Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Publication year range
1.
Brain Behav Immun ; 116: 140-149, 2024 02.
Article in English | MEDLINE | ID: mdl-38070619

ABSTRACT

Cancers of the central nervous system (CNS) are unique with respect to their tumor microenvironment. Such a status is due to immune-privilege and the cellular behaviors within a highly networked, neural-rich milieu. During tumor development in the CNS, neural, immune and cancer cells establish complex cell-to-cell communication networks which mimic physiological functions, including paracrine signaling and synapse-like formations. This crosstalk regulates diverse pathological functions contributing to tumor progression. In the CNS, regulation of physiological and pathological functions relies on various cell signaling and transcription programs. At the core of these events lies the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a master transcriptional regulator in the CNS. CREB is a kinase inducible transcription factor which regulates many CNS functions, including neurogenesis, neuronal survival, neuronal activation and long-term memory. Here, we discuss how CREB-regulated mechanisms operating in diverse cell types, which control development and function of the CNS, are co-opted in CNS tumors.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Neoplasms , Humans , Cyclic AMP Response Element-Binding Protein/metabolism , Signal Transduction/physiology , Central Nervous System/metabolism , Immunity , Tumor Microenvironment
2.
Exp Cell Res ; 431(1): 113743, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37591452

ABSTRACT

A critical challenge in the treatment of glioblastoma (GBM) is its highly invasive nature which promotes cell migration throughout the brain and hinders surgical resection and effective drug delivery. GBM cells demonstrate augmented invasive capabilities following exposure to the current gold standard treatment of radiotherapy (RT) and concomitant and adjuvant temozolomide (TMZ), resulting in rapid disease recurrence. Elucidating the mechanisms employed by post-treatment invasive GBM cells is critical to the development of more effective therapies. In this study, we utilized a Nanostring® Cancer Progression gene expression panel to identify candidate genes that may be involved in enhanced GBM cell invasion after treatment with clinically relevant doses of RT/TMZ. Our findings identified thrombospondin-1 (THBS1) as a pro-invasive gene that is upregulated in these cells. Immunofluorescence staining revealed that THBS1 localised within functional matrix-degrading invadopodia that formed on the surface of GBM cells. Furthermore, overexpression of THBS1 resulted in enhanced GBM cell migration and secretion of MMP-2, which was reduced with silencing of THBS1. The preliminary data demonstrates that THBS1 is associated with invadopodia in GBM cells and is likely involved in the invadopodia-mediated invasive process in GBM cells exposed to RT/TMZ treatment. Therapeutic inhibition of THBS1-mediated invadopodia activity, which facilitates GBM cell invasion, should be further investigated as a treatment for GBM.


Subject(s)
Glioblastoma , Podosomes , Humans , Glioblastoma/genetics , Glioblastoma/therapy , Neoplasm Recurrence, Local , Temozolomide/pharmacology , Brain
3.
Mol Cell Biochem ; 478(6): 1251-1267, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36302993

ABSTRACT

Glioblastoma (GBM) is the most prevalent primary central nervous system tumour in adults. The lethality of GBM lies in its highly invasive, infiltrative, and neurologically destructive nature resulting in treatment failure, tumour recurrence and death. Even with current standard of care treatment with surgery, radiotherapy and chemotherapy, surviving tumour cells invade throughout the brain. We have previously shown that this invasive phenotype is facilitated by actin-rich, membrane-based structures known as invadopodia. The formation and matrix degrading activity of invadopodia is enhanced in GBM cells that survive treatment. Drug repurposing provides a means of identifying new therapeutic applications for existing drugs without the need for discovery or development and the associated time for clinical implementation. We investigate several FDA-approved agents for their ability to act as both cytotoxic agents in reducing cell viability and as 'anti-invadopodia' agents in GBM cell lines. Based on their cytotoxicity profile, three agents were selected, bortezomib, everolimus and fludarabine, to test their effect on GBM cell invasion. All three drugs reduced radiation/temozolomide-induced invadopodia activity, in addition to reducing GBM cell viability. These drugs demonstrate efficacious properties warranting further investigation with the potential to be implemented as part of the treatment regime for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/metabolism , Drug Repositioning , Brain Neoplasms/metabolism , Cell Line, Tumor , Temozolomide/pharmacology
4.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139284

