena/metabolism
4.
Planta Med ; 86(15): 1148-1155, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32492718

ABSTRACT

The genus Cistus is taxonomically complex, as taxonomic classification of individual species based on morphological criteria is often difficult and ambiguous. However, specific species contain valuable natural products, especially terpenoids and polyphenols, which exert various biological effects and might therefore be used for treatment of a broad array of disorders. Hence, a fast and reliable method for clear identification of different Cistus (sub-) species is required. Approaches for analysis of secondary metabolite profiles, e.g., with NMR, might remedy the challenging classification of Cistus (sub-) species and help to identify specific markers for differentiation between them. In the present study, 678 samples from wild-growing Cistus populations, including 7 species and 6 subspecies/varieties thereof, were collected in 3 years from populations in 11 countries all over the Mediterranean basin. Samples were extracted with buffered aqueous methanol and analysed with NMR. From the resulting 1D-1H-NOESY and J-Res profile spectra, marker signals or spectral regions for the individual (sub-) species were identified with multivariate statistical tools. By examining the NMR profiles of these extracts, we were able to identify discriminators and specific markers for the investigated Cistus (sub-) species. Various influencing factors, like (sub-) species, wild harvestings of different populations from several countries, numerous collection sites, different years, and cultivation in greenhouses have been considered in this work. As the here identified markers are independent from these influencing factors, the results can be considered a robust model and might be used for future differentiation between Cistus (sub-) species.


Subject(s)
Cistaceae , Cistus , Plant Extracts , Polyphenols , Terpenes
5.
J Nat Prod ; 82(1): 136-147, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30629444

ABSTRACT

Tyrosinase (Tyr) catalyzes the rate-limiting step of melanogenesis in human skin and is thus the main target for treating pigmentation disorders today. This has led to an increased research interest in Tyr inhibitors during the last decades, with a frequent focus on polyphenols. In the early stages of drug discovery, it is typical to avoid the high costs of human Tyr by using the more economic mushroom tyrosinase (mh-Tyr). Since some polyphenols are accepted as substrates by mh-Tyr, the present study aimed to more generally investigate this enzyme's specificity toward polyphenols and to discuss its significance in the context of bioactivity-guided fractionation. Mh-Tyr substrates can change the sample color during an inhibition assay, leading to unreliable inhibition constants or to the discontinuation of a bioactivity-guided fractionation campaign. A data set of 56 natural products was investigated and classified into assay interferers (AIs) and noninterferers, using a spectrophotometric and an LC-ESIHRMS assay. Based on these experimental findings, structure-activity relationships defining AIs were deduced and implemented into an in silico tool that will allow for rapid prescreening in the future. We anticipate that these results will aid in the search for new Tyr inhibitors and contribute to the understanding of this enzyme, as well as its optimal use in pharmacological research.


Subject(s)
Agaricales/enzymology , Monophenol Monooxygenase/antagonists & inhibitors , Molecular Docking Simulation , Monophenol Monooxygenase/chemistry , Structure-Activity Relationship , Substrate Specificity
6.
Planta Med ; 84(6-07): 361-371, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28938494

ABSTRACT

The wide chemical diversity of natural products has challenged analysts all over the world and has been a driving force for the development of innovative technologies since decades. In the last years, supercritical fluid chromatography (SFC) has finally emerged from the shadow of liquid chromatography (LC) and gas chromatography (GC) and has become a powerful tool in modern natural product analysis. Whereas in the past the technique had mainly been restricted to a small group of nonpolar compounds, it has largely expanded its suitability in the last years and has demonstrated possibilities without boundaries. This mini-review, focused on the latest applications, provides a brief update on the current status of SFC in natural product analysis with the aim to demonstrate its applicability for both polar and nonpolar plant constituents. The approaches cover the whole range of polarity, including carotenoids, flavonoids, water-unstable ginkgolides, and even highly polar triterpene saponins with several sugar residues.


