Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38622357

ABSTRACT

Pseudouridine is an RNA modification that is widely distributed in both prokaryotes and eukaryotes, and plays a critical role in numerous biological activities. Despite its importance, the precise identification of pseudouridine sites through experimental approaches poses significant challenges, requiring substantial time and resources.Therefore, there is a growing need for computational techniques that can reliably and quickly identify pseudouridine sites from vast amounts of RNA sequencing data. In this study, we propose fuzzy kernel evidence Random Forest (FKeERF) to identify pseudouridine sites. This method is called PseU-FKeERF, which demonstrates high accuracy in identifying pseudouridine sites from RNA sequencing data. The PseU-FKeERF model selected four RNA feature coding schemes with relatively good performance for feature combination, and then input them into the newly proposed FKeERF method for category prediction. FKeERF not only uses fuzzy logic to expand the original feature space, but also combines kernel methods that are easy to interpret in general for category prediction. Both cross-validation tests and independent tests on benchmark datasets have shown that PseU-FKeERF has better predictive performance than several state-of-the-art methods. This new method not only improves the accuracy of pseudouridine site identification, but also provides a certain reference for disease control and related drug development in the future.


Subject(s)
Pseudouridine , Random Forest , Pseudouridine/genetics , RNA/genetics , Base Sequence
2.
J Immunol ; 212(2): 245-257, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38047900

ABSTRACT

CD8 T cells are emerging as important mediators in atherosclerosis and cardiovascular disease (CVD). Immune activation may play a particular role in people with HIV (PWH) who are at an increased risk of CVD, even after controlling for known CVD risk factors. Latent CMV infection is associated with increased CVD risk for both PWH and people without HIV, and human CMV-specific CD4 and CD8 T cells are enriched for an immunosenescent phenotype. We previously showed that CMV coinfection in PWH promotes vascular homing and activation of inflammatory CD4 T cells through the CD2-LFA-3 axis. However, the role of CD2/LFA3 costimulation of CD8 T cells in PWH with CMV has yet to be described. In the present study, we demonstrate that CD2 expression on CX3CR1+CD57+CD28- inflammescent CD8 T cells is increased on cells from CMV-seropositive PWH. In vitro CD2/LFA-3 costimulation enhances TCR-mediated activation of these inflammatory CD8 memory T cells. Finally, we show that LFA-3 is highly expressed in aortas of SIV-infected rhesus macaques and in atherosclerotic plaques of people without HIV. Our findings are consistent with a model in which CMV infection enhances CD2 expression on highly proinflammatory CD8 T cells that can then be stimulated by LFA-3 expressed in the vasculature, even in the absence of CD28 costimulation. This model, in which CMV infection exacerbates toxic cytokine and granzyme production by CD8 T cells within the vasculature, highlights a potential therapeutic target in atherosclerosis development and progression, especially for PWH.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Cytomegalovirus Infections , HIV Infections , Animals , Humans , CD28 Antigens/metabolism , HIV Infections/drug therapy , Cytomegalovirus , CD58 Antigens/metabolism , Macaca mulatta , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , Atherosclerosis/metabolism
3.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38408023

ABSTRACT

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

4.
J Am Chem Soc ; 146(13): 9036-9044, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507821

ABSTRACT

Two-dimensional conductive metal-organic frameworks (2D c-MOFs), which feature high electrical conductivity and large charge carrier mobility, hold great promise in electronics and optoelectronics. Nevertheless, the limited solubility of commonly used planar ligands inevitably brings challenges in synthesis and purification and causes laborious coordination conditions for screening. Moreover, most reported 2D c-MOFs are polycrystalline powders with relatively low crystallinity and irregular morphology, hindering the unveiling of the detailed structure-function relationship. Herein, we developed a "rotor-stator" molecular design strategy to construct 2D c-MOFs using a delicately designed nonplanar biscarbazole ligand (8OH-DCB). Benefiting from the special "rotor-stator" structure of the ligand, crystals of Cu-DCB-MOF were successfully prepared, allowing for the precise determination of their crystal structure. Interestingly, the crystals of Cu-DCB-MOF can be obtained in various organic solvents, indicating excellent solvent compatibility. The versatility of the "rotor-stator" molecular design strategy was further demonstrated by another two new ligands with a "rotor-stator" structure, and afford corresponding 2D c-MOF crystals (Cu-DCBT-MOF and Cu-DCBBT-MOF). The current work presents a facile approach toward the rational design and direct construction of highly crystalline 2D c-MOFs using nonplanar ligands.

5.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35870203

ABSTRACT

The rapid development of single-cel+l RNA sequencing (scRNA-seq) technology provides unprecedented opportunities for exploring biological phenomena at the single-cell level. The discovery of cell types is one of the major applications for researchers to explore the heterogeneity of cells. Some computational methods have been proposed to solve the problem of scRNA-seq data clustering. However, the unavoidable technical noise and notorious dropouts also reduce the accuracy of clustering methods. Here, we propose the cauchy-based bounded constraint low-rank representation (CBLRR), which is a low-rank representation-based method by introducing cauchy loss function (CLF) and bounded nuclear norm regulation, aiming to alleviate the above issue. Specifically, as an effective loss function, the CLF is proven to enhance the robustness of the identification of cell types. Then, we adopt the bounded constraint to ensure the entry values of single-cell data within the restricted interval. Finally, the performance of CBLRR is evaluated on 15 scRNA-seq datasets, and compared with other state-of-the-art methods. The experimental results demonstrate that CBLRR performs accurately and robustly on clustering scRNA-seq data. Furthermore, CBLRR is an effective tool to cluster cells, and provides great potential for downstream analysis of single-cell data. The source code of CBLRR is available online at https://github.com/Ginnay/CBLRR.


Subject(s)
Single-Cell Analysis , Software , Algorithms , Cluster Analysis , Gene Expression Profiling/methods , RNA-Seq , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
6.
Europace ; 26(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38938169

ABSTRACT

AIMS: Subclinical atrial fibrillation (AF) is associated with increased risk of progression to clinical AF, stroke, and cardiovascular death. We hypothesized that in pacemaker patients requiring dual-chamber rate-adaptive (DDDR) pacing, closed loop stimulation (CLS) integrated into the circulatory control system through intra-cardiac impedance monitoring would reduce the occurrence of atrial high-rate episodes (AHREs) compared with conventional DDDR pacing. METHODS AND RESULTS: Patients with sinus node dysfunctions (SNDs) and an implanted pacemaker or defibrillator were randomly allocated to dual-chamber CLS (n = 612) or accelerometer-based DDDR pacing (n = 598) and followed for 3 years. The primary endpoint was time to the composite endpoint of the first AHRE lasting ≥6 min, stroke, or transient ischaemic attack (TIA). All AHREs were independently adjudicated using intra-cardiac electrograms. The incidence of the primary endpoint was lower in the CLS arm (50.6%) than in the DDDR arm (55.7%), primarily due to the reduction in AHREs lasting between 6 h and 7 days. Unadjusted site-stratified hazard ratio (HR) for CLS vs. DDDR was 0.84 [95% confidence interval (CI), 0.72-0.99; P = 0.035]. After adjusting for CHA2DS2-VASc score, the HR remained 0.84 (95% CI, 0.71-0.99; P = 0.033). In subgroup analyses of AHRE incidence, the incremental benefit of CLS was greatest in patients without atrioventricular block (HR, 0.77; P = 0.008) and in patients without AF history (HR, 0.73; P = 0.009). The contribution of stroke/TIA to the primary endpoint (1.3%) was low and not statistically different between study arms. CONCLUSION: Dual-chamber CLS in patients with SND is associated with a significantly lower AHRE incidence than conventional DDDR pacing.


Subject(s)
Atrial Fibrillation , Cardiac Pacing, Artificial , Heart Rate , Ischemic Attack, Transient , Pacemaker, Artificial , Sick Sinus Syndrome , Stroke , Humans , Female , Male , Atrial Fibrillation/physiopathology , Atrial Fibrillation/diagnosis , Atrial Fibrillation/therapy , Atrial Fibrillation/epidemiology , Aged , Sick Sinus Syndrome/therapy , Sick Sinus Syndrome/physiopathology , Cardiac Pacing, Artificial/methods , Ischemic Attack, Transient/prevention & control , Ischemic Attack, Transient/epidemiology , Middle Aged , Stroke/prevention & control , Stroke/epidemiology , Incidence , Treatment Outcome , Time Factors , Risk Factors , Defibrillators, Implantable , Electrophysiologic Techniques, Cardiac , Accelerometry , Aged, 80 and over
7.
Europace ; 26(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39082712

ABSTRACT

AIMS: Subclinical atrial fibrillation (AF) is associated with increased risk of progression to clinical AF, stroke, and cardiovascular death. We hypothesized that in pacemaker patients requiring dual-chamber rate-adaptive (DDDR) pacing, closed loop stimulation (CLS) integrated into the circulatory control system through intra-cardiac impedance monitoring would reduce the occurrence of atrial high-rate episodes (AHREs) compared with conventional DDDR pacing. METHODS AND RESULTS: Patients with sinus node dysfunctions (SNDs) and an implanted pacemaker or defibrillator were randomly allocated to dual-chamber CLS (n = 612) or accelerometer-based DDDR pacing (n = 598) and followed for 3 years. The primary endpoint was time to the composite endpoint of the first AHRE lasting ≥6 min, stroke, or transient ischaemic attack (TIA). All AHREs were independently adjudicated using intra-cardiac electrograms. The incidence of the primary endpoint was lower in the CLS arm (50.6%) than in the DDDR arm (55.7%), primarily due to the reduction in AHREs lasting between 6 h and 7 days. Unadjusted site-stratified hazard ratio (HR) for CLS vs. DDDR was 0.84 [95% confidence interval (CI), 0.72-0.99; P = 0.035]. After adjusting for CHA2DS2-VASc score, the HR remained 0.84 (95% CI, 0.71-0.99; P = 0.033). In subgroup analyses of AHRE incidence, the incremental benefit of CLS was greatest in patients without atrioventricular block (HR, 0.77; P = 0.008) and in patients without AF history (HR, 0.73; P = 0.009). The contribution of stroke/TIA to the primary endpoint (1.3%) was low and not statistically different between study arms. CONCLUSION: Dual-chamber CLS in patients with SND is associated with a significantly lower AHRE incidence than conventional DDDR pacing.


Subject(s)
Atrial Fibrillation , Cardiac Pacing, Artificial , Heart Rate , Ischemic Attack, Transient , Pacemaker, Artificial , Sick Sinus Syndrome , Stroke , Humans , Female , Male , Atrial Fibrillation/physiopathology , Atrial Fibrillation/diagnosis , Atrial Fibrillation/therapy , Atrial Fibrillation/epidemiology , Aged , Sick Sinus Syndrome/therapy , Sick Sinus Syndrome/physiopathology , Cardiac Pacing, Artificial/methods , Ischemic Attack, Transient/prevention & control , Ischemic Attack, Transient/epidemiology , Middle Aged , Stroke/prevention & control , Stroke/epidemiology , Incidence , Treatment Outcome , Time Factors , Risk Factors , Defibrillators, Implantable , Electrophysiologic Techniques, Cardiac , Accelerometry , Aged, 80 and over
8.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 179-185, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38372097

ABSTRACT

Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor. The regulatory functions of circular RNAs (circRNAs) in cancers have been broadly reported. The hsa_circ_0011773 (circMACF1) is reported to be overexpressed in LSCC tissues, while its biological function in LSCC remains unclear. CircMACF1 expression in LSCC tissues and cells was assessed via RT-qPCR. Exosomes extracted from cells were identified by TEM and NTA. Autophagy-related proteins were tested by western blot. Confocal microscope was employed for analyzing LC3 expression. Cell proliferation, migration, and invasion were assessed by CCK-8 assay and transwell assay. The levels of main proteins on PI3K/AKT/mTOR were tested by western blot. We observed that circMACF1 was highly expressed in LSCC tissues and cells. Furthermore, circMACF1 expression was also upregulated in the exosomes derived from LSCC cells. CircMACF1 depletion promoted LC3 expression in cells. Additionally, we proved that circMACF1 knockdown suppressed LSCC cell proliferative, migratory and invasive capabilities via promoting autophagy. Exosomal circMACF1 was found to promote LSCC tumor growth. Then, we proved that circMACF1 could activate PI3K/AKT/mTOR pathway to regulate autophagy. Moreover, MACF1 was positively regulated by circMACF1 and its overexpression notably reversed the effects of circMACF1 depletion in LSCC progression. Exosomal circMACF1 can regulate PI3K/AKT/mTOR-mediated autophagy suppression to facilitate LSCC development.


Subject(s)
Laryngeal Neoplasms , RNA, Circular , Squamous Cell Carcinoma of Head and Neck , Humans , Autophagy/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , RNA, Circular/genetics
9.
Nutr J ; 23(1): 27, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419087

ABSTRACT

BACKGROUND: Dietary and gastrointestinal (GI) problems have been frequently reported in autism spectrum disorder (ASD). However, the relative contributions of autism-linked traits to dietary and GI problems in children with ASD are poorly understood. This study firstly compared the dietary intake and GI symptoms between children with ASD and typically developing children (TDC), and then quantified the relative contributions of autism-linked traits to dietary intake, and relative contributions of autism-linked traits and dietary intake to GI symptoms within the ASD group. METHODS: A sample of 121 children with ASD and 121 age-matched TDC were eligible for this study. The dietary intake indicators included food groups intakes, food variety, and diet quality. The autism-linked traits included ASD symptom severity, restricted repetitive behaviors (RRBs), sensory profiles, mealtime behaviors, and their subtypes. Linear mixed-effects models and mixed-effects logistic regression models were used to estimate the relative contributions. RESULTS: Children with ASD had poorer diets with fewer vegetables/fruits, less variety of food, a higher degree of inadequate/unbalanced dietary intake, and more severe constipation/total GI symptoms than age-matched TDC. Within the ASD group, compulsive behavior (a subtype of RRBs) and taste/smell sensitivity were the only traits associated with lower vegetables and fruit consumption, respectively. Self-injurious behavior (a subtype of RRBs) was the only contributing trait to less variety of food. Limited variety (a subtype of mealtime behavior problems) and ASD symptom severity were the primary and secondary contributors to inadequate dietary intake, respectively. ASD symptom severity and limited variety were the primary and secondary contributors to unbalanced dietary intake, respectively. Notably, unbalanced dietary intake was a significant independent factor associated with constipation/total GI symptoms, and autism-linked traits manifested no contributions. CONCLUSIONS: ASD symptom severity and unbalanced diets were the most important contributors to unbalanced dietary intake and GI symptoms, respectively. Our findings highlight that ASD symptom severity and unbalanced diets could provide the largest benefits for the dietary and GI problems of ASD if they were targeted for early detection and optimal treatment.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Gastrointestinal Diseases , Child , Humans , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/complications , Autistic Disorder/complications , Gastrointestinal Diseases/epidemiology , Constipation/epidemiology , Fruit , Vegetables , Eating
10.
Nucleic Acids Res ; 50(22): e131, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36250636

ABSTRACT

Recent advances in spatial transcriptomics (ST) have brought unprecedented opportunities to understand tissue organization and function in spatial context. However, it is still challenging to precisely dissect spatial domains with similar gene expression and histology in situ. Here, we present DeepST, an accurate and universal deep learning framework to identify spatial domains, which performs better than the existing state-of-the-art methods on benchmarking datasets of the human dorsolateral prefrontal cortex. Further testing on a breast cancer ST dataset, we showed that DeepST can dissect spatial domains in cancer tissue at a finer scale. Moreover, DeepST can achieve not only effective batch integration of ST data generated from multiple batches or different technologies, but also expandable capabilities for processing other spatial omics data. Together, our results demonstrate that DeepST has the exceptional capacity for identifying spatial domains, making it a desirable tool to gain novel insights from ST studies.


Subject(s)
Deep Learning , Gene Expression Profiling , Humans , Benchmarking , Gene Expression Profiling/methods , Transcriptome
11.
Nucleic Acids Res ; 50(D1): D928-D933, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34723320

ABSTRACT

As a means to aid in the investigation of viral infection mechanisms and identification of more effective antivirus targets, the availability of a source which continually collects and updates information on the virus and host ncRNA-associated interaction resources is essential. Here, we update the ViRBase database to version 3.0 (http://www.virbase.org/ or http://www.rna-society.org/virbase/). This update represents a major revision: (i) the total number of interaction entries is now greater than 820,000, an approximately 70-fold increment, involving 116 virus and 36 host organisms, (ii) it supplements and provides more details on RNA annotations (including RNA editing, RNA localization and RNA modification), ncRNA SNP and ncRNA-drug related information and (iii) it provides two additional tools for predicting binding sites (IntaRNA and PRIdictor), a visual plug-in to display interactions and a website which is optimized for more practical and user-friendly operation. Overall, ViRBase v3.0 provides a more comprehensive resource for virus and host ncRNA-associated interactions enabling researchers a more effective means for investigation of viral infections.


Subject(s)
Databases, Genetic , Genome, Viral , Host-Pathogen Interactions/genetics , RNA, Untranslated/genetics , Software , Viruses/genetics , Binding Sites , Chromatin/chemistry , Chromatin/metabolism , Humans , Internet , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , RNA Editing , RNA, Untranslated/classification , RNA, Untranslated/metabolism , Signal Transduction , Virus Diseases/genetics , Virus Diseases/metabolism , Virus Diseases/pathology , Virus Diseases/virology , Viruses/classification , Viruses/metabolism , Viruses/pathogenicity
12.
Nucleic Acids Res ; 50(D1): D326-D332, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34718726

ABSTRACT

Establishing an RNA-associated interaction repository facilitates the system-level understanding of RNA functions. However, as these interactions are distributed throughout various resources, an essential prerequisite for effectively applying these data requires that they are deposited together and annotated with confidence scores. Hence, we have updated the RNA-associated interaction database RNAInter (RNA Interactome Database) to version 4.0, which is freely accessible at http://www.rnainter.org or http://www.rna-society.org/rnainter/. Compared with previous versions, the current RNAInter not only contains an enlarged data set, but also an updated confidence scoring system. The merits of this 4.0 version can be summarized in the following points: (i) a redefined confidence scoring system as achieved by integrating the trust of experimental evidence, the trust of the scientific community and the types of tissues/cells, (ii) a redesigned fully functional database that enables for a more rapid retrieval and browsing of interactions via an upgraded user-friendly interface and (iii) an update of entries to >47 million by manually mining the literature and integrating six database resources with evidence from experimental and computational sources. Overall, RNAInter will provide a more comprehensive and readily accessible RNA interactome platform to investigate the regulatory landscape of cellular RNAs.


Subject(s)
DNA/genetics , Databases, Nucleic Acid , RNA-Binding Proteins/genetics , RNA/genetics , User-Computer Interface , Animals , Bacteria/genetics , Bacteria/metabolism , DNA/metabolism , Datasets as Topic , Humans , Internet , RNA/classification , RNA/metabolism , RNA-Binding Proteins/classification , RNA-Binding Proteins/metabolism , Research Design , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Viruses/genetics , Viruses/metabolism
13.
Ecotoxicol Environ Saf ; 269: 115792, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38064789

ABSTRACT

OBJECTIVE: We examined the relationships between infants' growth trajectories and prenatal exposure to air pollution, which is still under-investigated. METHODS: A birth cohort study was constructed using medical records of pregnant women and infants born between 2015 and 2019 in Foshan, China. Using satellite-based spatial-temporal models, prenatal exposure to air pollutants including particulate matter with an aerodynamic dimension of < 2.5 µm (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) was assessed at each woman's residence. Latent class growth modeling was used to identify trajectories of physical (body length and weight) growth and neurodevelopment, which were repeatedly measured within 1 year after birth. Logistic regression models were used to investigate the associations between prenatal exposure to air pollution and the risks of growth disorders, adjusting for an array of potential confounders. RESULTS: We identified two growth trajectories for body length [normal: 3829 (93%); retardation: 288 (7%)], three for weight [normal: 2475 (59.6%); retardation: 390 (9.4%); overgrowth: 1287 (31%)], and two for neurodevelopment [normal: 956 (66.1%); retardation: 491 (33.9%)]. For exposure over whole pregnancy, SO2 was associated with an increased risk of body length retardation (OR for per 1 µg/m3 increment: 1.09, 95%CI: 1.01-1.17); PM2.5 (OR: 1.05, 95%CI: 1.03-1.07), SO2 (OR: 1.15, 95%CI: 1.08-1.22), and NO2 (OR: 1.05, 95%CI: 1.03-1.07) were positively associated with neurodevelopmental retardation. Such associations appeared stronger for exposures over the first and second trimesters. No significant associations were detected for weight growth. CONCLUSIONS: Maternal exposure to air pollution during pregnancy was associated with higher risks of impairments in both physical growth, particularly body length, and neurodevelopment.


Subject(s)
Air Pollutants , Air Pollution , Prenatal Exposure Delayed Effects , Infant , Humans , Female , Pregnancy , Maternal Exposure/adverse effects , Cohort Studies , Nitrogen Dioxide/analysis , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/chemically induced , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/toxicity
14.
Angew Chem Int Ed Engl ; 63(29): e202405168, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38668683

ABSTRACT

2D conjugated metal-organic frameworks (2D c-MOFs) with large pore sizes and high surface areas are advantageous for adsorbing iodine species to enhance the electrochemical performance of aqueous dual-ion batteries (ADIBs). However, most of the reported 2D c-MOFs feature microporous structures, with few examples exhibiting mesoporous characteristics. Herein, we developed two mesoporous 2D c-MOFs, namely PA-TAPA-Cu-MOF and PA-PyTTA-Cu-MOF, using newly designed arylimide based multitopic catechol ligands (6OH-PA-TAPA and 8OH-PA-PyTTA). Notably, PA-TAPA-Cu-MOF exhibits the largest pore sizes (3.9 nm) among all reported 2D c-MOFs. Furthermore, we demonstrated that these 2D c-MOFs can serve as promising cathode host materials for polyiodides in ADIBs for the first time. The incorporation of triphenylamine moieties in PA-TAPA-Cu-MOF resulted in a higher specific capacity (423.4 mAh g-1 after 100 cycles at 1.0 A g-1) and superior cycling performance, retaining 96 % capacity over 1000 cycles at 10 A g-1 compared to PA-PyTTA-Cu-MOF. Our comparative analysis revealed that the increased number of N anchoring sites and larger pore size in PA-TAPA-Cu-MOF facilitate efficient anchoring and conversion of I3 -, as supported by spectroscopic electrochemistry and density functional theory calculations.

15.
Angew Chem Int Ed Engl ; : e202408189, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774981

ABSTRACT

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as promising candidates in gas sensing, owing to their tunable porous structure and conductivity. Nevertheless, the reported gas sensing mechanisms heavily relied on electron transfer between metal nodes and gas molecules. Normally, the strong interaction between the metal sites and target gas molecule would result poor recovery and thus bad recycling property. Herein, we propose a redox synergy strategy to overcome this issue by balancing the reactivity of metal sites and ligands. A 2D c-MOF, Zn3(HHTQ)2, was prepared for nitrogen dioxide (NO2) sensing, which was constructed from active ligands (hexahydroxyltricycloquinazoline, HHTQ) and inactive transition-metal ions (Zn2+). Substantial characterizations and theoretical calculations demonstrated that by utilizing only the redox interactions between ligands and NO2, not only high sensitivity and selectivity, but also excellent cycling stability in NO2 sensing could be achieved. In contrast, control experiments employing isostructural 2D c-MOFs with Cu/Ni metal nodes exhibited irreversible NO2 sensing. Our current work provides a new design strategy for gas sensing materials, emphasizing harnessing the redox activity of only ligands to enhance the stability of MOF sensing materials.

16.
Circulation ; 145(24): 1749-1760, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35450432

ABSTRACT

BACKGROUND: Short-term exposure to ambient air pollution has been linked with daily hospitalization and mortality from acute coronary syndrome (ACS); however, the associations of subdaily (hourly) levels of criteria air pollutants with the onset of ACS and its subtypes have rarely been evaluated. METHODS: We conducted a time-stratified case-crossover study among 1 292 880 patients with ACS from 2239 hospitals in 318 Chinese cities between January 1, 2015, and September 30, 2020. Hourly concentrations of fine particulate matter (PM2.5), coarse particulate matter (PM2.5-10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3) were collected. Hourly onset data of ACS and its subtypes, including ST-segment-elevation myocardial infarction, non-ST-segment-elevation myocardial infarction, and unstable angina, were also obtained. Conditional logistic regressions combined with polynomial distributed lag models were applied. RESULTS: Acute exposures to PM2.5, NO2, SO2, and CO were each associated with the onset of ACS and its subtypes. These associations were strongest in the concurrent hour of exposure and were attenuated thereafter, with the weakest effects observed after 15 to 29 hours. There were no apparent thresholds in the concentration-response curves. An interquartile range increase in concentrations of PM2.5 (36.0 µg/m3), NO2 (29.0 µg/m3), SO2 (9.0 µg/m3), and CO (0.6 mg/m3) over the 0 to 24 hours before onset was significantly associated with 1.32%, 3.89%, 0.67%, and 1.55% higher risks of ACS onset, respectively. For a given pollutant, the associations were comparable in magnitude across different subtypes of ACS. NO2 showed the strongest associations with all 3 subtypes, followed by PM2.5, CO, and SO2. Greater magnitude of associations was observed among patients older than 65 years and in the cold season. Null associations of exposure to either PM2.5-10 or O3 with ACS onset were observed. CONCLUSIONS: The results suggest that transient exposure to the air pollutants PM2.5, NO2, SO2, or CO, but not PM2.5-10 or O3, may trigger the onset of ACS, even at concentrations below the World Health Organization air quality guidelines.


Subject(s)
Acute Coronary Syndrome , Air Pollutants , Air Pollution , Environmental Exposure , Acute Coronary Syndrome/epidemiology , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , Carbon Monoxide/analysis , Carbon Monoxide/toxicity , China/epidemiology , Cities/epidemiology , Cross-Over Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Humans , Nitrogen Dioxide/analysis , Nitrogen Dioxide/toxicity , Ozone/analysis , Ozone/toxicity , Particulate Matter/analysis , Particulate Matter/toxicity , Sulfur Dioxide/analysis , Sulfur Dioxide/toxicity , Time Factors
17.
J Am Chem Soc ; 145(5): 2739-2744, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36515969

ABSTRACT

Two-dimensional conductive metal-organic frameworks (2D c-MOFs) are an emerging class of promising porous materials with high crystallinity, tunable structures, and diverse functions. However, the limited topologies and difficulties in synthesizing suitable organic linkers remain a great challenge for 2D c-MOFs synthesis and applications. Herein, two layered 2D c-MOF polymorphs with either a rhombus structure (sql-TBA-MOF) or kagome structure (kgm-TBA-MOF) were directly constructed via in situ Scholl reaction and coordination chemistry from a flexible and nonplanar tetraphenylbenzene-based ligand (8OH-TPB) in a one-pot manner. Interestingly, the kgm-TBA-MOF comprising hexagonal and triangular dual pores exhibit higher conductivities of 1.65 × 10-3 S/cm at 298 K and 3.33 × 10-2 S/cm at 353 K than that of sql-TBA-MOF (4.48 × 10-4 and 2.90 × 10-3 S/cm, respectively). Moreover, the morphology and topology can be modulated via the addition of ammonium hydroxide as modulator. The present work provides a new pathway for design, synthesis, and topological regulation of 2D c-MOFs.

18.
J Am Chem Soc ; 145(16): 8979-8987, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37067179

ABSTRACT

Conductive metal-organic frameworks (c-MOFs) with outstanding electrical conductivities and high charge carrier mobilities are promising candidates for electronics and optoelectronics. However, the poor solubility of planar ligands greatly hinders the synthesis and widespread applications of c-MOFs. Nonplanar ligands with excellent solubility in organic solvents are ideal alternatives to construct c-MOFs. Herein, contorted hexabenzocoronene (c-HBC) derivatives with good solubility are adopted to synthesize c-MOFs. Three c-MOFs (c-HBC-6O-Cu, c-HBC-8O-Cu, and c-HBC-12O-Cu) with substantially different geometries and packing modes have been synthesized using three multitopic catechol-based c-HBC ligands with different symmetries and coordination numbers, respectively. With more metal coordination centers and increased charge transport pathways, c-HBC-12O-Cu exhibits the highest intrinsic electrical conductivity of 3.31 S m-1. Time-resolved terahertz spectroscopy reveals high charge carrier mobilities in c-HBC-based c-MOFs, ranging from 38 to 64 cm2 V-1 s-1. This work provides a systematic and modular approach to fine-tune the structure and enrich the c-MOF family with excellent charge transport properties using nonplanar and highly soluble ligands.

19.
J Transl Med ; 21(1): 9, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36624452

ABSTRACT

BACKGROUNDS: Papillary thyroid cancer (PTC), which is often driven by acquired somatic mutations in BRAF genes, is the most common pathologic type of thyroid cancer. PTC has an excellent prognosis after treatment with conventional therapies such as surgical resection, thyroid hormone therapy and adjuvant radioactive iodine therapy. Unfortunately, about 20% of patients develop regional recurrence or distant metastasis, making targeted therapeutics an important treatment option. Current in vitro PTC models are limited in representing the cellular and mutational characteristics of parental tumors. A clinically relevant tool that predicts the efficacy of therapy for individuals is urgently needed. METHODS: Surgically removed PTC tissue samples were dissociated, plated into Matrigel, and cultured to generate organoids. PTC organoids were subsequently subjected to histological analysis, DNA sequencing, and drug sensitivity assays, respectively. RESULTS: We established 9 patient-derived PTC organoid models, 5 of which harbor BRAFV600E mutation. These organoids have been cultured stably for more than 3 months and closely recapitulated the histological architectures as well as mutational landscapes of the respective primary tumors. Drug sensitivity assays of PTC organoid cultures demonstrated the intra- and inter-patient specific drug responses. BRAFV600E inhibitors, vemurafenib and dabrafenib monotherapy was mildly effective in treating BRAFV600E-mutant PTC organoids. Nevertheless, BRAF inhibitors in combination with MEK inhibitors, RTK inhibitors, or chemotherapeutic agents demonstrated improved efficacy compared to BRAF inhibition alone. CONCLUSIONS: These data indicate that patient-derived PTC organoids may be a powerful research tool to investigate tumor biology and drug responsiveness, thus being useful to validate or discover targeted drug combinations.


Subject(s)
Carcinoma, Papillary , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Proto-Oncogene Proteins B-raf/genetics , Iodine Radioisotopes/therapeutic use , Carcinoma, Papillary/drug therapy , Carcinoma, Papillary/genetics , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Organoids/pathology
20.
Chemistry ; 29(36): e202300869, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37071487

ABSTRACT

As an emerging class of porous crystalline material, covalent organic frameworks (COFs) have received considerable research interests in terms of exploring new architectures and functions. Herein, we developed an unprecedented "H-shaped" monomer, upon self-polycondensation, which facilely produced a benzoimidazole-based COF (H-BIm-COF) with a rarely reported brick-wall topology. H-BIm-COF displayed high crystallinity, nano-sized porosity, and high thermal and chemical stabilities. Interestingly, H-BIm-COF based membranes showed selective permeability towards different solvents, which related to the size and polarity of the guest molecule. Additionally, initial study suggested the COF displayed excellent rejection efficiency towards ionic dyes, for example chromium black T (99.7 %) and rhodamine B (97.3 %). This work provides insights into developing new topological COFs by designing monomers with new configurations.

SELECTION OF CITATIONS
SEARCH DETAIL