Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(40): e2206990119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161913

ABSTRACT

Rapid detection of pathogenic bacteria within a few minutes is the key to control infectious disease. However, rapid detection of pathogenic bacteria in clinical samples is quite a challenging task due to the complex matrix, as well as the low abundance of bacteria in real samples. Herein, we employ a label-free single-particle imaging approach to address this challenge. By tracking the scattering intensity variation of single particles in free solution, the morphological heterogeneity can be well identified with particle size smaller than the diffraction limit, facilitating the morphological identification of single bacteria from a complex matrix in a label-free manner. Furthermore, the manipulation of convection in free solution enables the rapid screening of low-abundance bacteria in a small field of view, which significantly improves the sensitivity of single-particle detection. As a proof of concept demonstration, we are able to differentiate the group B streptococci (GBS)-positive samples within 10 min from vaginal swabs without using any biological reagents. This is the most rapid and low-cost method to the best of our knowledge. We believe that such a single-particle imaging approach will find wider applications in clinical diagnosis and disease control due to its high sensitivity, rapidity, simplicity, and low cost.


Subject(s)
Bacteria , Communicable Diseases , Single-Cell Analysis , Bacteria/isolation & purification , Bacteria/pathogenicity , Communicable Diseases/diagnostic imaging , Female , Humans , Particle Size , Single-Cell Analysis/methods , Vaginal Smears
2.
Antimicrob Agents Chemother ; 68(7): e0042824, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38899925

ABSTRACT

Delafloxacin, a fluoroquinolone antibiotic to treat skin infections, exhibits a broad-spectrum antimicrobial activity. The first randomized, open-label phase I clinical trial was conducted to assess the safety and pharmacokinetics (PK) of intravenous delafloxacin in the Chinese population. A population pharmacokinetic (PopPK) model based on the clinical trial was conducted by NONMEM software. Monte Carlo simulation was performed to evaluate the antibacterial effects of delafloxacin at different doses in different Chinese populations. The PK characteristics of delafloxacin were best described by a three-compartment model with mixed linear and nonlinear clearance. Body weight was included as a covariate in the model. We simulated the AUC0-24h in a steady state at five doses in patient groups of various weights. The results indicated that for patients weighing 70 kg and treated with methicillin-resistant Staphylococcus aureus (MRSA) infections, a minimum dose of 300 mg achieved a PTA > 90% at MIC90 of 0.25 µg/mL, suggesting an ideal bactericidal effect. For patients weighing less than 60 kg, a dose of 200 mg achieved a PTA > 90% at MIC90 of 0.25 µg/mL, also suggesting an ideal bactericidal effect. Additionally, this trial demonstrated the high safety of delafloxacin in single-dose and multiple-dose groups of Chinese. Delafloxacin (300 mg, q12h, iv) was recommended for achieving optimal efficacy in Chinese bacterial skin infections patients. To ensure optimal efficacy, an individualized dose of 200 mg (q12h, iv) could be advised for patients weighing less than 60 kg, and 300 mg (q12h, iv) for those weighing more than 60 kg.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Healthy Volunteers , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Monte Carlo Method , Humans , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/pharmacology , Fluoroquinolones/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Adult , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Female , Middle Aged , Administration, Intravenous , Young Adult , Area Under Curve , Body Weight/drug effects
3.
Br J Clin Pharmacol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831641

ABSTRACT

AIMS: Bruton's tyrosine kinase inhibitors (BTKIs), including first-generation ibrutinib, second-generation acalabrutinib and zanubrutinib, may be involved in the mechanisms of action related to adverse events (AEs) of the cardiovascular system. We aimed to characterize the cardiovascular AEs of BTKIs reported in the US Food and Drug Administration (FDA) Adverse Event Reporting System, and to compare the cardiovascular risks of BTKIs. METHODS: Across all indications of three FDA-approved BTKIs, primary suspect drugs were extracted over two periods: from January 2013 to December 2022 (after the approval of the first BTKI), and from January 2020 to December 2022 (all three BTKIs on the market). Disproportionality was measured by reporting odds ratios (RORs) and information components. Additional analyses were performed without incorporating patients with underlying cardiovascular disease (CVD). RESULTS: A total of 10 353 cases included the uses of ibrutinib, acalabrutinib and zanubrutinib. Ibrutinib was significantly associated with 47 cardiovascular AEs. Acalabrutinib was associated with new signals, including cardiac failure (ROR = 1.82 [1.13-2.93]), pulmonary oedema (ROR = 2.15 [1.19-3.88]), ventricular extrasystoles (ROR = 5.18 [2.15-12.44]), heart rate irregular (ROR = 3.05 [1.53-6.11]), angina pectoris (ROR = 3.18 [1.71-5.91]) and cardiotoxicity (ROR = 25.22 [17.14-37.10]). In addition, cardiovascular events had an earlier onset in acalabrutinib users. Zanubrutinib was only associated with atrial fibrillation. Acalabrutinib and zanubrutinib had lower ROR values than ibrutinib. The AE signals were generally consistent between the population receiving and not receiving CVD medications. CONCLUSIONS: Potential cardiovascular risks identified in this study were not clearly noted on the label of marketed acalabrutinib. Caution should be paid to the cardiovascular risks of BTKIs having been or being developed.

4.
J Cell Physiol ; 237(1): 965-982, 2022 01.
Article in English | MEDLINE | ID: mdl-34514592

ABSTRACT

Previous studies have shown that administration of antimetabolite methotrexate (MTX) caused a reduced trabecular bone volume and increased marrow adiposity (bone/fat switch), for which the underlying molecular mechanisms and recovery potential are unclear. Altered expression of microRNAs (miRNAs) has been shown to be associated with dysregulation of osteogenic and/or adipogenic differentiation by disrupting target gene expression. First, the current study confirmed the bone/fat switch following MTX treatment in precursor cell culture models in vitro. Then, using a rat intensive 5-once daily MTX treatment model, this study aimed to identify miRNAs associated with bone damage and recovery (in a time course over Days 3, 6, 9, and 14 after the first MTX treatment). RNA isolated from bone samples of treated and control rats were subjected to miRNA array and reverse transcription-polymerase chain reaction validation, which identified five upregulated miRNA candidates, namely, miR-155-5p, miR-154-5p, miR-344g, miR-6215, and miR-6315. Target genes of these miRNAs were predicted using TargetScan and miRDB. Then, the protein-protein network was established via STRING database, after which the miRNA-key messenger RNA (mRNA) network was constructed by Cytoscape. Functional annotation and pathway enrichment analyses for miR-6315 were performed by DAVID database. We found that TGF-ß signaling was the most significantly enriched pathway and subsequent dual-luciferase assays suggested that Smad2 was the direct target of miR-6315. Our current study showed that miR-6315 might be a vital regulator involved in bone and marrow fat formation. Also, this study constructed a comprehensive miRNA-mRNA regulatory network, which may contribute to the pathogenesis/prognosis of MTX-associated bone loss and bone marrow adiposity.


Subject(s)
MicroRNAs , Animals , Gene Expression Profiling , Gene Regulatory Networks , Methotrexate/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Osteogenesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats
5.
Cancer Immunol Immunother ; 71(5): 1115-1128, 2022 May.
Article in English | MEDLINE | ID: mdl-34581869

ABSTRACT

Head and neck cancers are a type of life-threatening cancers characterized by an immunosuppressive tumor microenvironment. Only less than 20% of the patients respond to immune checkpoint blockade therapy, indicating the need for a strategy to increase the efficacy of immunotherapy for this type of cancers. Previously, we identified a type B CpG-oligodeoxynucleotide (CpG-ODN) called CpG-2722, which has the universal activity of eliciting an immune response in grouper, mouse, and human cells. In this study, we further characterized and compared its cytokine-inducing profiles with different types of CpG-ODNs. The antitumor effect of CpG-2722 was further investigated alone and in combination with an immune checkpoint inhibitor in a newly developed syngeneic orthotopic head and neck cancer animal model. Along with other inflammatory cytokines, CpG-2722 induces the gene expressions of interleukin-12 and different types of interferons, which are critical for the antitumor response. Both CpG-2722 and anti-programmed death (PD)-1 alone suppressed tumor growth. Their tumor suppression efficacies were further enhanced when CpG-2722 and anti-PD-1 were used in combination. Mechanistically, CpG-2722 shaped a tumor microenvironment that is favorable for the action of anti-PD-1, which included promoting the expression of different cytokines such as IL-12, IFN-ß, and IFN-γ, and increasing the presence of plasmacytoid dendritic cells, M1 macrophages, and CD8 positive T cells. Overall, CpG-2722 provided a priming effect for CD8 positive T cells by sharpening the tumor microenvironment, whereas anti-PD-1 released the brake for their tumor-killing effect, resulting in an enhanced efficacy of the combined CpG-2722 and anti-PD-1.