ABSTRACT

Multiple sclerosis (MS) is a neurodegenerative disease marked by chronic neuroinflammation thought to be mediated by the inflammasome pathway. Connexin 43 (Cx43) hemichannels contribute to the activation of the inflammasome through the release of adenosine triphosphate (ATP) inflammasome activation signals. The objective of the study was to evaluate if the Cx43 hemichannel blocker, tonabersat, is effective in modulating the inflammatory response and reducing disability in the myelin oligodendrocyte glycoprotein 35-55-induced experimental autoimmune encephalomyelitis (MOG35-55 EAE) model of MS. Here, we show that the Cx43 hemichannel blocking drug, tonabersat, significantly reduced expression of neuroinflammatory markers for microglial activation (ionized calcium-binding adapter molecule 1 (Iba1)) and astrogliosis (glial fibrillary acidic protein (GFAP)) while preserving myelin basic protein (MBP) expression levels in the corpus callosum, motor cortex, and striatum regions of the brain in MOG35-55 EAE mice. Reduced NOD-like receptor protein 3 (NLRP3) inflammasome complex assembly and Caspase-1 activation confirmed the drug's mode of action. MOG35-55 EAE mice showed clinical signs of MS, but MOG35-55 EAE mice treated with tonabersat retained behavior closer to normal. These data suggest that clinical trial phase IIb-ready tonabersat may merit further investigation as a promising candidate for MS treatment.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Neurodegenerative Diseases , Mice , Animals , Multiple Sclerosis/drug therapy , Connexin 43/metabolism , Inflammasomes/metabolism , Disease Progression , Mice, Inbred C57BL , Disease Models, Animal
5.
Int J Mol Sci ; 23(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35269915

ABSTRACT

Glioblastoma is the most aggressive brain tumour with short survival, partly due to resistance to conventional therapy. Glioma stem cells (GSC) are likely to be involved in treatment resistance, by releasing extracellular vesicles (EVs) containing specific molecular cargoes. Here, we studied the EVs secreted by glioma stem cells (GSC-EVs) and their effects on radiation resistance and glioma progression. EVs were isolated from 3 GSCs by serial centrifugation. NanoSight measurement, cryo-electron microscopy and live imaging were used to study the EVs size, morphology and uptake, respectively. The non-GSC glioma cell lines LN229 and U118 were utilised as a recipient cell model. Wound healing assays were performed to detect cell migration. Colony formation, cell viability and invadopodium assays were conducted to detect cell survival of irradiated recipient cells and cell invasion post GSC-EV treatment. NanoString miRNA global profiling was used to select for the GSC-EVs' specific miRNAs. All three GSC cell lines secreted different amounts of EVs, and all expressed consistent levels of CD9 but different level of Alix, TSG101 and CD81. EVs were taken up by both LN229 and U118 recipient cells. In the presence of GSC-EVs, these recipient cells survived radiation exposure and initiated colony formation. After GSC-EVs exposure, LN229 and U118 cells exhibited an invasive phenotype, as indicated by an increase in cell migration. We also identified 25 highly expressed miRNAs in the GSC-EVs examined, and 8 of these miRNAs can target PTEN. It is likely that GSC-EVs and their specific miRNAs induced the phenotypic changes in the recipient cells due to the activation of the PTEN/Akt pathway. This study demonstrated that GSC-EVs have the potential to induce radiation resistance and modulate the tumour microenvironment to promote glioma progression. Future therapeutic studies should be designed to interfere with these GSC-EVs and their specific miRNAs.


Subject(s)
Extracellular Vesicles , Glioma , MicroRNAs , Cryoelectron Microscopy , Extracellular Vesicles/metabolism , Glioma/genetics , Glioma/metabolism , Glioma/radiotherapy , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Tumor Microenvironment
6.
Br J Cancer ; 125(11): 1466-1476, 2021 11.
Article in English | MEDLINE | ID: mdl-34349251

ABSTRACT

The prognosis for patients with glioblastoma (GBM), the most common and malignant type of primary brain tumour, is very poor, despite current standard treatments such as surgery, radiotherapy and chemotherapy. Moreover, the immunosuppressive tumour microenvironment hinders the development of effective immunotherapies for GBM. Cytokines such as interleukin-10 (IL-10) play a major role in modulating the activity of infiltrating immune cells and tumour cells in GBM, predominantly conferring an immunosuppressive action; however, in some circumstances, IL-10 can have an immunostimulatory effect. Elucidating the function of IL-10 in GBM is necessary to better strategise and improve the efficacy of immunotherapy. This review discusses the immunostimulatory and immunosuppressive roles of IL-10 in the GBM tumour microenvironment while considering IL-10-targeted treatment strategies. The molecular mechanisms that underlie the expression of IL-10 in various cell types are also outlined, and how this resulting information might provide an avenue for the improvement of immunotherapy in GBM is explored.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Interleukin-10/metabolism , Disease Progression , Humans , Prognosis
7.
Cancer Immunol Immunother ; 70(7): 1811-1820, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33389014

ABSTRACT

Recent developments in cancer immunotherapy promise better outcomes for cancer patients, although clinical trials for difficult to treat cancers such as malignant brain cancer present special challenges, showing little response to first generation immunotherapies. Reasons for differences in immunotherapy response in some cancer types are likely due to the nature of tumor microenvironment, which harbors multiple cell types which interact with tumor cells to establish immunosuppression. The cell types which appear to hold the key in regulating tumor immunosuppression are the tumor-infiltrating immune cells. The current standard treatment for difficult to treat cancer, including the most malignant brain cancer, glioblastoma, continues to offer a bleak outlook for patients. Immune-profiling and correlation with pathological and clinical data will lead to a deeper understanding of the tumor immune microenvironment and contribute toward the selection, optimization and development of novel precision immunotherapies. Here, we review the current understanding of the tumor microenvironmental landscape in glioblastoma with a focus on next-generation technologies including multiplex immunofluorescence and computational approaches to map the brain tumor microenvironment to decipher the role of the immune system in this lethal malignancy.


Subject(s)
Biomarkers, Tumor/immunology , Brain Neoplasms/drug therapy , Computer Simulation , Immune Tolerance/immunology , Immunohistochemistry/methods , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Brain Neoplasms/immunology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Humans , Molecular Targeted Therapy , Precision Medicine
8.
J Neurooncol ; 149(3): 401, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33026635

ABSTRACT

For the reference citation '[57]' in the second paragraph of the Results section of the original article there was no corresponding entry in the References section. It should have referred to the below mentioned article by Ebrahimkhani et al. (2018).

9.
J Neurooncol ; 149(3): 391-400, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32915353

ABSTRACT

PURPOSE: A circulating biomarker has potential to provide more accurate information for glioma progression post treatment, however no such biomarker is currently available. We aimed to discover a microRNA serum biomarker for longitudinal monitoring of glioma patients. METHODS: A prospectively collected cohort of 91 glioma patients and 17 healthy controls underwent pre and post-operative serum miRNA profiling using Nanostring®. Differentially expressed miRNAs were discovered using a machine learning random forest analysis. Candidate miRNAs were then assessed by droplet digital PCR in 11 patients with multiple follow up samples and compared to tumor volume based on magnetic resonance imaging. RESULTS: A 9-gene miRNA signature was identified that could distinguish between glioma and healthy controls with 99.8% accuracy. Two miRNAs miR-223 and miR-320e, best demonstrated dynamic changes that correlated closely with tumor volume in LGG and GBM respectively. Importantly, miRNA levels did not increase in two cases of pseudo-progression, indicating the potential utility of this test in guiding treatment decisions. CONCLUSIONS: We identified a highly accurate 9-miRNA signature associated with glioma serum. Additionally, we observed dynamic changes in specific miRNAs correlating with tumor volume over long-term follow up. These results support a large prospective validation study of serum miRNA biomarkers in glioma.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/blood , Glioma/blood , MicroRNAs/genetics , Neoplasm Recurrence, Local/blood , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Female , Follow-Up Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/pathology , Glioma/surgery , Humans , Male , MicroRNAs/blood , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/surgery , Prognosis , Prospective Studies , Young Adult
10.
Exp Cell Res ; 374(2): 353-364, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30562483

ABSTRACT

Glioblastoma (GBM) tumor cells exhibit drug resistance and are highly infiltrative. GBM stem cells (GSCs), which have low proliferative capacity are thought to be one of the sources of resistant cells which result in relapse/recurrence. However, the molecular mechanisms regulating quiescent-specific tumor cell biology are not well understood. Using human GBM cell lines and patient-derived GBM cells, Oregon Green dye retention was used to identify and isolate the slow-cycling, quiescent-like cell subpopulation from the more proliferative cells in culture. Sensitivity of cell subpopulations to temozolomide and radiation, as well as the migration and invasive potential were measured. Differential expression analysis following RNAseq identified genes enriched in the quiescent cell subpopulation. Orthotopic transplantation of cells into mice was used to compare the in vivo malignancy and invasive capacity of the cells. Proliferative quiescence correlated with better TMZ resistance and enhanced cell invasion, in vitro and in vivo. RNAseq expression analysis identified genes involved in the regulation cell invasion/migration and a three-gene signature, TGFBI, IGFBP3, CHI3L1, overexpressed in quiescent cells which correlates with poor GBM patient survival.


Subject(s)
Brain Neoplasms/pathology , Cell Division/physiology , Drug Resistance, Neoplasm/physiology , Glioblastoma/pathology , Animals , Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Cell Division/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/drug therapy , Humans , Mice , Mice, Inbred BALB C , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Temozolomide/pharmacology , Xenograft Model Antitumor Assays/methods
11.
Crit Rev Clin Lab Sci ; 57(4): 227-252, 2019 12 22.
Article in English | MEDLINE | ID: mdl-31865806

ABSTRACT

Research on the role of extracellular vesicles (EVs) in disease pathogenesis has been rapidly growing over the last two decades. As EVs can mediate intercellular communication, they can ultimately facilitate both normal and pathological processes through the delivery of their bioactive cargo, which may include nucleic acids, proteins and lipids. EVs have emerged as important regulators of brain tumors, capable of transferring oncogenic proteins, receptors, and small RNAs that may support brain tumor progression, including in the most common type of brain cancer, glioma. Investigating the role of EVs in glioma is crucial, as the most malignant glioma, glioblastoma (GBM), is incurable with a dismal median survival of 12-15 months. EV research in GBM has primarily focused on circulating brain tumor-derived vesicles in biofluids, such as blood and cerebrospinal fluid (CSF), investigating their potential as diagnostic and prognostic biomarkers. Gaining a greater understanding of the role of EVs and their cargo in brain tumor progression may contribute to the discovery of novel diagnostics and therapeutics. In this review, we summarize the known and emerging functions of EVs in glioma biology and pathogenesis, as well as their emerging biomarker potential.

12.
Cancer Invest ; 37(3): 144-155, 2019.
Article in English | MEDLINE | ID: mdl-30907150

ABSTRACT

Glioma stem cells (GSCs) play major roles in drug resistance, tumour maintenance and recurrence of glioblastoma. We investigated inhibition of the GTPase dynamin 2 as a therapy for glioblastoma. Glioma cell lines and patient-derived GSCs were treated with dynamin inhibitors, Dynole 34-2 and CyDyn 4-36. We studied about cell viability, and GSC neurosphere formation in vitro and orthotopic tumour growth in vivo. Dynamin inhibition reduced glioblastoma cell line viability and suppressed neurosphere formation and migration of GSCs. Tumour growth was reduced by CyDyn 4-36 treatment. Dynamin 2 inhibition therefore represents a novel approach for stem cell-directed Glioblastoma therapy.


Subject(s)
Brain Neoplasms/drug therapy , Cyanoacrylates/therapeutic use , Dynamin II/antagonists & inhibitors , Glioma/drug therapy , Indoles/therapeutic use , Neoplastic Stem Cells/drug effects , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dynamin II/metabolism , Glioma/metabolism , Glioma/pathology , Humans , Molecular Targeted Therapy/methods , Neoplastic Stem Cells/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
13.
Adv Exp Med Biol ; 1139: 1-21, 2019.
Article in English | MEDLINE | ID: mdl-31134492

ABSTRACT

Glioblastoma is a primary tumor of the brain with a poor prognosis. Pathological examination shows that this disease is characterized by intra-tumor morphological heterogeneity, while numerous and ongoing genomic analysis reveals multiple layers of heterogeneity. Intra-tumor and patient-to-patient heterogeneity is underpinned by cellular, genetic, and molecular heterogeneity, which is thought to be key determinants of time to tumor recurrence and resistance to therapy. The key cell type believed to contribute to the establishment and ongoing evolution of tumor heterogeneity is a glioma stem cell (GSC) subpopulation. In this chapter, we review, highlight, and discuss controversies and clinical relevance of glioblastoma heterogeneity and its cellular basis. Characterization of how cancer stem cells (CSCs) behave is important in understanding how tumors are initiated and how they recur following initial treatment.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Neoplastic Stem Cells , Glioma , Humans , Neoplasm Recurrence, Local
14.
Exp Mol Pathol ; 105(1): 23-31, 2018 08.
Article in English | MEDLINE | ID: mdl-29852183

