Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Inorg Chem ; 63(29): 13738-13747, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38967097

ABSTRACT

Cr4+-activated phosphors are important candidate materials for NIR-II light sources, but providing a suitable lattice coordination environment for Cr4+ and achieving long wavelength broadband emission remains a challenge. In this work, a series of Cr4+-activated ABO2 (A = Li, Na; B = Al, Ga) phosphors were successfully prepared. Due to the presence of only tetrahedral coordination structures available for Cr4+ to occupy in the matrix crystal ABO2, the valence state and luminescence stability of Cr4+ are effectively guaranteed. Through the cation substitution design of A-site (Na → Li) and B-site (Ga → Al), the [BO4] tetrahedron is distorted and expanded, which degrades the symmetry of the Cr4+ coordination crystal field. Consequently, the central wavelength of the Cr4+ emission peak is tuned from 1280 to 1430 nm, and the fwhm is significantly extended from 257 to 355 nm. Thebroadband NIR-II light sources constructed with LiAlO2: 0.03Cr4+ and NaGaO2: 0.03Cr4+ phosphors verify their important potential applications in nondestructive testing and biological imaging.

2.
JACS Au ; 4(3): 985-991, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38559740

ABSTRACT

Often, trace impurities in a feed stream will cause failures in industrial applications. The efficient removal of such a trace impurity from industrial steams, however, is a daunting challenge due to the extremely small driving force for mass transfer. The issue lies in an activity-stability dilemma, that is, an ultrafine adsorbent that offers a high exposure of active sites is favorable for capturing species of a low concentration, but free-standing adsorptive species are susceptible to rapidly aggregating in working conditions, thus losing their intrinsic high activity. Confining ultrafine adsorbents in a porous matrix is a feasible solution to address this activity-stability dilemma. We herein demonstrate a proof of concept by encapsulating ZnO nanoclusters into a pure-silica MFI zeolite (ZnO@silicalite-1) for the ultradeep removal of H2S, a critical need in the purification of hydrogen for fuel cells. The Zn species and their interaction with silicalite-1 were thoroughly investigated by a collection of characterization techniques such as HADDF-STEM, UV-visible spectroscopy, DRIFTS, and 1H MAS NMR. The results show that the zeolite offers rich silanol defects, which enable the guest nanoclusters to be highly dispersed and anchored in the silicious matrix. The nanoclusters are present in two forms, Zn(OH)+ and ZnO, depending on the varying degrees of interaction with the silanol defects. The ultrafine nanoclusters exhibit an excellent desulfurization performance in terms of the adsorption rate and utilization. Furthermore, the ZnO@silicalite-1 adsorbents are remarkably stable against sintering at high temperatures, thus maintaining a high activity in multiple adsorption-regeneration cycles. The results demonstrate that the encapsulation of active metal oxide species into zeolite is a promising strategy to develop fast responsive and highly stable adsorbents for the ultradeep removal of trace impurities.

3.
J Hazard Mater ; 471: 134402, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38688216

ABSTRACT

H2S is an extremely noxious impurity generated from nature and chemical industrial processes. High performing H2S adsorbents are required for chemical industry and environmental engineering. Herein, α-, γ-, and δ-MnO2 adsorbents with high sulfur capacity were synthesized through a continuous-flow approach with a microreactor system, achieving much higher efficiency than hydrothermal methods. The relationship between crystal structure and synthesis conditions such as residence time, reaction temperature, concentration of K+ in solution and reactant ratio is discussed. According to the H2S breakthrough tests at 150 °C, continuously prepared α-, γ-, and δ-MnO2 exhibited sulfur capacities of 669.5, 193.8 and 607.6 mg S/g sorbent, respectively, which was at a high level among the reported adsorbents. Such enhanced performance is related to the large surface area and mesopore volume, high reducibility, and a large number of oxygen species with high reactivity and mobility. Manganese sulfide and elemental sulfur were formed after desulfurization, which indicated the reaction consisted of two steps: redox and sulfidation of the sorbents. This study provides an innovative design strategy for the construction of nanomaterials with high H2S adsorption performances.

SELECTION OF CITATIONS
SEARCH DETAIL