Subject(s)
Biological Products/analysis , Chromatography, Supercritical Fluid , Chromatography, Supercritical Fluid/methods
7.
Planta Med ; 81(18): 1736-43, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26366754

ABSTRACT

A fast and selective ultrahigh-performance supercritical fluid chromatography photodiode array detector method was established for the qualitative and quantitative analysis of destruxins, cyclic hexadepsipeptides, from fungal culture broth samples. Prior to analysis, sample purification was carried out using an off-line solid-phase extraction protocol on a reversed-phase material in order to remove unwanted matrix constituents. For separation, detection, and identification, an ultrahigh-performance supercritical fluid chromatography photodiode array detector system hyphenated to a triple quadrupole mass spectrometer was utilized. Analyses were performed on an Acquity ethylene bridged hybrid 2-ethylpyridine sub 2 µm particle size column with CO2 and an acidified (0.02% trifluor acetic acid) modifier mixture of methanol/acetonitrile (8/2 v/v) serving as mobile phase. For the optimal separation of destruxins, the amount of the modifier was increased in a 10 min linear gradient from 2% to 20%, and the column outlet pressure and temperature was set at 140 bars and 60 °C, respectively. Seventeen analytes were separated within an elution window of 4 minutes. Five destruxin congeners (destruxin A, destruxin B, destruxin D, destruxin E, and destruxin E-diol) were identified using reference material. Additionally, eight analytes were tentatively assigned as known destruxins by the evaluation of mass spectrometry data performed as multiple reaction monitoring experiments in the positive electrospray ionization mode.


Subject(s)
Chromatography, Supercritical Fluid/methods , Fungal Proteins/analysis , Metarhizium/chemistry , Culture Media/chemistry , Depsipeptides/analysis , Metarhizium/metabolism
8.
Anal Bioanal Chem ; 406(29): 7623-32, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25303929

ABSTRACT

A fast and selective ultrahigh-performance liquid chromatography diode array detector (UHPLC-DAD) method combined with an off-line solid phase extraction (SPE) protocol was established to monitor destruxins (dtxs), a secondary metabolite class of highly bioactive cyclic depsipeptides. Sample purification via SPE was tailored to remove both more polar and apolar matrix constituents by applying analyte class-selective washing and elution conditions. To separate and detect destruxin congeners an UHPLC-DAD system hyphenated to a quadrupole-time-of-flight (Q-TOF) hybrid mass spectrometer was utilized. Analyses were performed on a sub-2-µm-particle-size RP-18 column with an acidified (0.02% acetic acid) 12 min water/acetonitrile solvent gradient. In the dtx congener elution zone 22 chromatographic peaks were separated. Four of these were identified by comparison with reference materials as dtx A, dtx B, dtx E, and dtx E-diol; 16 were tentatively assigned as known or novel dtx congeners by the analysis of high resolution UHPLC-DAD-QTOF-MS/MS data recorded in the positive electrospray ionization (ESI) mode. The applicability of the UHPLC-DAD assay to investigate biological materials in a qualitative and quantitative manner was proven by the application of the platform to monitor the dtx production profile of three Metarhizium brunneum strain fungal culture broths.


Subject(s)
Chromatography, High Pressure Liquid/methods , Depsipeptides/analysis , Food Analysis/methods , Food Contamination/analysis , Metarhizium/chemistry , Mycotoxins/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Reproducibility of Results , Sensitivity and Specificity
9.
Nat Prod Rep ; 30(7): 970-87, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23739842

ABSTRACT

Current natural product research is unthinkable without the use of high resolution separation techniques as high performance liquid chromatography or capillary electrophoresis (HPLC or CE respectively) combined with mass spectrometers (MS) or nuclear magnetic resonance (NMR) spectrometers. These hyphenated instrumental analysis platforms (CE-MS, HPLC-MS or HPLC-NMR) are valuable tools for natural product de novo identification, as well as the authentication, distribution, and quantification of constituents in biogenic raw materials, natural medicines and biological materials obtained from model organisms, animals and humans. Moreover, metabolic profiling and metabolic fingerprinting applications can be addressed as well as pharmacodynamic and pharmacokinetic issues. This review provides an overview of latest technological developments, discusses the assets and drawbacks of the available hyphenation techniques, and describes typical analytical workflows.


Subject(s)
Biological Products , Chromatography, High Pressure Liquid/methods , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Humans
10.
Cells ; 11(21)2022 11 07.
Article in English | MEDLINE | ID: mdl-36359922

ABSTRACT

Gaining structural information is a must to allow the unequivocal structural characterization of analytes from natural sources. In liquid state, NMR spectroscopy is almost the only possible alternative to HPLC-MS and hyphenating the effluent of an analyte separation device to the probe head of an NMR spectrometer has therefore been pursued for more than three decades. The purpose of this review article was to demonstrate that, while it is possible to use mass spectrometry and similar methods to differentiate, group, and often assign the differentiating variables to entities that can be recognized as single molecules, the structural characterization of these putative biomarkers usually requires the use of NMR spectroscopy.


Subject(s)
Molecular Structure , Magnetic Resonance Spectroscopy/methods , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods
11.
J Agric Food Chem ; 70(24): 7586-7593, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35695390

ABSTRACT

This study presents the first ultra-high performance supercritical fluid chromatography-diode array detector (UHPSFC-DAD) assay for simultaneous quantitation of secoiridoids, iridoids, xanthones, and xanthone glycosides in Gentiana lutea L. Separation was reached within 12 min on an Acquity UPC2 BEH 2-EP column using CO2 and methanol with 5.5% water as mobile phases. Method validation for nine selected marker compounds (gentisin, isogentisin, swertiamarin, sweroside, gentiopicroside, loganic acid, amarogentin, gentioside, and its isomer) confirmed the assay's sensitivity, linearity, precision, and accuracy. The practical applicability was proven by the analysis of 13 root specimens and 10 commercial liquid preparations (seven liqueurs and three clear spirits). In all root batches, the secoiridoid gentiopicroside dominated (2.1-5.6%) clearly over all other metabolites. In the liqueurs, the metabolite content and distribution were extremely variable: while gentiopicroside was the main compound in four liqueurs, sweroside dominated in one preparation and loganic acid in two others. In contrast, measurable amounts of the metabolites were not detected in any of the examined clear spirits.


Subject(s)
Chromatography, Supercritical Fluid , Beverages , Chromatography, High Pressure Liquid/methods , Gentiana , Plant Extracts , Plant Roots
12.
Atherosclerosis ; 341: 34-42, 2022 01.
Article in English | MEDLINE | ID: mdl-34995985

ABSTRACT

BACKGROUND AND AIMS: Assessment of comprehensive lipoprotein subclass profiles in adolescents and their relation to vascular disease may enhance our understanding of the development of dyslipidemia in early life and inform early vascular prevention. METHODS: Nuclear magnetic resonance was used to measure lipoprotein profiles, including lipids (cholesterol, free cholesterol, triglycerides, phospholipids) and apolipoproteins (apoB-100, apoA1, apoA2) of 17 lipoprotein subclasses (from least dense to densest: VLDL-1 to -6, IDL, LDL-1 to -6, HDL-1 to -4) in n = 1776 14- to 19-year olds (56.6% female) and n = 3027 25- to 85-year olds (51.5% female), all community-dwelling. Lipoprotein profiles were related to carotid intima-media thickness (cIMT) as ascertained by sonography. RESULTS: Adolescents compared to adults had lower triglycerides, total, LDL, and non-HDL cholesterol, and apoB, and higher HDL cholesterol. They showed 26.6-59.8% lower triglyceride content of all lipoprotein subclasses and 21.9-51.4% lower VLDL lipid content. Concentrations of dense LDL-4 to LDL-6 were 36.7-40.2% lower, with also markedly lower levels of LDL-1 to LDL-3, but 24.2% higher HDL-1 ApoA1. In adolescents, only LDL-3 to LDL-5 subclasses were associated with cIMT (range of differences in cIMT for a 1-SD higher concentration, 4.8-5.9 µm). The same associations emerged in adults, with on average 97 ± 42% (mean ± SD) larger effect sizes, in addition to LDL-1 and LDL-6 (range, 6.9-11.3 µm) and HDL-2 to HDL-4, ApoA1, and ApoA2 (range, -7.0 to -17.7 µm). CONCLUSIONS: Adolescents showed a markedly different and more favorable lipoprotein profile compared to adults. Dense LDL subclasses were the only subclasses associated with cIMT in adolescents, implicating them as the potential preferred therapeutic target for primary prevention of cardiovascular disease at this age. In adults, associations with cIMT were approximately twice as large as in adolescents, and HDL-related measures were additionally associated with cIMT.


Subject(s)
Carotid Intima-Media Thickness , Lipoproteins , Adolescent , Adult , Cholesterol, HDL , Cohort Studies , Female , Humans , Male , Prospective Studies , Triglycerides
13.
Metabolites ; 11(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34436470

ABSTRACT

By combining HPLC-DAD-QTOF-MS and HPLC-SPE-NMR, the in vitro metabolism of vitetrifolin D, a pharmacologically active key molecule from Vitex agnus-castus in liver cell fractions, was investigated. Twenty-seven phase I and phase II metabolites were tentatively identified from the culture broth by HPLC-DAD-QTOF-MS. The subsequent HPLC-SPE-NMR analysis allowed for the unequivocal structural characterization of nine phase I metabolites. Since the preparative isolation of the metabolites was avoided, the substance input was much lower than in conventional strategies. The study did prove that the use of hyphenated instrumental analysis methodologies allows for the successful performance of in vitro metabolism studies, even if the availability of substances is very limited.

15.
Sci Rep ; 10(1): 13804, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32796875

ABSTRACT

Pain remains a key therapeutic area with intensive efforts directed toward finding effective and safer analgesics in light of the ongoing opioid crisis. Amongst the neurotransmitter systems involved in pain perception and modulation, the mu-opioid receptor (MOR), a G protein-coupled receptor, represents one of the most important targets for achieving effective pain relief. Most clinically used opioid analgesics are agonists to the MOR, but they can also cause severe side effects. Medicinal plants represent important sources of new drug candidates, with morphine and its semisynthetic analogues as well-known examples as analgesic drugs. In this study, combining in silico (pharmacophore-based virtual screening and docking) and pharmacological (in vitro binding and functional assays, and behavioral tests) approaches, we report on the discovery of two naturally occurring plant alkaloids, corydine and corydaline, as new MOR agonists that produce antinociceptive effects in mice after subcutaneous administration via a MOR-dependent mechanism. Furthermore, corydine and corydaline were identified as G protein-biased agonists to the MOR without inducing ß-arrestin2 recruitment upon receptor activation. Thus, these new scaffolds represent valuable starting points for future chemical optimization towards the development of novel opioid analgesics, which may exhibit improved therapeutic profiles.


Subject(s)
Alkaloids/pharmacology , Alkaloids/therapeutic use , Analgesics , Aporphines/pharmacology , Aporphines/therapeutic use , Berberine Alkaloids/pharmacology , Berberine Alkaloids/therapeutic use , Pain/drug therapy , Phytotherapy , Receptors, Opioid, mu/agonists , Animals , Aporphines/chemistry , Berberine Alkaloids/chemistry , Cells, Cultured , Cricetulus , Disease Models, Animal , Mice , Molecular Targeted Therapy
16.
Nutrients ; 12(5)2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32354152

ABSTRACT

(1) Background: Alterations in the structural composition of the human gut microbiota have been identified in various disease entities along with exciting mechanistic clues by reductionist gnotobiotic modeling. Improving health by beneficially modulating an altered microbiota is a promising treatment approach. Prebiotics, substrates selectively used by host microorganisms conferring a health benefit, are broadly used for dietary and clinical interventions. Herein, we sought to investigate the microbiota-modelling effects of the soluble fiber, partially hydrolyzed guar gum (PHGG). (2) Methods: We performed a 9 week clinical trial in 20 healthy volunteers that included three weeks of a lead-in period, followed by three weeks of an intervention phase, wherein study subjects received 5 g PHGG up to three times per day, and concluding with a three-week washout period. A stool diary was kept on a daily basis, and clinical data along with serum/plasma and stool samples were collected on a weekly basis. PHGG-induced alterations of the gut microbiota were studied by 16S metagenomics of the V1-V3 and V3-V4 regions. To gain functional insight, we further studied stool metabolites using nuclear magnetic resonance (NMR) spectroscopy. (3) Results: In healthy subjects, PHGG had significant effects on stool frequency and consistency. These effects were paralleled by changes in α- (species evenness) and ß-diversity (Bray-Curtis distances), along with increasing abundances of metabolites including butyrate, acetate and various amino acids. On a taxonomic level, PHGG intake was associated with a bloom in Ruminococcus, Fusicatenibacter, Faecalibacterium and Bacteroides and a reduction in Roseburia, Lachnospiracea and Blautia. The majority of effects disappeared after stopping the prebiotic and most effects tended to be more pronounced in male participants. (4) Conclusions: Herein, we describe novel aspects of the prebiotic PHGG on compositional and functional properties of the healthy human microbiota.


Subject(s)
Dietary Fiber/administration & dosage , Dietary Fiber/pharmacology , Feces/microbiology , Galactans/administration & dosage , Galactans/pharmacology , Gastrointestinal Microbiome/drug effects , Healthy Volunteers , Mannans/administration & dosage , Mannans/pharmacology , Plant Gums/administration & dosage , Plant Gums/pharmacology , Prebiotics , Acetates/metabolism , Bacteroides/isolation & purification , Butyrates/metabolism , Faecalibacterium/isolation & purification , Female , Humans , Hydrolysis , Male , Ruminococcus/isolation & purification , Solubility
17.
Biomed Chromatogr ; 23(2): 182-98, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18816456

ABSTRACT

Alkannin and shikonin (A/S) and their derivatives have been found in the roots of several Boraginaceous species and are also produced through plant tissue cultures. The chiral compounds A/S are potent pharmaceutical substances with a wide spectrum of biological and pharmacological activities like wound healing, antimicrobial, anti-inflammatory, anticancer and antioxidant activity. High-speed counter-current chromatography (HSCCC) was applied for the first time to the separation, preparative isolation and purification of A/S and their esters from extracts of Alkanna tinctoria roots, as well as commercial samples. The constituents of HSCCC fractions and their purity were determined by high-performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS), since DAD cannot detect oligomeric A/S derivatives that are present in most of the samples containing the respective monomeric derivatives. The purity of HSCCC fractions was compared with the one of fractions isolated by column chromatography (CC) using as stationary phases silica gel and Sephadex LH-20. As shown, the purity of monomeric alkannin/shikonin was greater by HSCCC than CC separation of commercial A/S samples.


Subject(s)
Boraginaceae/chemistry , Chromatography/methods , Naphthoquinones/isolation & purification , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Plant Roots/chemistry
18.
Clin Chim Acta ; 489: 169-176, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29097223

ABSTRACT

Metabolomics is a well-established field in fundamental clinical research with applications in different human body fluids. However, metabolomic investigations in feces are currently an emerging field. Fecal sample preparation is a demanding task due to high complexity and heterogeneity of the matrix. To gain access to the information enclosed in human feces it is necessary to extract the metabolites and make them accessible to analytical platforms like NMR or LC-MS. In this study different pre-analytical parameters and factors were investigated i.e. water content, different extraction solvents, influence of freeze-drying and homogenization, ratios of sample weight to extraction solvent, and their respective impact on metabolite profiles acquired by NMR and LC-MS. The results indicate that profiles are strongly biased by selection of extraction solvent or drying of samples, which causes different metabolites to be lost, under- or overstated. Additionally signal intensity and reproducibility of the measurement were found to be strongly dependent on sample pre-treatment steps: freeze-drying and homogenization lead to improved release of metabolites and thus increased signals, but at the same time induced variations and thus deteriorated reproducibility. We established the first protocol for extraction of human fecal samples and subsequent measurement with both complementary techniques NMR and LC-MS.


Subject(s)
Analytic Sample Preparation Methods/methods , Feces/chemistry , Metabolomics/methods , Chromatography, Liquid , Desiccation , Humans , Magnetic Resonance Spectroscopy , Tandem Mass Spectrometry , Water/analysis
19.
ACS Med Chem Lett ; 10(1): 62-66, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30655948

ABSTRACT

A series of derivatives of the potent dual soluble epoxide hydrolase (sEH)/5-lipoxygenase-activating protein (FLAP) inhibitor diflapolin was designed, synthesized, and characterized by 1H NMR, 13C NMR, and elemental analysis. These novel compounds were biologically evaluated for their inhibitory activity against sEH and FLAP. Molecular modeling tools were applied to analyze structure-activity relationships (SAR) on both targets. Results show that even small modifications on the lead compound diflapolin markedly influence the inhibitory potential, especially on FLAP, suggesting very narrow SAR.

20.
J Med Chem ; 62(2): 641-653, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30571123

ABSTRACT

Herein, the synthesis and pharmacological characterization of an extended library of differently substituted N-methyl-14- O-methylmorphinans with natural and unnatural amino acids and three dipeptides at position 6 that emerged as potent µ/δ opioid receptor (MOR/DOR) agonists with peripheral antinociceptive efficacy is reported. The current study adds significant value to our initial structure-activity relationships on a series of zwitterionic analogues of 1 (14- O-methyloxymorphone) by targeting additional amino acid residues. The new derivatives showed high binding and potent agonism at MOR and DOR in vitro. In vivo, the new 6-amino acid- and 6-dipeptide-substituted derivatives of 1 were highly effective in inducing antinociception in the writhing test in mice after subcutaneous administration, which was antagonized by naloxone methiodide demonstrating activation of peripheral opioid receptors. Such peripheral opioid analgesics may represent alternatives to presently available drugs for a safer pain therapy.


Subject(s)
Analgesics, Opioid/chemical synthesis , Oxymorphone/analogs & derivatives , Receptors, Opioid, delta/agonists , Receptors, Opioid, mu/agonists , Analgesics, Opioid/metabolism , Analgesics, Opioid/therapeutic use , Animals , Cell Membrane/metabolism , Dipeptides/chemistry , Humans , Male , Mice , Morphine/therapeutic use , Oxymorphone/chemistry , Oxymorphone/metabolism , Oxymorphone/therapeutic use , Pain/chemically induced , Pain/drug therapy , Pain/pathology , Protein Binding , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL