Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters

Publication year range
1.
J Appl Clin Med Phys ; 25(2): e14263, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38268200

ABSTRACT

BACKGROUND: Surface-guided radiation therapy (SGRT) systems have been widely installed and utilized on linear accelerators. However, the use of SGRT with proton therapy is still a newly developing field, and published reports are currently very limited. PURPOSE: To assess the clinical application and alignment agreement of SGRT with CT-on-rails (CTOR) and kV-2D image-guided radiation therapy (IGRT) for breast treatment using proton therapy. METHODS: Four patients receiving breast or chest wall treatment with proton therapy were the subjects of this study. Patient #1's IGRT modalities were a combination of kV-2D and CTOR. CTOR was the only imaging modality for patients #2 and #3, and kV-2D was the only imaging modality for patient #4. The patients' respiratory motions were assessed using a 2-min surface position recorded by the SGRT system during treatment. SGRT offsets reported after IGRT shifts were recorded for each fraction of treatment. The agreement between SGRT and either kV-2D or CTOR was evaluated. RESULTS: The respiratory motion amplitude was <4 mm in translation and <2.0° in rotation for all patients. The mean and maximum amplitude of SGRT offsets after application of IGRT shifts were ≤(2.6 mm, 1.6° ) and (6.8 mm, 4.5° ) relative to kV-2D-based IGRT; ≤(3.0 mm, 2.6° ) and (5.0 mm, 4.7° ) relative to CTOR-based IGRT without breast tissue inflammation. For patient #3, breast inflammation was observed for the last three fractions of treatment, and the maximum SGRT offsets post CTOR shifts were up to (14.0 mm, 5.2° ). CONCLUSIONS: Due to the overall agreement between SGRT and IGRT within reasonable tolerance, SGRT has the potential to serve as a valuable auxiliary IGRT tool for proton breast treatment and may improve the efficiency of proton breast treatment.


Subject(s)
Radiotherapy, Image-Guided , Thoracic Wall , Humans , Radiotherapy, Image-Guided/methods , Protons , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed , Inflammation
2.
J Appl Clin Med Phys ; 24(5): e13900, 2023 May.
Article in English | MEDLINE | ID: mdl-36625438

ABSTRACT

An important source of uncertainty in proton therapy treatment planning is the assignment of stopping-power ratio (SPR) from CT data. A commercial product is now available that creates an SPR map directly from dual-energy CT (DECT). This paper investigates the use of this new product in proton treatment planning and compares the results to the current method of assigning SPR based on a single-energy CT (SECT). Two tissue surrogate phantoms were CT scanned using both techniques. The SPRs derived from single-energy CT and by DirectSPR™ were compared to measured values. SECT-based values agreed with measurements within 4% except for low density lung and high density bone, which differed by 13% and 8%, respectively. DirectSPR™ values were within 2% of measured values for all tissues studied. Both methods were also applied to scanned containers of three types of animal tissue, and the expected range of protons of two different energies was calculated in the treatment planning system and compared to the range measured using a multi-layer ion chamber. The average difference between range measurements and calculations based on SPR maps from dual- and single-energy CT, respectively, was 0.1 mm (0.07%) versus 2.2 mm (1.5%). Finally, a phantom was created using a layer of various tissue surrogate plugs on top of a 2D ion chamber array. Dose measurements on this array were compared to predictions using both single- and dual-energy CTs and SPR maps. While standard gamma pass rates for predictions based on DECT-derived SPR maps were slightly higher than those based on single-energy CT, the differences were generally modest for this measurement setup. This study showed that SPR maps created by the commercial product from dual-energy CT can successfully be used in RayStation to generate proton dose distributions and that these predictions agree well with measurements.


Subject(s)
Proton Therapy , Protons , Animals , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Software , Radiotherapy Planning, Computer-Assisted/methods
3.
J Appl Clin Med Phys ; 24(5): e13957, 2023 May.
Article in English | MEDLINE | ID: mdl-37043346

ABSTRACT

PURPOSE: To characterize potential dose to the fetus for all modes of delivery (dynamic adaptive aperture, static adaptive aperture, and no adaptive aperture) for the Mevion S250i Proton Therapy System with HYPERSCAN and compare the findings with those of other available proton systems. MATERIALS AND METHODS: Fetal dose measurements were performed for all three modes of dose delivery on the Mevion S250i Proton therapy system with HYPERSCAN (static aperture, dynamic aperture and uncollimated). Standard treatment plans were created in RayStation for a left-sided brain lesion treated with a vertex field, a left lateral field, and a posterior field. Measurements were performed using WENDI and the RANDO with the detector placed at representative locations to mimic the growth and movement of the fetus at different gestational stages. RESULTS: The fetal dose measurements varied with fetus position and the largest measured dose was 64.7 µSv per 2 Gy (RBE) fraction using the dynamic aperture. The smallest estimated fetal dose was 45.0 µSv per 2 Gy (RBE) at the base of the RANDO abdomen (47 cm from isocenter to the outer width of WENDI and 58.5 cm from the center of the WENDI detector) for the static aperture delivery. The vertex fields at all depths had larger contributions to the total dose than the other two and the dynamic aperture plans resulted in the highest dose measured for all depths. CONCLUSION: The reported doses are lower than reported doses using a double-scattering system. This work suggests that avoiding vertex fields and using the static aperture will help minimize dose to the fetus.


Subject(s)
Proton Therapy , Humans , Pregnancy , Female , Proton Therapy/methods , Radiotherapy Dosage , Protons , Fetus , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods
4.
J Appl Clin Med Phys ; 21(8): 83-91, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32583912

ABSTRACT

PURPOSE: To apply failure mode and effect analysis (FMEA) to generate an effective and efficient initial physics plan checklist. METHODS: A team of physicists, dosimetrists, and therapists was setup to reconstruct the workflow processes involved in the generation of a treatment plan beginning from simulation. The team then identified possible failure modes in each of the processes. For each failure mode, the severity (S), frequency of occurrence (O), and the probability of detection (D) was assigned a value and the risk priority number (RPN) was calculated. The values assigned were based on TG 100. Prior to assigning a value, the team discussed the values in the scoring system to minimize randomness in scoring. A local database of errors was used to help guide the scoring of frequency. RESULTS: Twenty-seven process steps and 50 possible failure modes were identified starting from simulation to the final approved plan ready for treatment at the machine. Any failure mode that scored an average RPN value of 20 or greater was deemed "eligible" to be placed on the second checklist. In addition, any failure mode with a severity score value of 4 or greater was also considered for inclusion in the checklist. As a by-product of this procedure, safety improvement methods such as automation and standardization of certain processes (e.g., dose constraint checking, check tools), removal of manual transcription of treatment-related information as well as staff education were implemented, although this was not the team's original objective. Prior to the implementation of the new FMEA-based checklist, an in-service for all the second checkers was organized to ensure further standardization of the process. CONCLUSION: The FMEA proved to be a valuable tool for identifying vulnerabilities in our workflow and processes in generating a treatment plan and subsequently a new, more effective initial plan checklist was created.


Subject(s)
Healthcare Failure Mode and Effect Analysis , Automation , Checklist , Humans , Radiotherapy Planning, Computer-Assisted , Risk Assessment , Workflow
5.
J Appl Clin Med Phys ; 20(3): 125-131, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30851087

ABSTRACT

PURPOSE: Two new tools available in Radiation Oncology clinics are Dual-energy CT (DECT) and Siemens' DirectDensity™ (DD) reconstruction algorithm, which allows scans of any kV setting to use the same calibration. This study demonstrates why DD scans should not be used in combination with DECT and quantifies the magnitude of potential errors in image quality and dose. METHODS: A CatPhan 504 phantom was scanned with a dual-pass DECT and reconstructed with many different kernels, including several DD kernels. The HU values of various inserts were measured. The RANDO® man phantom was also scanned. Bone was contoured and then histograms of the bone HU values were analyzed for Filtered-Backprojection (FBP) and DD reconstructions of the 80 and 140 kV scans, as well as several virtual, monoenergetic reconstructions generated from FBP and DD reconstructions. "Standard" dose distributions were calculated on several reconstructions of both phantoms for comparison. RESULTS: The DD kernel overcorrected the high-Z material inserts relative to bone, giving an excessively low relative electron density (RED). A unique artifact was observed in the high density inserts of the CatPhan in the monoenergetic scans when utilizing a DD kernel, due to the overcorrection in the DD scan of the material, especially at lower kV. CONCLUSIONS: While DD and DECT perform as expected when used independently, errors from their combined use were demonstrated. Dose errors from misuse of the DD kernel with DECT post-processing were as large as 2.5%. The DECT post-processing was without value because the HU differences between low and high energy were removed by the DD kernel. When using DD and DECT, we recommend the use of a DD reconstruction of the high energy scan for the dose calculation, and use of a FBP filter for the low and high energy scans for the DECT post-processing.


Subject(s)
Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Radiation Oncology , Radiography, Dual-Energy Scanned Projection/methods , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Algorithms , Humans , Radiotherapy Dosage
6.
Brachytherapy ; 22(1): 93-100, 2023.
Article in English | MEDLINE | ID: mdl-36266202

ABSTRACT

PURPOSE: The lunar design of a Venezia ovoid makes commissioning of the applicator very challenging with traditional autoradiography. In this study, we propose a novel solution to ovoid commissioning and a quality assurance (QA) workflow to effectively assess the entire source path. METHODS AND MATERIALS: A two-step commissioning process, using electron radiation and radiochromic films, was developed to verify the most distal source position. The ovoid was first attached to a film and was irradiated with a 12 MeV linac beam. This process was repeated on a separate, unexposed film, followed by irradiating it with a HDR source at the most distal position. Two lengths, including the ovoid thickness and the distance between the irradiated spot and the ovoid's outer surface, were obtained from the films' intensity maps. The offset value was calculated from the subtraction of the two measured lengths. Besides acquiring the offset, a source positional simulator (SPS) and a series of planar x-rays from two orthogonal orientations were used to characterize source movement within the ovoid. RESULTS: Compared to x-ray-based autoradiography, the electron exposure significantly improved the ovoid's visibility on film. Our approach did not use surrogate, which further improved measurement outcomes by decreasing inherent uncertainties. The SPS results suggested the source movement was complex within the cervicovaginal area, but it was predictable with the proposed QA workflow. CONCLUSION: We introduced a novel, surrogate-free method to commission the Venezia ovoid, which facilitated a manual applicator reconstruction. Additionally, we recommended QA multiple source positions to safely use the ovoid in clinical settings.


Subject(s)
Brachytherapy , Humans , Brachytherapy/methods , Radiotherapy Dosage , Radiography , X-Rays , Phantoms, Imaging
7.
Med Phys ; 50(10): 5978-5986, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37683108

ABSTRACT

BACKGROUND: It has been shown that a significant reduction of mean heart dose and left anterior descending artery (LAD) dose can be achieved through the use of DIBH for left breast radiation therapy. Surface-guided DIBH has been widely adopted during the last decade, and there are mainly three commercially available SGRT systems. The reports of the performance of a newly released SGRT system for DIBH application are currently very limited. PURPOSE: To evaluate the clinical performance of a newly released SGRT system on DIBH for left breast radiation therapy. METHODS: Twenty-five left breast cancer patients treated with DIBH utilizing Varian's Identify system were included (total 493-fraction treatments). Four aspects of the clinical performance were evaluated: Identify offsets of free breathing post patient setup from tattoos, Identify offsets during DIBH, Identify agreement with radiographic ports during DIBH, and DIBH reference surface re-capture post patient shifts. The systematic and random errors of free breathing Identify offsets post patient setup were calculated for each patient, as well as for offsets during DIBH. Radiographic ports were taken when the patient's DIBH position was within the clinical tolerance of (± 0.3 cm, ± 30 ), and these were then compared with treatment field DRRs. If the ports showed that the patient alignment did not agree with the DRRs within 3 mm, a patient shift was performed. A new reference surface was captured and verification ports were taken. RESULTS: The all-patient average systematic and random errors of Identify offsets for free breathing were within (0.4 cm, 1.50 ) post tattoo setup. The maximum per-patient systematic and random errors were (1.1 cm, 6.20 ) and (0.9 cm, 20 ), and the maximum amplitude of Identify offsets were (2.59 cm, 90 ). All 493-fraction DIBH treatments were delivered and successfully guided by the Identify SGRT system. The systematic and random errors of Identify offsets for DIBH were within (0.2 cm, 2.30 ). Seven patients needed re-captured surface references due to surface variation or position shifts based on the ports. All patient DIBH verification ports guided by Identify were approved by attending physicians. CONCLUSION: This evaluation showed that the Identify system performed effectively for surface-guided patient setup and surface-guided DIBH imaging and treatment delivery. The feature of color-coded real-time patient surface matching feedback facilitated the evaluation of the patient alignment accuracy and the adjustment of the patient position to match the reference.


