ABSTRACT
Renin-angiotensin aldosterone system inhibitors are for a long time extensively used for the treatment of cardiovascular and renal diseases. AT1 receptor blockers (ARBs or sartans) act as antihypertensive drugs by blocking the octapeptide hormone Angiotensin II to stimulate AT1 receptors. The antihypertensive drug candesartan (CAN) is the active metabolite of candesartan cilexetil (Atacand, CC). Complexes of candesartan and candesartan cilexetil with 2-hydroxylpropyl-ß-cyclodextrin (2-HP-ß-CD) were characterized using high-resolution electrospray ionization mass spectrometry and solid state 13C cross-polarization/magic angle spinning nuclear magnetic resonance (CP/MAS NMR) spectroscopy. The 13C CP/MAS results showed broad peaks especially in the aromatic region, thus confirming the strong interactions between cyclodextrin and drugs. This experimental evidence was in accordance with molecular dynamics simulations and quantum mechanical calculations. The synthesized and characterized complexes were evaluated biologically in vitro. It was shown that as a result of CAN's complexation, CAN exerts higher antagonistic activity than CC. Therefore, a formulation of CC with 2-HP-ß-CD is not indicated, while the formulation with CAN is promising and needs further investigation. This intriguing result is justified by the binding free energy calculations, which predicted efficient CC binding to 2-HP-ß-CD, and thus, the molecule's availability for release and action on the target is diminished. In contrast, CAN binding was not favored, and this may allow easy release for the drug to exert its bioactivity.
Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/chemistry , Angiotensin II Type 1 Receptor Blockers/chemistry , Benzimidazoles/chemistry , Biphenyl Compounds/chemistry , Drug Compounding/methods , Prodrugs/chemistry , Tetrazoles/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Benzimidazoles/chemical synthesis , Carbon-13 Magnetic Resonance Spectroscopy , HEK293 Cells , Humans , Hydrogen Bonding , Molecular Conformation , Molecular Dynamics Simulation , Renin-Angiotensin System , Spectrometry, Fluorescence , Spectrometry, Mass, Electrospray Ionization , Tetrazoles/chemical synthesisABSTRACT
Bile acid prodrugs have served as a viable strategy for refining the pharmaceutical profile of parent drugs through utilizing bile acid transporters. A series of three ester prodrugs of the antiherpetic drug acyclovir (ACV) with the bile acids cholic, chenodeoxycholic and deoxycholic were synthesized and evaluated along with valacyclovir for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The in vitro antiviral activity of the three bile acid prodrugs was also evaluated against Epstein-Barr virus (EBV). Plasma stability assays, utilizing ultra-high performance liquid chromatography coupled with tandem mass spectrometry, in vitro cytotoxicity and inhibitory experiments were conducted in order to establish the biological profile of ACV prodrugs. The antiviral assays demonstrated that ACV-cholate had slightly better antiviral activity than ACV against HSV-1, while it presented an eight-fold higher activity with respect to ACV against HSV-2. ACV-chenodeoxycholate presented a six-fold higher antiviral activity against HSV-2 with respect to ACV. Concerning EBV, the highest antiviral effect was demonstrated by ACV-chenodeoxycholate. Human plasma stability assays revealed that ACV-deoxycholate was more stable than the other two prodrugs. These results suggest that decorating the core structure of ACV with bile acids could deliver prodrugs with amplified antiviral activity.
Subject(s)
Acyclovir , Antiviral Agents , Bile Acids and Salts , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Herpesvirus 4, Human/drug effects , Prodrugs , Acyclovir/chemistry , Acyclovir/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bile Acids and Salts/chemistry , Cell Line , Humans , Prodrugs/chemical synthesis , Prodrugs/pharmacologyABSTRACT
Temozolomide (TEMODAL™) (TMZ) is an antineoplastic agent that is primarily used for the treatment of glioblastoma and anaplastic gliomas, two aggressive forms of brain cancer. Due to the poor prognosis of brain tumour patients, there is an increasing body of research into improving the stability and delivery of TMZ past the blood brain barrier using carrier molecules. These require accurate determination of TMZ levels for biodistribution and pharmacokinetic evaluation. Unfortunately, current methodologies for the determination of TMZ in human plasma suffer from low reproducibility, recovery, sensitivity or cost ineffective procedures associated with extensive sample cleaning. To surpass these disadvantages, we developed two bioanalytical methods with high sensitivity and excellent recovery for the determination of TMZ in human plasma at minimum cost. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used and both methods were validated under US Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) guidelines. The two methods had minor differences in the sample pre-treatment and each method was developed and applied in separate laboratories. Theophylline was selected as internal standard (IS). Calibration curves were linear over the range of 10-500â¯ng/mL with extraction recovery ranging from 77.3 to 97.3% while all validation parameters met the acceptance criteria and proved the methods' reliability. The validated methods were successfully applied to plasma samples donated from cancer patient following treatment with temozolomide.
Subject(s)
Antineoplastic Agents, Alkylating/blood , Brain Neoplasms/drug therapy , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Drug Monitoring/methods , Tandem Mass Spectrometry , Temozolomide/blood , Administration, Oral , Antineoplastic Agents, Alkylating/administration & dosage , Brain Neoplasms/blood , Calibration , Chemical Precipitation , Chromatography, High Pressure Liquid/standards , Chromatography, Reverse-Phase/standards , Drug Monitoring/standards , Humans , Limit of Detection , Predictive Value of Tests , Reference Standards , Reproducibility of Results , Tandem Mass Spectrometry/standards , Temozolomide/administration & dosageABSTRACT
Sunitinib is a multi-targeted tyrosine kinase inhibitor approved for the treatment of renal cell carcinoma and imatinib-resistant gastrointestinal stromal tumor and is currently being investigated against other forms of malignant tumors. Recently great interest has emerged for the application of sunitinib to glioblastoma treatment. In order to have a method with broad applicability it will be of importance to have access to a method that could be applied both in human plasma and cell uptake studies. No method has been reported thus far for the estimation of sunitinib uptake in glioma cells. We therefore set out to develop a method that could be applied for quantifying sunitinib in human plasma and in cell uptake studies. The method was validated and accredited according to ISO 17025:2005 guideline in human plasma and successfully applied to cancer patient plasma. Also, the method was effectively recruited to establish a protocol for the evaluation of sunitinib accumulation into M095K glioma cells. This method could significantly contribute to developmental phases in repurposing this drug in different cancer types.
Subject(s)
Antineoplastic Agents/analysis , Carcinoma, Renal Cell/blood , Drug Evaluation, Preclinical/methods , Glioblastoma/drug therapy , Kidney Neoplasms/blood , Protein Kinase Inhibitors/analysis , Sunitinib/analysis , Administration, Oral , Adult , Antineoplastic Agents/blood , Antineoplastic Agents/therapeutic use , Carcinoma, Renal Cell/drug therapy , Cell Line, Tumor , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Drug Repositioning , Healthy Volunteers , Humans , Kidney Neoplasms/drug therapy , Protein Kinase Inhibitors/blood , Protein Kinase Inhibitors/therapeutic use , Sunitinib/blood , Sunitinib/therapeutic use , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/methodsABSTRACT
The alkylating agent temozolomide (TMZ) is the first-line chemotherapeutic for glioblastoma (GBM), a common and aggressive primary brain tumor in adults. However, its poor stability and unfavorable pharmacokinetic profile limit its clinical efficacy. There is an unmet need to tailor the therapeutic window of TMZ, either through complex derivatization or by utilizing pharmaceutical excipients. To enhance stability and aqueous solubility, we encapsulated TMZ in a p-sulphonatocalix[4]arene (Calix) nanocapsule and used 1H-NMR, LC-MS, and UV-Vis spectroscopy to chart the stability of this novel TMZ@Calix complex according to FDA and European Medicines Agency guidelines. LC-MS/MS plasma stability assays were conducted in mice to further explore the stability profile of TMZ@Calix in vivo The therapeutic efficacy of TMZ@Calix was compared with that of unbound TMZ in GBM cell lines and patient-derived primary cells with known O6-methylguanine-DNA methyltransferase (MGMT) expression status and in vivo in an intracranial U87 xenograft mouse model. Encapsulation significantly enhanced the stability of TMZ in all conditions tested. TMZ@Calix was more potent than native TMZ at inhibiting the growth of established GBM cell lines and patient-derived primary lines expressing MGMT and highly resistant to TMZ. In vivo, native TMZ was rapidly degraded in mouse plasma, whereas the stability of TMZ@Calix was enhanced threefold with increased therapeutic efficacy in an orthotopic model. In the absence of new effective therapies, this novel formulation is of clinical importance, serving as an inexpensive and highly efficient treatment that could be made readily available to patients with GBM and warrants further preclinical and clinical evaluation.
Subject(s)
Brain Neoplasms/drug therapy , Calixarenes/chemistry , Glioblastoma/drug therapy , Nanocapsules/chemistry , Temozolomide/therapeutic use , Xenograft Model Antitumor Assays/methods , Animals , Antineoplastic Agents, Alkylating/chemistry , Antineoplastic Agents, Alkylating/pharmacokinetics , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Compounding , Drug Stability , Female , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice, Inbred C57BL , Mice, Nude , Temozolomide/chemistry , Temozolomide/pharmacokineticsABSTRACT
Cardiovascular diseases (CVDs) are becoming major contributors to the burden of disease due to genetic and environmental factors. Despite current standard oral care, cardiovascular risk remains relatively high. A triple antiplatelet therapy with a cyclooxygenase-1 (COX-1) inhibitor, a P2Y12 receptor antagonist, and a protease-activated receptor-1 (PAR-1) antagonist has been established in the secondary prevention of atherothrombosis in patients with acute myocardial infraction and in those with peripheral artery disease. However, due to the combinatorial use of three different drugs, patients receiving this triple therapy are exposed to enhanced risk of bleeding. Conforming to polypharmacology principles, the discovery of a single compound that can simultaneously block the three platelet activation pathways (PAR-1, P2Y12, and COX-1) is of importance. Natural products have served as an inexhaustible source of bioactive compounds presenting a diverse pharmaceutical profile, including anti-inflammatory, antioxidant, anticancer, and antithrombotic activity. Indeed, principal component analysis indicated that natural products have the potential to inhibit the three aforementioned pathways, though existed reports refer to single inhibition mechanism on specific receptor(s) implicated in platelet activation. We thus set out to explore possibilities that take advantage of this potential of natural products and shape the basis to produce novel compounds that could simultaneously target PAR-1, P2Y12, and COX-1 platelet activation pathways. Polyunsaturated fatty acids (PUFAs) have multiple effects leading to improvements in blood pressure and cardiac function and arterial compliance. A promising approach to achieve the desirable goal is the bioconjugation of natural products with PUFAs. Herein, we describe the principles that should be followed to develop molecular hybrids bearing triple antiplatelet activity profile.