ABSTRACT

Limitations in discovering useful tumor biomarkers and drug targets is not only due to patient-to-patient differences but also due to intratumor heterogeneity. Heterogeneity arises due to the genetic and epigenetic variation of tumor cells in response to microenvironmental interactions and cytotoxic therapy. We explored specific signaling pathway activation in glioblastoma (GBM) by investigating the intratumor activation of the MAPK and PI3K pathways. We present data demonstrating a striking preponderance for mutual exclusivity of MAPK and PI3K activation in GBM tissue, where MAPK activation correlates with proliferation and transcription factor CREB activation and PI3K activation correlates with CD44 expression. Bioinformatic analysis of signaling and CREB-regulated target genes supports the immunohistochemical data, showing that the MAPK-CREB activation correlates with proliferative regions. In-silico analysis suggests that MAPK-CREB signaling activates a pro-inflammatory molecular signature and correlates with a mesenchymal GBM subtype profile, while PI3K-CREB activation correlates with the proneural GBM subtype and a tumor cell invasive gene signature. Overall, the data suggests the existence of intratumor subtype heterogeneity in GBM and that using combinations of both MAPK and PI3K drug inhibitors is necessary for effective targeted therapy.


Subject(s)
Brain Neoplasms/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Genetic Heterogeneity , Glioblastoma/genetics , MAP Kinase Signaling System , Phosphatidylinositol 3-Kinases/metabolism , Transcriptome , Brain Neoplasms/metabolism , Cell Proliferation , Cyclic AMP Response Element-Binding Protein/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Phosphatidylinositol 3-Kinases/genetics
15.
J Neurooncol ; 125(2): 237-48, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26391593

ABSTRACT

Glioblastoma is the most aggressive and lethal tumour of the central nervous system and as such the identification of reliable prognostic and predictive biomarkers for patient survival and tumour recurrence is paramount. MicroRNA detection has rapidly emerged as potential biomarkers, in patients with glioblastoma. Over the last decade, analysis of miRNA in laboratory based studies have yielded several candidates as potential biomarkers however, the accepted use of these candidates in the clinic is yet to be validated. Here we will examine the use of miRNA signatures to improve glioblastoma stratification into subgroups and summarise recent advances made in miRNA examination as potential biomarkers for glioblastoma progression and recurrence.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms , Glioblastoma , MicroRNAs , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioblastoma/diagnosis , Glioblastoma/genetics , Glioblastoma/metabolism , Humans
16.
Neurooncol Adv ; 6(1): vdae027, 2024.
Article in English | MEDLINE | ID: mdl-38572065

ABSTRACT

Background: Circulating tumor DNA has emerging clinical applications in several cancers; however, previous studies have shown low sensitivity in glioma. We investigated if 3 key glioma gene mutations IDH1, TERTp, and EGFRvIII could be reliably detected in plasma by droplet digital polymerase chain reaction (ddPCR) thereby demonstrating the potential of this technique for glioma liquid biopsy. Methods: We analyzed 110 glioma patients from our biobank with a total of 359 plasma samples (median 4 samples per patient). DNA was isolated from plasma and analyzed for IDH1, TERTp, and EGFRvIII mutations using ddPCR. Results: Total cfDNA was significantly associated with tumor grade, tumor volume, and both overall and progression-free survival for all gliomas as well as the grade 4 glioblastoma subgroup, but was not reliably associated with changes in tumor volume/progression during the patients' postoperative time course. IDH1 mutation was detected with 84% overall sensitivity across all plasma samples and 77% in the preoperative samples alone; however, IDH1 mutation plasma levels were not associated with tumor progression or survival. IDH1m plasma levels were not associated with pre- or postsurgery progression or survival. The TERTp C228T mutation was detected in the plasma ctDNA in 88% but the C250T variant in only 49% of samples. The EGFRvIII mutation was detected in plasma in 5 out of 7 patients (71%) with tissue EGFRvIII mutations in tumor tissue. Conclusions: Plasma ctDNA mutations detected with ddPCR provide excellent diagnostic sensitivity for IDH1, TERTp-C228T, and EGFRvIII mutations in glioma patients. Total cfDNA may also assist with prognostic information. Further studies are needed to validate these findings and the clinical role of ctDNA in glioma.

17.
Cell Oncol (Dordr) ; 46(4): 909-931, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37014551

ABSTRACT

PURPOSE: The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell-cell communication. METHODS: Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. RESULTS: We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. CONCLUSIONS: Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.


Subject(s)
Extracellular Vesicles , Glioblastoma , Podosomes , Humans , Glioblastoma/pathology , Temozolomide/pharmacology , Podosomes/metabolism , Podosomes/pathology , Proteomics
18.
Cell Oncol (Dordr) ; 46(3): 589-602, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36567397

ABSTRACT

PURPOSE: Tumor cells thrive by adapting to the signals in their microenvironment. To adapt, cancer cells activate signaling and transcriptional programs and migrate to establish micro-niches, in response to signals from neighboring cells and non-cellular stromal factors. Understanding how the tumor microenvironment evolves during disease progression is crucial to deciphering the mechanisms underlying the functional behavior of cancer cells. METHODS: Multiplex immunohistochemistry, spatial analysis and histological dyes were used to identify and measure immune cell infiltration, cell signal activation and extracellular matrix deposition in low-grade, high-grade astrocytoma and glioblastoma. RESULTS: We show that lower grade astrocytoma tissue is largely devoid of infiltrating immune cells and extracellular matrix proteins, while high-grade astrocytoma exhibits abundant immune cell infiltration, activation, and extensive tissue remodeling. Spatial analysis shows that most T-cells are restricted to perivascular regions, but bone marrow-derived macrophages penetrate deep into neoplastic cell-rich regions. The tumor microenvironment is characterized by heterogeneous PI3K, MAPK and CREB signaling, with specific signaling profiles correlating with distinct pathological hallmarks, including angiogenesis, tumor cell density and regions where neoplastic cells border the extracellular matrix. Our results also show that tissue remodeling is important in regulating the architecture of the tumor microenvironment during tumor progression. CONCLUSION: The tumor microenvironment in malignant astrocytoma, exhibits changes in cell composition, cell signaling activation and extracellular matrix deposition during disease development and that targeting the extracellular matrix, as well as cell signaling activation will be critical to designing personalized therapy.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Humans , Tumor Microenvironment , Glioma/metabolism , Astrocytoma/metabolism , Signal Transduction , Extracellular Matrix/metabolism , Brain Neoplasms/pathology
19.
Cancers (Basel) ; 14(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36230886

ABSTRACT

Targeted therapies for cancers have improved primary tumor response rates, but concomitantly, brain metastases (BM) have become the most common brain tumors in adults and are associated with a dismal prognosis of generally less than 6 months, irrespective of the primary cancer type. They most commonly occur in patients with primary breast, lung, or melanoma histologies; however, they also appear in patients with other primary cancers including, but not limited to, prostate cancer, colorectal cancer, and renal cell carcinoma. Historically, molecular biomarkers have normally been identified from primary tumor resections. However, clinically informative genomic alterations can occur during BM development and these potentially actionable alterations are not always detected in the primary tumor leading to missed opportunities for effective targeted therapy. The molecular mechanisms that facilitate and drive metastasis to the brain are poorly understood. Identifying the differences between the brain and other extracranial sties of metastasis, and between primary tumors and BM, is essential to improving our understanding of BM development and ultimately patient management and survival. In this review, we present the current data on the genomic landscape of BM from various primary cancers which metastasize to the brain and outline potential mechanisms which may play a role in promoting the formation of the distant metastases in the brain.

20.
Methods Cell Biol ; 170: 21-30, 2022.
Article in English | MEDLINE | ID: mdl-35811101

ABSTRACT

Cancer stem cells are defined as low-abundance, quiescent cells and are considered a major cellular source of tumor recurrence following therapy, which identifies these cells as important therapeutic targets for difficult-to-treat cancers, including high-grade gliomas. By contrast to the highly proliferative bulk tumor cells, glioma stem cells (GSC) are slow-cycling, and therefore less sensitive to DNA damaging cytotoxic drugs. GSC are also less reliant on aerobic glycolytic metabolism, leading to inadequate clearing of GSC by chemotherapy and radiotherapy. The definition of GSC is based on the expression of specific stem cell protein markers. This method of GSC isolation is successful in isolating cell populations that can reliably recapitulate the tumor. However, cell populations that lack stem marker expression may also be capable of tumor recapitulation. Therefore, robust, reproducible methods for isolating GSC are required to identify and isolate cells with stem cell characteristics. Here, we provide a comprehensive and reproducible protocol for the isolation of slow-cycling GSC. Using this method, GSC isolated retain key characteristics of the cells in situ, including expression of genes associated with cell quiescence and invasive potential, compared to non-quiescent cell populations. Thus, isolation of GSC gated on cell proliferation offers a reliable alternative method for in vitro GSC identification, that adequately mirrors the physiological properties of GSC seen in vivo.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Glioblastoma/pathology , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Humans , Neoplastic Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL