Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 178(6): 1478-1492.e20, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474362

ABSTRACT

Liver fibrosis is a very common condition seen in millions of patients with various liver diseases, and yet no effective treatments are available owing to poorly characterized molecular pathogenesis. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2) is a functional ligand of Tie1, a poorly characterized endothelial cell (EC)-specific orphan receptor. Upon binding to Tie1, LECT2 interrupts Tie1/Tie2 heterodimerization, facilitates Tie2/Tie2 homodimerization, activates PPAR signaling, and inhibits the migration and tube formations of EC. In vivo studies showed that LECT2 overexpression inhibits portal angiogenesis, promotes sinusoid capillarization, and worsens fibrosis, whereas these changes were reversed in Lect2-KO mice. Adeno-associated viral vector serotype 9 (AAV9)-LECT2 small hairpin RNA (shRNA) treatment significantly attenuates fibrosis. Upregulation of LECT2 is associated with advanced human liver fibrosis staging. We concluded that targeting LECT2/Tie1 signaling may represent a potential therapeutic target for liver fibrosis, and serum LECT2 level may be a potential biomarker for the screening and diagnosis of liver fibrosis.


Subject(s)
Endothelial Cells/metabolism , Hepatocytes/metabolism , Intercellular Signaling Peptides and Proteins/physiology , Liver Cirrhosis/metabolism , Liver/metabolism , Receptors, TIE/metabolism , Animals , Biomarkers/metabolism , Capillaries/metabolism , Endothelial Cells/cytology , Endothelial Cells/pathology , HEK293 Cells , Hepatocytes/cytology , Hepatocytes/pathology , Humans , Intercellular Signaling Peptides and Proteins/blood , Liver/blood supply , Liver/pathology , Liver Cirrhosis/diagnosis , Mice, Inbred C57BL
2.
Mol Cell ; 84(9): 1811-1815.e3, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38701742

ABSTRACT

Post-translational modifications of proteins (PTMs) introduce an extra layer of complexity to cellular regulation. Although phosphorylation of serine, threonine, and tyrosine residues is well-known as PTMs, lysine is, in fact, the most heavily modified amino acid, with over 30 types of PTMs on lysine having been characterized. One of the most recently discovered PTMs on lysine residues is polyphosphorylation, which sees linear chains of inorganic polyphosphates (polyP) attached to lysine residues. The labile nature of phosphoramidate bonds raises the question of whether this modification is covalent in nature. Here, we used buffers with very high ionic strength, which would disrupt any non-covalent interactions, and confirmed that lysine polyphosphorylation occurs covalently on proteins containing PASK domains (polyacidic, serine-, and lysine-rich), such as the budding yeast protein nuclear signal recognition 1 (Nsr1) and the mammalian protein nucleolin. This Matters Arising Response paper addresses the Neville et al. (2024) Matters Arising paper, published concurrently in Molecular Cell.


Subject(s)
Lysine , Phosphoproteins , Protein Processing, Post-Translational , RNA-Binding Proteins , Phosphorylation , Lysine/metabolism , Phosphoproteins/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/chemistry , Nucleolin , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Animals , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Polyphosphates/metabolism , Polyphosphates/chemistry , Osmolar Concentration
3.
Proc Natl Acad Sci U S A ; 120(34): e2306868120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37579180

ABSTRACT

Inositol pyrophosphates (PP-InsPs) are energetic signaling molecules with important functions in mammals. As their biosynthesis depends on ATP concentration, PP-InsPs are tightly connected to cellular energy homeostasis. Consequently, an increasing number of studies involve PP-InsPs in metabolic disorders, such as type 2 diabetes, aspects of tumorigenesis, and hyperphosphatemia. Research conducted in yeast suggests that the PP-InsP pathway is activated in response to reactive oxygen species (ROS). However, the precise modulation of PP-InsPs during cellular ROS signaling is unknown. Here, we report how mammalian PP-InsP levels are changing during exposure to exogenous (H2O2) and endogenous ROS. Using capillary electrophoresis electrospray ionization mass spectrometry (CE-ESI-MS), we found that PP-InsP levels decrease upon exposure to oxidative stressors in HCT116 cells. Application of quinone drugs, particularly ß-lapachone (ß-lap), under normoxic and hypoxic conditions enabled us to produce ROS in cellulo and to show that ß-lap treatment caused PP-InsP changes that are oxygen-dependent. Experiments in MDA-MB-231 breast cancer cells deficient of NAD(P)H:quinone oxidoreductase-1 (NQO1) demonstrated that ß-lap requires NQO1 bioactivation to regulate the cellular metabolism of PP-InsPs. Critically, significant reductions in cellular ATP concentrations were not directly mirrored in reduced PP-InsP levels as shown in NQO1-deficient MDA-MB-231 cells treated with ß-lap. The data presented here unveil unique aspects of ß-lap pharmacology and its impact on PP-InsP levels. The identification of different quinone drugs as modulators of PP-InsP synthesis will allow the overall impact on cellular function of such drugs to be better appreciated.


Subject(s)
Diabetes Mellitus, Type 2 , Naphthoquinones , Humans , Adenosine Triphosphate , Cell Line, Tumor , Diphosphates , Hydrogen Peroxide/metabolism , Inositol , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Naphthoquinones/pharmacology , Oxygen , Reactive Oxygen Species/metabolism
4.
Mol Divers ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240951

ABSTRACT

Akt1, as an important member of the Akt family, plays a controlled role in cancer cell growth and survival. Inhibition of Akt1 activity can promote cancer cell apoptosis and inhibit tumor growth. Therefore, in this investigation, a multilayer virtual screening approach, including receptor-ligand interaction-based pharmacophore, 3D-QSAR, molecular docking, and deep learning methods, was utilized to construct a virtual screening platform for Akt1 inhibitors. 17 representative compounds with different scaffolds were identified as potential Akt1 inhibitors from three databases. Among these 17 compounds, the Hit9 exhibited the best inhibitory activity against Akt1 with inhibition rate of 33.08% at concentration of 1 µM. The molecular dynamics simulations revealed that Hit9 and Akt1 could form a compact and stable complex. Moreover, Hit9 interacted with some key residues by hydrophobic, electrostatic, and hydrogen bonding interactions and induced substantial conformation changes in the hinge region of the Akt1 active site. The average binding free energies for the Akt1-CQU, Akt1-Ipatasertib, and Akt1-Hit9 systems were - 34.44, - 63.37, and - 39.14 kJ mol-1, respectively. In summary, the results obtained in this investigation suggested that Hit9 with novel scaffold may be a promising lead compound for developing new Akt1 inhibitor for treatment of various cancers with Akt1 overexpressed.

5.
BMC Pulm Med ; 24(1): 59, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281038

ABSTRACT

BACKGROUND: Lung cancer remains a major global health concern due to its high incidence and mortality rates. With advancements in medical treatments, an increasing number of early-stage lung cancer cases are being detected, making surgical treatment the primary option for such cases. However, this presents challenges to the physical and mental recovery of patients. Peplau known as the "mother of psychiatric associations" has formulated a theory of interpersonal relationships in nursing. Through effective communication between nurses and patients over four periods, she has established a good therapeutic nurse-patient relationship. Therefore, this study aimed to explore the effect of perioperative multimodal nursing based on Peplau's interpersonal relationship theory on the rehabilitation of patients with surgical lung cancer. METHODS: We retrospectively analyzed 106 patients with non-small cell lung cancer who underwent thoracoscopic lobectomy at our department between June 2021 and April 2022. Patients were categorized into two groups according to the different nursing intervention techniques. The Peplau's group comprised 53 patients who received targeted nursing interventions, and the control group comprised 53 patients who received conventional nursing care. We observed the patients' illness uncertainty, quality of life, and clinical symptoms in both groups. RESULTS: Patients in the Peplau's group had significantly lower illness uncertainty scores and a significantly higher quality of recovery than those in the control group. However, there were no significant differences in length of post-anesthesia care unit stay, complication rates, and visual analog scores between both groups. CONCLUSION: The multimodal perioperative nursing based on Peplau's interpersonal relationship theory not only reduces the illness uncertainty of patients with lung cancer surgery and improves their QoR but also expands the application of this theory in clinical practice, guiding perioperative nursing of patients with lung cancer. IMPLICATIONS: These findings provide practical information for standardized care in a hectic anesthetic care setting. IMPACT: The assessed anesthesia nursing model helps reduce uncertainty and promote early recovery in patients with cancer at various stages of their disease, which expands the scope of therapeutic practice and existing theories. It also serves as a guide for care in the anesthesia recovery room. REPORTING METHOD: We adhered to the relevant Equator guidelines and the checklist of items in the case-control study report. PATIENT OR PUBLIC CONTRIBUTION: Patients cooperated with medical staff to complete relevant scales.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Female , Humans , Nursing Theory , Retrospective Studies , Case-Control Studies , Lung Neoplasms/surgery , Carcinoma, Non-Small-Cell Lung/surgery , Quality of Life
6.
BMC Pediatr ; 24(1): 455, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014321

ABSTRACT

The impact of the Coronavirus Disease 2019 (COVID-19) on society is continuous, resulting in negative psychological consequences. Given the vulnerability and sensitivity to the environment among preschool children, their emotional and behavioral problems deserve more attention. The current study aimed to explore the impact of the epidemic on preschool children's mental health by determining the pooled prevalence of emotional and behavioral problems amidst the Coronavirus Disease 2019 pandemic and to reveal potential reasons for variations between studies. Published studies were searched in Embase, PubMed, ProQuest, PsycINFO, Web of Science, CNKI, and Wanfang. Based on the inclusion criteria outlined in this study, a total of 10 studies encompassing 38,059 participants were incorporated. Employing a random-effect model for estimating the prevalence of emotional and behavioral problems, the results revealed a pooled prevalence rate of 24.3% (95% CI, 0.15-0.38; I²=99.9%) among preschool children. This rate surpasses the pre-outbreak prevalence observed in different countries, signifying a detrimental influence of the epidemic on the mental well-being of preschoolers. Therefore, mental health care and recovery are essential for the vulnerable group during and after the public health crisis. Specific emotional and behavioral problems among preschool children are expected to be researched in the future to provide more targeted guidance for intervention.


Subject(s)
COVID-19 , Humans , COVID-19/psychology , COVID-19/epidemiology , Child, Preschool , Child Behavior Disorders/epidemiology , Child Behavior Disorders/psychology , Prevalence , Problem Behavior/psychology , Affective Symptoms/epidemiology , Affective Symptoms/psychology , SARS-CoV-2
7.
Genomics ; 115(6): 110726, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37832857

ABSTRACT

Simple sequence repeats (SSRs) have been widely used for parentage testing, marker-assisted selection, and evolutionary studies. The insufficient availability of SSR markers in Bactrian camels partially accounts for the lack of systematic breeding. Therefore, we aimed to establish a comprehensive SSR dataset for the Bactrian camel. Our approach involved genome searching to locate every SSR in the genome, SSR-enriched sequencing to acquire polymorphism information, and literature research to collect published data. The resulting dataset contains 213,711 SSRs and details their characteristics, including genome coordinates, motifs, lengths, annotations, PCR primers, and polymorphism information. The dataset reveals a biased distribution of SSRs in the Bactrian camel genome, reflecting the mutation mechanism and complex evolution of SSRs. In practice, we successfully demonstrated the utility of the dataset through parentage testing using 15 randomly selected SSRs. This comprehensive dataset can facilitate systematic breeding and enable QTL mapping and GWAS of the Bactrian camel.


Subject(s)
Camelus , Genome, Plant , Animals , Camelus/genetics , Genetic Markers , Polymorphism, Genetic , Microsatellite Repeats
8.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 131-138, 2024 Feb 15.
Article in Zh | MEDLINE | ID: mdl-38436309

ABSTRACT

OBJECTIVES: To investigate the clinical characteristics and prognosis of pneumococcal meningitis (PM), and drug sensitivity of Streptococcus pneumoniae (SP) isolates in Chinese children. METHODS: A retrospective analysis was conducted on clinical information, laboratory data, and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country. RESULTS: Among the 160 children with PM, there were 103 males and 57 females. The age ranged from 15 days to 15 years, with 109 cases (68.1%) aged 3 months to under 3 years. SP strains were isolated from 95 cases (59.4%) in cerebrospinal fluid cultures and from 57 cases (35.6%) in blood cultures. The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87) and 27% (21/78), respectively. Fifty-five cases (34.4%) had one or more risk factors for purulent meningitis, 113 cases (70.6%) had one or more extra-cranial infectious foci, and 18 cases (11.3%) had underlying diseases. The most common clinical symptoms were fever (147 cases, 91.9%), followed by lethargy (98 cases, 61.3%) and vomiting (61 cases, 38.1%). Sixty-nine cases (43.1%) experienced intracranial complications during hospitalization, with subdural effusion and/or empyema being the most common complication [43 cases (26.9%)], followed by hydrocephalus in 24 cases (15.0%), brain abscess in 23 cases (14.4%), and cerebral hemorrhage in 8 cases (5.0%). Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old, with rates of 91% (39/43) and 83% (20/24), respectively. SP strains exhibited complete sensitivity to vancomycin (100%, 75/75), linezolid (100%, 56/56), and meropenem (100%, 6/6). High sensitivity rates were also observed for levofloxacin (81%, 22/27), moxifloxacin (82%, 14/17), rifampicin (96%, 25/26), and chloramphenicol (91%, 21/23). However, low sensitivity rates were found for penicillin (16%, 11/68) and clindamycin (6%, 1/17), and SP strains were completely resistant to erythromycin (100%, 31/31). The rates of discharge with cure and improvement were 22.5% (36/160) and 66.2% (106/160), respectively, while 18 cases (11.3%) had adverse outcomes. CONCLUSIONS: Pediatric PM is more common in children aged 3 months to under 3 years. Intracranial complications are more frequently observed in children under 1 year old. Fever is the most common clinical manifestation of PM, and subdural effusion/emphysema and hydrocephalus are the most frequent complications. Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates. Adverse outcomes can be noted in more than 10% of PM cases. SP strains are high sensitivity to vancomycin, linezolid, meropenem, levofloxacin, moxifloxacin, rifampicin, and chloramphenicol.


Subject(s)
Empyema , Hydrocephalus , Meningitis, Pneumococcal , Subdural Effusion , Infant , Female , Male , Humans , Child , Infant, Newborn , Adolescent , Meningitis, Pneumococcal/drug therapy , Meningitis, Pneumococcal/epidemiology , Meropenem , Vancomycin , Levofloxacin , Linezolid , Moxifloxacin , Retrospective Studies , Rifampin , Streptococcus pneumoniae , Chloramphenicol
9.
Int J Hyperthermia ; 40(1): 2211753, 2023.
Article in English | MEDLINE | ID: mdl-37211351

ABSTRACT

OBJECTIVE: To investigate the influencing factors of ultrasound-guided HIFU (USgHIFU) ablation for adenomyosis with a non-perfused volume ratio (NPVR)≥50%. METHODS: A total of 299 patients with adenomyosis who underwent USgHIFU ablation were enrolled. Quantitative signal intensity (SI) analysis was performed on T2WI and dynamic enhancement type. The energy efficiency factor (EEF) was defined as the ultrasound energy delivered for ablating 1 mm3 of tissue. NPVR ≥ 50% was used as the criterion for technical success. Adverse effects and complications were recorded. Logistic regression analyses of variables were conducted to identify the factors affecting NPVR ≥ 50%. RESULTS: The median NPVR was 53.5% (34.7%). There were 159 cases in the NPVR ≥ 50% group and 140 cases in the NPVR < 50% group. The EEF in NPVR < 50.0% group was significantly higher than that in NPVR ≥ 50% group (p < 0.05). The incidence of intraoperative adverse effects and postoperative adverse events in the NPVR < 50% group were higher than those in the NPVR ≥ 50% group (p < 0.05 for both). Logistic regression analysis showed that abdominal wall thickness, SI difference on T2WI between adenomyosis and rectus abdominis, and enhancement type on T1WI were protective factors for NPVR ≥ 50% (p < 0.05), while the history of childbirth was an independent risk factor (p < 0.001). CONCLUSIONS: Compared with NPVR < 50%, NPVR ≥ 50% did not increase the intraprocedural and postprocedural adverse reactions. The possibility of NPVR ≥ 50% was higher in patients with thinner abdominal walls, showed slight enhancement of adenomyosis on T1WI, with a history of childbirth, or in whom the SI difference on T2WI between adenomyosis and rectus abdominis was more minor.


Subject(s)
Adenomyosis , High-Intensity Focused Ultrasound Ablation , Female , Pregnancy , Humans , Adenomyosis/diagnostic imaging , Adenomyosis/surgery , High-Intensity Focused Ultrasound Ablation/adverse effects , Ultrasonography , Risk Factors , Delivery, Obstetric , Treatment Outcome , Magnetic Resonance Imaging , Retrospective Studies
10.
Cell Mol Life Sci ; 79(7): 375, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35727412

ABSTRACT

The SLC25A32 dysfunction is associated with neural tube defects (NTDs) and exercise intolerance, but very little is known about disease-specific mechanisms due to a paucity of animal models. Here, we generated homozygous (Slc25a32Y174C/Y174C and Slc25a32K235R/K235R) and compound heterozygous (Slc25a32Y174C/K235R) knock-in mice by mimicking the missense mutations identified from our patient. A homozygous knock-out (Slc25a32-/-) mouse was also generated. The Slc25a32K235R/K235R and Slc25a32Y174C/K235R mice presented with mild motor impairment and recapitulated the biochemical disturbances of the patient. While Slc25a32-/- mice die in utero with NTDs. None of the Slc25a32 mutations hindered the mitochondrial uptake of folate. Instead, the mitochondrial uptake of flavin adenine dinucleotide (FAD) was specifically blocked by Slc25a32Y174C/K235R, Slc25a32K235R/K235R, and Slc25a32-/- mutations. A positive correlation between SLC25A32 dysfunction and flavoenzyme deficiency was observed. Besides the flavoenzymes involved in fatty acid ß-oxidation and amino acid metabolism being impaired, Slc25a32-/- embryos also had a subunit of glycine cleavage system-dihydrolipoamide dehydrogenase damaged, resulting in glycine accumulation and glycine derived-formate reduction, which further disturbed folate-mediated one-carbon metabolism, leading to 5-methyltetrahydrofolate shortage and other folate intermediates accumulation. Maternal formate supplementation increased the 5-methyltetrahydrofolate levels and ameliorated the NTDs in Slc25a32-/- embryos. The Slc25a32K235R/K235R and Slc25a32Y174C/K235R mice had no glycine accumulation, but had another formate donor-dimethylglycine accumulated and formate deficiency. Meanwhile, they suffered from the absence of all folate intermediates in mitochondria. Formate supplementation increased the folate amounts, but this effect was not restricted to the Slc25a32 mutant mice only. In summary, we established novel animal models, which enabled us to understand the function of SLC25A32 better and to elucidate the role of SLC25A32 dysfunction in human disease development and progression.


Subject(s)
Folic Acid , Neural Tube Defects , Animals , Humans , Mice , Carbon/metabolism , Flavin-Adenine Dinucleotide/metabolism , Folic Acid/metabolism , Formates/metabolism , Glycine/metabolism , Mitochondria/metabolism , Neural Tube Defects/genetics , Neural Tube Defects/metabolism
11.
Phytother Res ; 37(9): 4133-4148, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37189016

ABSTRACT

Inflammation is a key contributor to diabetic kidney disease pathogenesis, including reactive oxidation stress (ROS)-mediated nuclear factor-κB (NF-κB) signaling pathway. In this study, we examined the effect of Astragaloside IV (AS-IV) on anti-inflammatory and anti-oxidative properties under high glucose (HG) condition and the potential mechanism in glomerular mesangial cells (GMCs). We showed that AS-IV concentration-dependently reduced GMCs proliferation, restrained ROS release and hydrogen peroxide content, and suppressed pro-inflammatory cytokines as well as pro-fibrotic factors expression, which were associated with the inhibition of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling activation. Accordingly, both NF-κB overexpression by using RNA plasmid and Nrf2 gene silencing by using RNA interference weakened the ability of AS-IV to ameliorate HG-induced oxidative stress, inflammation, and cell proliferation. Furthermore, phosphatidylinositide 3-kinases (PI3K)/serine/threonine protein kinase (Akt) and extracellular regulated protein kinases (ERK) signaling pathway regulated the process of AS-IV-induced Nrf2 activation and antioxidant capacity, which evidenced by using PI3K inhibitor LY294002 or ERK inhibitor PD98059 that largely abolished the AS-IV efficacy. Taken together, these results indicated that AS-IV protected against HG-induced GMCs damage by inhibiting ROS/NF-kB-induced increases of inflammatory cytokines, fibrosis biomarkers, and cell proliferation via up-regulation of Nrf2-dependent antioxidant enzyme expression, which were mediated by PI3K/Akt and ERK signaling pathway activation.


Subject(s)
NF-kappa B , Proto-Oncogene Proteins c-akt , Humans , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Mesangial Cells/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Phosphatidylinositol 3-Kinase/metabolism , Oxidative Stress , Cytokines/metabolism , Glucose/metabolism , Inflammation/metabolism
12.
Sensors (Basel) ; 23(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050576

ABSTRACT

Exosomes derived from cancer cells have been recognized as a promising biomarker for minimally invasive liquid biopsy. Herein, a novel sandwich-type biosensor was fabricated for highly sensitive detection of exosomes. Amino-functionalized Fe3O4 nanoparticles were synthesized as a sensing interface with a large surface area and rapid enrichment capacity, while two-dimensional MXene nanosheets were used as signal amplifiers with excellent electrical properties. Specifically, CD63 aptamer attached Fe3O4 nanoprobes capture the target exosomes. MXene nanosheets modified with epithelial cell adhesion molecule (EpCAM) aptamer were tethered on the electrode surface to enhance the quantification of exosomes captured with the detection of remaining protein sites. With such a design, the proposed biosensor showed a wide linear range from 102 particles µL-1 to 107 particles µL-1 for sensing 4T1 exosomes, with a low detection limit of 43 particles µL-1. In addition, this sensing platform can determine four different tumor cell types (4T1, Hela, HepG2, and A549) using surface proteins corresponding to aptamers 1 and 2 (CD63 and EpCAM) and showcases good specificity in serum samples. These preliminary results demonstrate the feasibility of establishing a sensitive, accurate, and inexpensive electrochemical sensor for detecting exosome concentrations and species. Moreover, they provide a significant reference for exosome applications in clinical settings, such as liquid biopsy and early cancer diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Exosomes , Nanoparticles , Humans , Exosomes/chemistry , Epithelial Cell Adhesion Molecule/metabolism , Nanoparticles/chemistry , Biosensing Techniques/methods , Limit of Detection , Aptamers, Nucleotide/chemistry
13.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4187-4200, 2023 Aug.
Article in Zh | MEDLINE | ID: mdl-37802787

ABSTRACT

This study aimed to explore the mechanism of Qilongtian Capsules in treating acute lung injury(ALI) based on network pharmacology prediction and in vitro experimental validation. Firstly, UPLC-Q-TOF-MS/MS was used to analyze the main chemical components of Qilongtian Capsules, and related databases were used to obtain its action targets and ALI disease targets. STRING database was used to build a protein-protein interaction(PPI) network. Metascape database was used to conduct enrichment analysis of Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG). AutoDock software was used to perform molecular docking verification on the main active components and key targets. Then, the RAW264.7 cells were stimulated with lipopolysaccharide(LPS) for in vitro experiments. Cell viability was measured by MTT and ROS level was measured by DCFH-DA. NO content was measured by Griess assay, and IL-1ß, IL-6, and TNF-α mRNA expression was detected by RT-PCR. The predicted targets were preliminarily verified by investigating the effect of Qilongtian Capsules on downstream cytokines. Eighty-four compounds were identified by UPLC-Q-TOF-MS/MS. Through database retrieval, 44 active components with 589 target genes were screened out. There were 560 ALI disease targets, and 65 intersection targets. PPI network topology analysis revealed 10 core targets related to ALI, including STAT3, JUN, VEGFA, CASP3, and MMP9. KEGG enrichment analysis showed that Qilongtian Capsules mainly exerted an anti-ALI effect by regulating cancer pathway, AGE-RAGE, MAPK, and JAK-STAT signaling pathways. The results of molecular docking showed that the main active components in Qilongtian Capsules, including crenulatin, ginsenoside F_1, ginsenoside Rb_1, ginsenoside Rd, ginsenoside Rg_1, ginsenoside Rg_3, notoginsenoside Fe, notoginsenoside G, notoginsenoside R_1, notoginsenoside R_2, and notoginsenoside R_3, had good binding affinities with the corresponding protein targets STAT3, JUN, VEGFA, CASP3, and MMP9. Cellular experiments showed that Qilongtian Capsules at 0.1, 0.25, and 0.5 mg·mL~(-1) reduced the release of NO, while Qilongtian Capsules at 0.25 and 0.5 mg·mL~(-1) reduced ROS production, down-regulated mRNA expression of IL-1ß, IL-6, TNF-α, and inhibited the inflammatory cascade. In summary, Qilongtian Capsules may exert therapeutic effects on ALI through multiple components and targets.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal , Ginsenosides , Humans , Tumor Necrosis Factor-alpha , Caspase 3 , Matrix Metalloproteinase 9 , Interleukin-6 , Molecular Docking Simulation , Network Pharmacology , Reactive Oxygen Species , Tandem Mass Spectrometry , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics , Capsules , RNA, Messenger , Drugs, Chinese Herbal/pharmacology
14.
Acta Pharmacol Sin ; 43(9): 2289-2301, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35132192

ABSTRACT

Connexin 43 (Cx43) is the most important protein in the gap junction channel between cardiomyocytes. Abnormalities of Cx43 change the conduction velocity and direction of cardiomyocytes, leading to reentry and conduction block of the myocardium, thereby causing arrhythmia. It has been shown that IL-1ß reduces the expression of Cx43 in astrocytes and cardiomyocytes in vitro. However, whether caspase-1 and IL-1ß affect connexin 43 after myocardial infarction (MI) is uncertain. In this study we investigated the effects of VX765, a caspase-1 inhibitor, on the expression of Cx43 and cell-to-cell communication after MI. Rats were treated with VX765 (16 mg/kg, i.v.) 1 h before the left anterior descending artery (LAD) ligation, and then once daily for 7 days. The ischemic heart was collected for histochemical analysis and Western blot analysis. We showed that VX765 treatment significantly decreased the infarct area, and alleviated cardiac dysfunction and remodeling by suppressing the NLRP3 inflammasome/caspase-1/IL-1ß expression in the heart after MI. In addition, VX765 treatment markedly raised Cx43 levels in the heart after MI. In vitro experiments were conducted in rat cardiac myocytes (RCMs) stimulated with the supernatant from LPS/ATP-treated rat cardiac fibroblasts (RCFs). Pretreatment of the RCFs with VX765 (25 µM) reversed the downregulation of Cx43 expression in RCMs and significantly improved intercellular communication detected using a scrape-loading/dye transfer assay. We revealed that VX765 suppressed the activation of p38 MAPK signaling in the heart tissue after MI as well as in RCMs stimulated with the supernatant from LPS/ATP-treated RCFs. Taken together, these data show that the caspase-1 inhibitor VX765 upregulates Cx43 expression and improves cell-to-cell communication in rat heart after MI via suppressing the IL-1ß/p38 MAPK pathway.


Subject(s)
Caspase 1 , Connexin 43 , Myocardial Infarction , Animals , Rats , Adenosine Triphosphate/pharmacology , Arrhythmias, Cardiac , Caspase 1/metabolism , Caspase 1/pharmacology , Caspase Inhibitors/pharmacology , Caspases , Cell Communication/drug effects , Connexin 43/genetics , Connexin 43/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Myocardial Infarction/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Serpins , Viral Proteins , Gene Expression/drug effects
15.
BMC Nephrol ; 23(1): 41, 2022 01 21.
Article in English | MEDLINE | ID: mdl-35062888

ABSTRACT

BACKGROUND: The kidney is the main site for the removal of chromogranin A (CgA). Previous studies have found that patients with renal impairment displayed elevated concentrations of CgA in plasma and that CgA concentrations reflect a deterioration of renal function. In this study, we aimed to estimate serum CgA levels and to evaluate the role of serum CgA in the early diagnosis of diabetic nephropathy (DN). METHODS: A total of 219 patients with type 2 diabetes mellitus (T2DM) were included in this cross-sectional study. These patients were classified into normoalbuminuria (n = 121), microalbuminuria (n = 73), or macroalbuminuria (n = 25) groups based on their urine albumin to creatinine ratios (UACRs). The degree of DN is reflected by UACR. A control group consisted of 45 healthy subjects. The serum CgA levels were measured by ELISA, and other key parameters were assayed. RESULTS: Serum CgA levels were higher in patients with T2DM than in control subjects, and a statistically significant difference among the studied subgroups regarding CgA was found (P < 0.05). The levels of serum CgA increased gradually with the degree of DN (P < 0.001). Serum CgA levels showed a moderate-intensity positive correlation with UACRs (P < 0.001). A cutoff level of 3.46 ng/ml CgA showed 69.86% sensitivity and 66.12% specificity to detect DN in the early stage. CONCLUSION: The levels of serum CgA increased gradually with the degree of DN and can be used as a biomarker in the early detection of DN.


Subject(s)
Albuminuria/blood , Chromogranin A/blood , Diabetes Mellitus, Type 2/blood , Diabetic Nephropathies/blood , Aged , Correlation of Data , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/etiology , Early Diagnosis , Female , Humans , Male , Middle Aged
16.
Inorg Chem ; 59(7): 4995-5003, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32163270

ABSTRACT

Because of the permission of the manipulations of modular construction on the atomic level, covalent organic frameworks (COFs) have attracted extensive attention in the electrocatalytic field. Owing to the lack of metal sites in pristine COFs constructed only by metal-free organic building units, it generally exhibits extremely low electrocatalytic activity. Thereby, linking metal sites on the backbone of pyrolysis-free COFs but not loading them on the surface to enhance the electrocatalytic activity is highly desirable but still remains a huge challenge. To this end, herein, we report an efficient and general cation-exchange strategy to synthesize Ni/Fe metal-ion-incorporated COFs (NixFe1-x@COF-SO3) for the oxygen evolution reaction (OER) based on the fundamental structure design of COFs. Impressively, the turnover frequency (TOF) value in Ni0.5Fe0.5@COF-SO3 reaches 0.14 s-1 at the overpotential of 300 mV, which outperforms most recently reported OER electrocatalysts, indicative of ultrahigh metal-atom utilization efficiency.

17.
Nature ; 516(7530): 267-71, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25252977

ABSTRACT

Post-translational histone modifications have a critical role in regulating transcription, the cell cycle, DNA replication and DNA damage repair. The identification of new histone modifications critical for transcriptional regulation at initiation, elongation or termination is of particular interest. Here we report a new layer of regulation in transcriptional elongation that is conserved from yeast to mammals. This regulation is based on the phosphorylation of a highly conserved tyrosine residue, Tyr 57, in histone H2A and is mediated by the unsuspected tyrosine kinase activity of casein kinase 2 (CK2). Mutation of Tyr 57 in H2A in yeast or inhibition of CK2 activity impairs transcriptional elongation in yeast as well as in mammalian cells. Genome-wide binding analysis reveals that CK2α, the catalytic subunit of CK2, binds across RNA-polymerase-II-transcribed coding genes and active enhancers. Mutation of Tyr 57 causes a loss of H2B mono-ubiquitination as well as H3K4me3 and H3K79me3, histone marks associated with active transcription. Mechanistically, both CK2 inhibition and the H2A(Y57F) mutation enhance H2B deubiquitination activity of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, suggesting a critical role of this phosphorylation in coordinating the activity of the SAGA complex during transcription. Together, these results identify a new component of regulation in transcriptional elongation based on CK2-dependent tyrosine phosphorylation of the globular domain of H2A.


Subject(s)
Casein Kinase II/metabolism , Histones/chemistry , Histones/metabolism , Transcription Elongation, Genetic , Tyrosine/metabolism , Amino Acid Sequence , Cell Line , Conserved Sequence , Histones/genetics , Humans , Molecular Sequence Data , Phosphorylation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Tyrosine/chemistry , Ubiquitination/genetics
18.
Am J Forensic Med Pathol ; 41(4): 249-258, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32568883

ABSTRACT

Anaphylaxis is a serious reaction that may cause death in half an hour without diagnostic characteristic in autopsies. Mast cell (MC) degranulation combined with immunoglobulin E (IgE) plays the key roles in anaphylaxis. Unavailability of serum and instability of measured serum in postmortem diagnoses sometimes limit the opinion of medical experts. Allergic tissues are more accessible than serum, and there is a little research on degranulated mast cells and IgE in different human tissues, whereas we hardly know whether the expression will keep stable over the increasing postmortem interval (PMI). In this research, we examined the mast cell counts and degranulation rates and gE contents in human throat, lung, and intestine tissues and preliminarily investigated the correlation of these markers with PMI in anaphylaxis-associated death. Allergic samples showed a significant increase in mast cell degranulation accompanied by an increase in IgE levels than the control group, but the expression was not significantly correlated with increasing PMI only in throat tissues. Elevated mast cell degranulation combined with increased IgE levels may be a reliable biomarker for forensic diagnosis of human tissues due to IgE-mediated allergic sudden death.


Subject(s)
Anaphylaxis/pathology , Cell Degranulation , Immunoglobulin E/metabolism , Mast Cells/pathology , Pharynx/pathology , Postmortem Changes , Adolescent , Adult , Aged , Case-Control Studies , Child , Child, Preschool , Female , Humans , Immunohistochemistry , Infant , Infant, Newborn , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Larynx/metabolism , Larynx/pathology , Lung/pathology , Male , Middle Aged , Pharynx/metabolism , Young Adult
19.
Immunology ; 156(4): 402-412, 2019 04.
Article in English | MEDLINE | ID: mdl-30575026

ABSTRACT

Hyperactivation of the type 2 immune response is the major mechanism of allergic asthma, in which both group 2 innate lymphoid cells (ILC2s) and type 2 helper T (Th2) cells participate. Myeloid-derived suppressor cells (MDSCs) alleviate asthma by suppressing Th2 cells. However, the potential effects of MDSCs on the biological functions of ILC2s remain largely unknown. Here, we examined the roles of MDSCs (MDSCs) in the modulation of ILC2 function. Our results showed that polymorphonuclear (PMN)-MDSCs, but not monocytic (M-) MDSCs, effectively suppressed the cytokine production of ILC2s both in vitro and in vivo, thereby alleviating airway inflammation. Further analyses showed that cyclo-oxygenase-1 may mediate the suppressive effects of PMN-MDSCs on ILC2 responses. Our findings demonstrated that PMN-MDSCs may serve as a potent therapeutic target for the treatment of ILC2-driven allergic asthma.


Subject(s)
Allergens/immunology , Asthma/immunology , Immunity, Innate/immunology , Inflammation/immunology , Lymphocytes/immunology , Myeloid-Derived Suppressor Cells/immunology , Respiratory System/immunology , Animals , Asthma/pathology , Cell Movement/immunology , Cells, Cultured , Cytokines/biosynthesis , Cytokines/immunology , Disease Models, Animal , Flow Cytometry , Humans , Inflammation/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
20.
Inorg Chem ; 58(17): 11500-11507, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31415153

ABSTRACT

Transition-metal-organic frameworks (MOFs) have been regarded as one of the most intriguing electrocatalysts because of its low cost and diversity in functional organic groups and metal centers. Different from the common strategies of tuning the ratio of metal centers in multivariate MOFs, here, ultralow-content Fe2O3 is decorated on the surface of monometallic Ni-MOF-74 based on the fast "phenol-iron (Fe)" surface reaction between Fe2+ and the surface hydroxyl group in Ni-MOF-74. Benefiting from this flexible method, the Fe loading can be finely modulated and thus a series of Fe-decorated Ni-MOF-74 with different Fe contents are prepared. The optimized 0.6 wt % Fe2O3@Ni-MOF-74 with the Fe loading of 0.6 wt % only needs the overpotential of 264 mV to deliver 10 mA cm-2, which obviously outperforms Fe-free Ni-MOF-74 (323 mV) and other Fe2O3@Ni-MOF-74 and is even superior to the commercial IrO2 benchmark (300 mV). X-ray photoelectron spectroscopy results disclose that Fe decoration can obviously modulate the electronic structure of Ni center in Ni-MOF-74, thereby resulting in enhanced oxygen evolution reaction activity. This work opens up a new avenue to fabricate excellent MOF-based electrocatalysts for direct utilization in an electrocatalytic process.

SELECTION OF CITATIONS
SEARCH DETAIL