Subject(s)
Breast Neoplasms , Radiotherapy, Image-Guided , Humans , Female , Breath Holding , Radiotherapy Planning, Computer-Assisted/methods , Respiration , Radiotherapy, Image-Guided/methods , Heart , Radiotherapy Dosage , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy
8.
Phys Med ; 114: 103146, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37778208

ABSTRACT

PURPOSE: To evaluate and characterize the overall clinical functionality and workflow of the newly released Varian Identify system (version 2.3). METHODS: Three technologies included in the Varian Identify system were evaluated: patient biometric authentication, treatment accessory device identification, and surface-guided radiation therapy (SGRT) function. Biometric authentication employs a palm vein reader. Treatment accessory device verification utilizes two technologies: device presence via Radio Frequency Identification (RFID) and position via optical markers. Surface-guidance was evaluated on both patient orthopedic setup at loading position and surface matching and tracking at treatment isocenter. A phantom evaluation of the consistency and accuracy for Identify SGRT function was performed, including a system consistency test, a translational shift and rotational accuracy test, a pitch and roll accuracy test, a continuous recording test, and an SGRT vs Cone-Beam CT (CBCT) agreement test. RESULTS: 201 patient authentications were verified successfully with palm reader. All patient treatment devices were successfully verified for their presences and positions (indexable devices). The patient real-time orthopedic pose was successfully adjusted to match the reference surface captured at simulation. SGRT-reported shift consistency against couch readout was within (0.1 mm, 0.030). The shift accuracy was within (0.3 mm, 0.10). In continuous recording mode, the maximum variation was 0.2 ± 0.12 mm, 0.030 ± 0.020. The difference between Identify SGRT offset and CBCT was within (1 mm, 10). CONCLUSIONS: This clinical evaluation confirms that Identify accurately functions for patient palm identification and patient treatment device presence and position verification. Overall SGRT consistency and accuracy was within (1 mm, 10), within the 2 mm criteria of AAPM TG302.


Subject(s)
Radiotherapy, Image-Guided , Humans , Radiotherapy, Image-Guided/methods , Cone-Beam Computed Tomography/methods , Phantoms, Imaging , Computer Simulation , Biometry , Radiotherapy Planning, Computer-Assisted/methods
9.
Brachytherapy ; 21(4): 511-519, 2022.
Article in English | MEDLINE | ID: mdl-35256286

ABSTRACT

PURPOSE: Commission and treatment setup of Leipzig surface applicators, because of the steep dose gradient and lack of robust immobilization, is challenging. We aim to improve commissioning reliability by investigating the impact of detector choice on percentage depth dose (PDD) verifications, and to enhance accuracy and reproducibility in calibration/treatment setup through a simple and novel immobilization device. METHODS AND MATERIALS: PDD distributions were measured with radiochromic films, optically stimulated luminescent dosimeters (OSLDs), a diode detector, and both cylindrical and parallel plate ionization chambers. The films were aligned to the applicators in parallel and transverse orientations. PDD data from a benchmarking Monte Carlo (MC) study were compared with the measured results, where surface doses were acquired from extrapolation. To improve setup accuracy and reproducibility, a custom-designed immobilization prototype device was made with cost-effective materials using a 3D printer. RESULTS: The measured PDD data with different detectors had an overall good agreement (<±10%). The parallel plate ionization chamber reported unreliable doses for the smallest applicator. There was no remarkable dose difference between the two film setups. The two-in-one prototype device provided a rigid immobilization and a flexible positioning of the applicator. It enhanced accuracy and reproducibility in calibration and treatment setup. CONCLUSION: We recommend using radiochromic films in the transverse orientation for a reliable and efficient PDD verification. The applicator's clinical applicability has been limited by a lack of robust immobilization. We expect this economical, easy-to-use prototype device can promote the use of Leipzig applicators in surface brachytherapy.


Subject(s)
Brachytherapy , Brachytherapy/methods , Humans , Monte Carlo Method , Radiometry/methods , Radiotherapy Dosage , Reproducibility of Results
10.
Cureus ; 14(8): e28644, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36196310

ABSTRACT

PURPOSE: In this study, patient setup accuracy was compared between surface guidance and tattoo markers for radiation therapy treatment sites of the thorax, abdomen and pelvis. METHODS AND MATERIALS: A total of 608 setups performed on 59 patients using both surface-guided and tattoo-based patient setups were analyzed. During treatment setup, patients were aligned to room lasers using their tattoos, and then the six-degree-of-freedom (6DOF) surface-guided offsets were calculated and recorded using AlignRT system. While the patient remained in the same post-tattoo setup position, target localization imaging (radiographic or ultrasound) was performed and these image-guided shifts were recorded. Finally, surface-guided vs tattoo-based offsets were compared to the final treatment position (based on radiographic or ultrasound imaging) to evaluate the accuracy of the two setup methods. RESULTS: The overall average offsets of tattoo-based and surface-guidance-based patient setups were comparable within 3.2 mm in three principal directions, with offsets from tattoo-based setups being slightly less. The maximum offset for tattoo setups was 2.2 cm vs. 4.3 cm for surface-guidance setups. Larger offsets (ranging from 2.0 to 4.3 cm) were observed for surface-guided setups in 14/608 setups (2.3%). For these same cases, the maximum observed tattoo-based offset was 0.7 cm. Of the cases with larger surface-guided offsets, 13/14 were for abdominal/pelvic treatment sites. Additionally, larger rotations (>3°) were recorded in 18.6% of surface-guided setups. The majority of these larger rotations were observed for abdominal and pelvic sites (~84%). CONCLUSIONS: The small average differences observed between tattoo-based and surface-guidance-based patient setups confirm the general equivalence of the two potential methods, and the feasibility of tattoo-less patient setup. However, a significant number of larger surface-guided offsets (translational and rotational) were observed, especially in the abdominal and pelvic regions. These cases should be anticipated and contingency setup methods planned for.

11.
Neurooncol Pract ; 9(5): 380-389, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36134015

ABSTRACT

Background: A post-operative MRI (MRIpost-op) performed within 72 h is routinely used for radiation treatment planning in glioblastoma (GBM) patients, with radiotherapy starting about 4-6 weeks after surgery. Some patients undergo an additional pre-radiotherapy MRI (MRIpre-RT) about 2-6 weeks after surgery. We sought to analyze the incidence of rapid early progression (REP) between surgery and initiation of radiotherapy seen on MRIpre-RT and the impact on radiation target volumes. Methods: Patients with GBM diagnosed between 2018 and 2020 who had an MRIpost-op and MRIpre-RT were retrospectively identified. Criteria for REP was based on Modified RANO criteria. Radiation target volumes were created and compared using the MRIpost-op and MRIpre-RT. Results: Fifty patients met inclusion criteria. The median time between MRIpost-op and MRIpre-RT was 26 days. Indications for MRIpre-RT included clinical trial enrollment in 41/50 (82%), new symptoms in 5/50 (10%), and unspecified in 4/50 (8%). REP was identified in 35/50 (70%) of patients; 9/35 (26%) had disease progression outside of the MRIpost-op-based high dose treatment volumes. Treatment planning with MRIpost-op yielded a median undertreatment of 27.1% of enhancing disease and 11.2% of surrounding subclinical disease seen on MRIpre-RT. Patients without REP had a 38% median volume reduction of uninvolved brain if target volumes were planned with MRIpre-RT. Conclusion: Given the incidence of REP and its impact on treatment volumes, we recommend using MRIpre-RT for radiation treatment planning to improve coverage of gross and subclinical disease, allow for early identification of REP, and decrease radiation treatment volumes in patients without REP.

12.
Pract Radiat Oncol ; 11(2): e229-e235, 2021.
Article in English | MEDLINE | ID: mdl-32919040

ABSTRACT

PURPOSE: To evaluate the impact of Varian Identify, a novel combined radiofrequency identification, biometric and surface-matching technology, on its potential for patient safety and prevention of radiation therapy treatment deviations. METHODS AND MATERIALS: One hundred eight radiation therapy treatment deviation reports at our facility over the past 8 years were analyzed. Three major categories were defined based on the time point of occurrence: physician order deviations (19.4%), treatment-planning deviations (24.1%), and machine treatment deviations (56.5%). The impact of Identify on potential prevention of machine treatment deviations was analyzed. A failure mode and effects analysis was performed on the 5 most frequently occurring errors preventable with Identify. Safety analysis of the Identify system was reported based on 3.5 years of clinical data post-Identify system installation on 3 treatment vaults. RESULTS: Of the 61 machine treatment deviations, 47 (77%) were interpreted as being preventable by using Identify. Our failure mode and effects analysis showed reductions in all risk priority numbers post-Identify application. Safety analysis of the Identify system from our direct observation that for approximately 7 cumulative years of Identify use in 3 different treatment vaults, where 9 deviations would have been expected to occur over this combined period, zero machine treatment events occurred. CONCLUSIONS: The combination of Identify biometric, radiofrequency identification, and surface-matching technologies was observed to enable an effective process for enhancing safety and efficiency of radiation therapy treatment. A significant reduction in machine-related deviations was observed.


Subject(s)
Biometric Identification , Radiotherapy Planning, Computer-Assisted , Humans , Patient Safety
13.
Brachytherapy ; 19(2): 241-248, 2020.
Article in English | MEDLINE | ID: mdl-32070643

ABSTRACT

PURPOSE: To utilize failure mode and effects analysis (FMEA) to effectively direct the transition from the Elekta microSelectron to the Flexitron high dose-rate afterloader system. MATERIALS AND METHODS: Our FMEA was performed in two stages. In the first stage, the lead brachytherapy physicists used FMEA to guide the brainstorming sessions and to identify vulnerabilities during this transition. The second stage of FMEA was carried out 2 months after the clinical release of the Flexitron system. The process map was examined again to further refine and improve the entire process. RESULTS: In the first-stage FMEA, 81 process steps were identified. Moreover, 80 failure modes and their categorized causes were recognized. Checklists and data books containing the corresponding applicator information were verified and updated. Next, based on outcomes of our first-stage FMEA, we chose to implement the commissioning process in two phases. The second stage of FMEA identified error-prone steps in our newly updated processes. This second stage of analysis resulted in the development of new tools and checklist items. CONCLUSIONS: The two-stage FMEA approach successfully directed the transition to the Flexitron system by identifying the necessary changes in the checklists and workflows for all applicators utilized in our clinic. It also led to the decision to use a two-phase commissioning approach. This allowed for minimization clinical downtime, avoidance of an extra source change, and facilitation of efficient staff training. Additionally, multiple project-level failures were discovered. Our experience and outcomes from this FMEA-guided transition should provide valuable information to the brachytherapy community.


Subject(s)
Brachytherapy/instrumentation , Healthcare Failure Mode and Effect Analysis , Checklist , Humans , Radiology/organization & administration , Workflow
14.
Phys Med ; 80: 335-341, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33249394

ABSTRACT

PURPOSE: This work investigated effects of implementing the Delta4 Discover diode transmission detector into the clinical workflow. METHODS: PDD and profile scans were completed with and without the Discover for a number of photon beam energies. Transmission factors were determined for all beam energies and included in Eclipse TPS to account for the attenuation of the Discover. A variety of IMRT plans were delivered to a Delta4 Phantom+ with and without the Discover to evaluate the Discover's effects on IMRT QA. An imaging QA phantom was used to assess the detector's effects on MV image quality. OSLDs placed on the Phantom+ were used to determine the detector's effects on superficial dose. RESULTS: The largest effect on PDDs after dmax was 0.5%. The largest change in beam profile symmetry and flatness was 0.2% and 0.1%, respectively. An average difference in gamma passing rates (2%/2 mm) of 0.2% was observed between plans that did not include the Discover in the measurement and calculation to plans that did include the Discover in the measurement and calculation. The Discover did not significantly change the MV image quality, and the largest observed increase in the relative superficial dose when the Discover was present was 1%. CONCLUSIONS: The effects the Discover has on the linac beam were found to be minimal. The device can be implemented into the clinic without the need to alter the TPS beam modeling, other than accounting for the device's attenuation. However, a careful workflow review to implement the Discover should be completed.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Particle Accelerators , Phantoms, Imaging , Quality Assurance, Health Care , Radiometry , Radiotherapy Dosage , Workflow
15.
J Radiother Pract ; 8: 185-194, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-20376282

ABSTRACT

Adaptive radiation therapy is a promising concept that allows individualised, dynamic treatment planning based on feedback of measurements. The TomoTherapy Planned Adaptive application, integrated to the helical TomoTherapy planning system, enables calculation of actual dose delivered to the patient for each treatment fraction according to the pretreatment megavoltage computed tomography (MVCT) scan and image registration. As a result, new fractionation treatment plans are available if correction is necessary. In order to evaluate therealclinicaleffect,biologicaldoseis preferred to physical dose. A biological parameter, biologically effective uniform dose ([Formula: see text]), has the advantages of not only reporting delivered dose but also facilitating the analysis of dose-response relations, which link radiation dose to the clinical effect. Therefore, in this study, four lung patients' adaptive plans were evaluated using the [Formula: see text] in addition to physical doses estimated from the TomoTherapy Planned Adaptive module. Higher complication-free tumour control probability (P(+))(of about 8%) was observed in patients treated with larger dose-per-fraction by using the [Formula: see text] in addition to the physical dose. Moreover, a significant increase of 13.2% in the P(+) for the adaptive TomoTherapy plan in one of the lung cancer patients was also observed, which indicates the clinical benefit of adaptive TomoTherapy.

16.
Technol Cancer Res Treat ; 7(4): 287-93, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18642967

ABSTRACT

During helical tomotherapy, gantry angle accuracy is one of the vital geometric factors that assure accurate dose delivery to the target and organs at risk adjacent to it. The purpose of this study is to investigate the dosimetric impact of gantry angle misalignment on the target volume and critical organs during helical tomotherapy treatment. Five prostate cases were chosen to calculate the effects of gantry angle deviations on both patient-specific delivery quality assurance (DQA) and helical tomotherapy treatment plans. For DQA plans, the cheese phantom was rotated for up to +/-5 degrees from the preset position to simulate the gantry angle deviations during tomotherapy. Point doses at 5 mm below the isocenter and the dose distribution for each gantry angle were measured and reconstructed, respectively. For helical tomotherapy treatment plans, the same gantry misalignment effect was simulated by adjusting the automatic roll correction for up to +/-5 degrees using Planned Adaptive software. Variations of dose volume histograms (DVHs) and isodose lines were evaluated for both target and critical organs. There was no significant difference found, however, among the point dose measurements for gantry rotation up to +/-5 degrees in DQA plans. Shifts of isodose lines could be observed for gantry rotations larger than +/-27 degrees. Dosimetric discrepancies (less than 2%) were also found among DVHs of the PTV in the cases when gantry angle misalignment was larger than +/-2 degrees. However, for DVHs of either bladder or rectum under different gantry rotations, no significant differences were detected when gantry angle errors were up to +/-5 degrees. In summary, point dose measurements alone cannot reveal the dosimetric deviation due to gantry angle misalignment in DQA plans. For a 5 degrees gantry deviation, the dose to PTV increased by 0.5% comparing to the planned dose. The influence on organs at risk, i.e., rectum and bladder, is also negligible. Further studies are needed on the dosimetric impacts of gantry angle deviations for other treatment sites.


Subject(s)
Prostatic Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy/instrumentation , Calibration , Dose-Response Relationship, Radiation , Equipment Design , Humans , Male , Movement , Prostatic Neoplasms/therapy , Quality Control , Radiotherapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Software , Treatment Outcome
17.
Appl Radiat Isot ; 66(3): 389-94, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18023587

ABSTRACT

The GAFCHROMIC EBT film model is a fairly new film product designed for absorbed dose measurements of high-energy photon beams. In vivo dosimetry for total body irradiation (TBI) remains a challenging task due to the extended source-to-surface distance (SSD), low dose rates, and the use of beam spoilers. EBT film samples were used for dose measurements on an anthropomorphic phantom using a TBI setup. Additionally, in vivo measurements were obtained for two TBI patients. Phantom results verified the suitability of the EBT film for TBI treatment in terms of accuracy, reproducibility, and dose linearity. Doses measured were compared to conventional dosimeter measurements using thermoluminescent dosimeters (TLDs), resulting in an agreement of 4.1% and 6.7% for the phantom and patient measurements, respectively. Results obtained from the phantom and patients confirm that GAFCHROMIC EBT films are a suitable alternative to TLDs as an in vivo dosimeter in TBI radiotherapy.


Subject(s)
Film Dosimetry/methods , Whole-Body Irradiation/methods , Film Dosimetry/standards , Humans , Radiation Oncology/methods , Reproducibility of Results , Thermoluminescent Dosimetry/methods
18.
J Gastrointest Oncol ; 9(6): 989-995, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30603117

ABSTRACT

BACKGROUND: Stereotactic body radiation therapy (SBRT) treatments of pancreatic cancer typically employ relatively small margins. This study characterizes the motion of high visibility structures in close proximity to the pancreas to determine how much the motion envelope of such a structure changes due to respiratory variation between fractions. METHODS: Fanbeam, four-dimensional computed tomography (4DCT) studies acquired initially for planning and again prior to each treatment for 6 patients were used to fully characterize the change in motion of high-contrast structures in close proximity to the pancreas. RESULTS: Three of the six patients investigated had structures that showed a change in motion over the course of treatment that would not have been covered when using the typical 3 mm planning target volume (PTV) margins. For most of these large changes in motion envelope, a 4 mm uniform PTV margin would have allowed for coverage of the tumor. CONCLUSIONS: Half of the patients showed a change in motion envelope greater than would be covered by the commonly used PTV margins in pancreas SBRT. This shows that the impact of small margins must be very carefully considered during the planning process.

19.
Brachytherapy ; 17(6): 956-965, 2018.
Article in English | MEDLINE | ID: mdl-30236908

ABSTRACT

PURPOSE: To propose a workflow that uses ultrasound (US)-measured skin-balloon distances and virtual structure creations in the treatment planning system to evaluate the maximum skin dose for patients treated with Contura Multi-Lumen Balloon applicators. METHODS AND MATERIALS: Twenty-three patients were analyzed in this study. CT and US were used to investigate the interfractional skin-balloon distance variations. Virtual structures were created on the planning CT to predict the maximum skin doses. Fitted curves and its equation can be obtained from the skin-balloon distance vs. maximum skin dose plot using virtual structure information. The fidelity of US-measured skin distance and the skin dose prediction using virtual structures were assessed. RESULTS: The differences between CT- and US-measured skin-balloon distances values had an average of -0.5 ± 1.1 mm (95% confidence interval [CI] = -1.0 to 0.1 mm). Using virtual structure created on CT, the average difference between the predicted and the actual dose overlay maximum skin dose was -1.7% (95% CI = -3.0 to -0.4%). Furthermore, when applying the US-measured skin distance values in the virtual structure trendline equation, the differences between predicted and actual maximum skin dose had an average of 0.7 ± 6.4% (95% CI = -2.3% to 3.7%). CONCLUSIONS: It is possible to use US to observe interfraction skin-balloon distance variation to replace CT acquisition. With the proposed workflow, based on the creation of virtual structures defined on the planning CT- and US-measured skin-balloon distances, the maximum skin doses can be reasonably estimated.


Subject(s)
Brachytherapy/methods , Breast Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Ultrasonography, Mammary/methods , Breast/radiation effects , Catheters , Female , Humans , Radiometry/methods , Radiotherapy Dosage , Skin/radiation effects
20.
J Radiosurg SBRT ; 5(4): 323-330, 2018.
Article in English | MEDLINE | ID: mdl-30538893

ABSTRACT

Treatment of intra-cranial lesions sometimes requires a non-coplanar beam configuration. One of the most commonly used IGRT modalities, kV conebeam CT, cannot typically be used when large couch rotations are introduced. However, multiple other systems allow for imaging/tracking the patient for such situations. This work compares shift consistency from three independent systems, namely Varian's Advanced Imaging, Brainlab's Exactrac and Varian's OSMS, all installed on the same linear accelerator. After a phantom was first positioned using conebeam CT, the three systems were used to determine shifts at different couch positions. This was done with and without intentional shifts inserted in the original phantom position. Results show that the difference in shifts between the three systems was never more than 0.7 mm (average of 0.2 mm, standard deviation of 0.2 mm). These results confirm that all three systems are equivalent to within 1 mm and may potentially be uses interchangeably, especially in cases where the PTV margin is on the order of 1 mm.

SELECTION OF CITATIONS
SEARCH DETAIL