Subject(s)
Head and Neck Neoplasms , Immune Checkpoint Inhibitors , Animals , Cell Line, Tumor , Head and Neck Neoplasms/drug therapy , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-12/pharmacology , Mice , Oligodeoxyribonucleotides/pharmacology , Tumor Microenvironment
6.
FASEB J ; 35(2): e21317, 2021 02.
Article in English | MEDLINE | ID: mdl-33421207

ABSTRACT

Lipocalin-2 (LCN2) has been implicated in promoting apoptosis and neuroinflammation in neurological disorders; however, its role in neural transplantation remains unknown. In this study, we cultured and differentiated Lund human mesencephalic (LUHMES) cells into human dopaminergic-like neurons and found that LCN2 mRNA was progressively induced in mouse brain after the intrastriatal transplantation of human dopaminergic-like neurons. The induction of LCN2 protein was detected in a subset of astrocytes and neutrophils infiltrating the core of the engrafted sites, but not in neurons and microglia. LCN2-immunoreactive astrocytes within the engrafted sites expressed lower levels of A1 and A2 astrocytic markers. Recruitment of microglia, neutrophils, and monocytes after transplantation was attenuated in LCN2 deficiency mice. The expression of M2 microglial markers was significantly elevated and survival of engrafted neurons was markedly improved after transplantation in LCN2 deficiency mice. Brain type organic cation transporter (BOCT), the cell surface receptor for LCN2, was induced in dopaminergic-like neurons after differentiation, and treatment with recombinant LCN2 protein directly induced apoptosis in dopaminergic-like neurons in a dose-dependent manner. Our results, therefore, suggested that LCN2 is a neurotoxic factor for the engrafted neurons and a modulator of neuroinflammation. LCN2 inhibition may be useful in reducing rejection after neural transplantation.


Subject(s)
Graft Rejection/metabolism , Lipocalin-2/metabolism , Lipocalin-2/physiology , Neurons/metabolism , Neurons/transplantation , Animals , Apoptosis/genetics , Apoptosis/physiology , Brain/cytology , Brain/metabolism , Cells, Cultured , Flow Cytometry , Graft Rejection/genetics , Humans , Immunohistochemistry , In Situ Nick-End Labeling , Lipocalin-2/genetics , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
7.
J Cell Physiol ; 236(8): 5966-5979, 2021 08.
Article in English | MEDLINE | ID: mdl-33438203

ABSTRACT

Intensive use of methotrexate (MTX) and/or dexamethasone (DEX) for treating childhood malignancies is known to cause chondrocyte apoptosis and growth plate dysfunction leading to bone growth impairments. However, mechanisms remain vague and it is unclear whether MTX and DEX combination treatment could have additive effects in the growth plate defects. In this study, significant cell apoptosis was induced in mature ATDC5 chondrocytes after treatment for 48 h with 10-5 M MTX and/or 10-6 M DEX treatment. PCR array assays with treated cells plus messenger RNA and protein expression confirmation analyses identified chemokine CXCL12 having the most prominent induction in each treatment group. Conditioned medium from treated chondrocytes stimulated migration of RAW264.7 osteoclast precursor cells and formation of osteoclasts, and these stimulating effects were inhibited by the neutralizing antibody for CXCL12. Additionally, while MTX and DEX combination treatment showed some additive effects on apoptosis induction, it did not have additive or counteractive effects on CXCL12 expression and its functions in enhancing osteoclastic recruitment and formation. In young rats treated acutely with MTX, there was increased expression of CXCL12 in the tibial growth plate, and more resorbing chondroclasts were found present at the border between the hypertrophic growth plate and metaphysis bone. Thus, the present study showed an association between induced chondrocyte apoptosis and stimulated osteoclastic migration and formation following MTX and/or DEX treatment, which could be potentially or at least partially linked molecularly by CXCL12 induction. This finding may contribute to an enhanced mechanistic understanding of bone growth impairments following MTX and/or DEX therapy.


Subject(s)
Chemokine CXCL12/drug effects , Chondrocytes/drug effects , Dexamethasone/pharmacology , Methotrexate/pharmacology , Animals , Apoptosis/drug effects , Bone Development/drug effects , Chondrocytes/metabolism , Chondrogenesis/drug effects , Growth Plate/drug effects , Mice , Osteoclasts/metabolism , Osteogenesis/drug effects , Rats
8.
J Cell Physiol ; 236(5): 3740-3751, 2021 05.
Article in English | MEDLINE | ID: mdl-33078406

ABSTRACT

Cancer chemotherapy can significantly impair the bone formation and cause myelosuppression; however, their recovery potentials and mechanisms remain unclear. This study investigated the roles of the ß-catenin signaling pathway in bone and bone marrow recovery potentials in rats treated with antimetabolite methotrexate (MTX) (five once-daily injections, 0.75 mg/kg) with/without ß-catenin inhibitor indocyanine green (ICG)-001 (oral, 200 mg/kg/day). ICG alone reduced trabecular bone volume and bone marrow cellularity. In MTX-treated rats, ICG suppressed bone volume recovery on Day 11 after the first MTX injection. ICG exacerbated MTX-induced decreases on Day 9 osteoblast numbers on bone surfaces, their formation in vitro from bone marrow stromal cells (osteogenic differentiation/mineralization), as well as expression of osteogenesis-related markers Runx2, Osx, and OCN in bone, and it suppressed their subsequent recoveries on Day 11. On the other hand, ICG did not affect MTX-induced increased osteoclast density and the level of the osteoclastogenic signal (RANKL/OPG expression ratio) in bone, suggesting that ICG inhibition of ß-catenin does nothing to abate the increased bone resorption induced by MTX. ICG also attenuated bone marrow cellularity recovery on Day 11, which was associated with the suppressed recovery of CD34+ or c-Kit+  hematopoietic progenitor cell contents. Thus, ß-catenin signaling is important for osteogenesis and hematopoiesis recoveries following MTX chemotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Hematopoiesis , Methotrexate/therapeutic use , Osteogenesis , Signal Transduction , beta Catenin/metabolism , Animals , Antineoplastic Agents/pharmacology , Bone Marrow/drug effects , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Calcification, Physiologic/drug effects , Cancellous Bone/drug effects , Cell Count , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Hematopoiesis/drug effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Methotrexate/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Osteoprotegerin/metabolism , Pyrimidinones/administration & dosage , Pyrimidinones/pharmacology , RANK Ligand/metabolism , Rats , Signal Transduction/drug effects
9.
Proc Natl Acad Sci U S A ; 115(34): E8027-E8036, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30087184

ABSTRACT

Activated T cells undergo metabolic reprogramming and effector-cell differentiation but the factors involved are unclear. Utilizing mice lacking DUSP6 (DUSP6-/-), we show that this phosphatase regulates T cell receptor (TCR) signaling to influence follicular helper T (TFH) cell differentiation and T cell metabolism. In vitro, DUSP6-/- CD4+ TFH cells produced elevated IL-21. In vivo, TFH cells were increased in DUSP6-/- mice and in transgenic OTII-DUSP6-/- mice at steady state. After immunization, DUSP6-/- and OTII-DUSP6-/- mice generated more TFH cells and produced more antigen-specific IgG2 than controls. Activated DUSP6-/- T cells showed enhanced JNK and p38 phosphorylation but impaired glycolysis. JNK or p38 inhibitors significantly reduced IL-21 production but did not restore glycolysis. TCR-stimulated DUSP6-/- T cells could not induce phosphofructokinase activity and relied on glucose-independent fueling of mitochondrial respiration. Upon CD28 costimulation, activated DUSP6-/- T cells did not undergo the metabolic commitment to glycolysis pathway to maintain viability. Unexpectedly, inhibition of fatty acid oxidation drastically lowered IL-21 production in DUSP6-/- TFH cells. Our findings suggest that DUSP6 connects TCR signaling to activation-induced metabolic commitment toward glycolysis and restrains TFH cell differentiation via inhibiting IL-21 production.


Subject(s)
Cell Differentiation/physiology , Dual Specificity Phosphatase 6 , Glycolysis/physiology , Receptors, Antigen, T-Cell , Signal Transduction/physiology , T-Lymphocytes, Helper-Inducer , Animals , Antibody Formation/physiology , CD28 Antigens/genetics , CD28 Antigens/immunology , CD28 Antigens/metabolism , Dual Specificity Phosphatase 6/genetics , Dual Specificity Phosphatase 6/immunology , Dual Specificity Phosphatase 6/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Interleukins/genetics , Interleukins/immunology , Interleukins/metabolism , MAP Kinase Kinase 4/genetics , MAP Kinase Kinase 4/immunology , MAP Kinase Kinase 4/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/immunology , Mitochondria/metabolism , Oxygen Consumption/physiology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Helper-Inducer/cytology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Int J Mol Sci ; 22(20)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34681655

ABSTRACT

Intensive methotrexate (MTX) treatment for childhood malignancies decreases osteogenesis but increases adipogenesis from the bone marrow stromal cells (BMSCs), resulting in bone loss and bone marrow adiposity. However, the underlying mechanisms are unclear. While microRNAs (miRNAs) have emerged as bone homeostasis regulators and miR-542-3p was recently shown to regulate osteogenesis in a bone loss context, the role of miR-542-3p in regulating osteogenesis and adipogenesis balance is not clear. Herein, in a rat MTX treatment-induced bone loss model, miR-542-3p was found significantly downregulated during the period of bone loss and marrow adiposity. Following target prediction, network construction, and functional annotation/ enrichment analyses, luciferase assays confirmed sFRP-1 and Smurf2 as the direct targets of miR-542-3p. miRNA-542-3p overexpression suppressed sFRP-1 and Smurf2 expression post-transcriptionally. Using in vitro models, miR-542-3p treatment stimulated osteogenesis but attenuated adipogenesis following MTX treatment. Subsequent signalling analyses revealed that miR-542-3p influences Wnt/ß-catenin and TGF-ß signalling pathways in osteoblastic cells. Our findings suggest that MTX treatment-induced bone loss and marrow adiposity could be molecularly linked to miR-542-3p pathways. Our results also indicate that miR-542-3p might be a therapeutic target for preserving bone and attenuating marrow fat formation during/after MTX chemotherapy.


Subject(s)
Adipogenesis/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Methotrexate/pharmacology , MicroRNAs/metabolism , Osteogenesis/drug effects , Ubiquitin-Protein Ligases/metabolism , 3' Untranslated Regions , Animals , Antagomirs/metabolism , Bone and Bones/metabolism , Cell Differentiation/drug effects , Cell Line , Down-Regulation/drug effects , Female , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Models, Biological , Rats , Rats, Sprague-Dawley , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Wnt Signaling Pathway/drug effects
11.
FASEB J ; 33(12): 14653-14667, 2019 12.
Article in English | MEDLINE | ID: mdl-31693867

ABSTRACT

Dual-specificity phosphatases (DUSPs) regulate the activity of various downstream kinases through serine or threonine or tyrosine dephosphorylation. Loss of function and aberrant expression of DUSPs has been implicated in cancer progression and poor survival, yet the function of DUSP22 in prostate cancer (PCa) cells is not clear. Gene Expression Omnibus and cBioPortal microarray database analyses showed that DUSP22 expression was lower in PCa tissues than normal prostate tissues, and altered DUSP22 expression was associated with shorter progression-free and disease-free survival of patients with PCa. Exogenous DUSP22 expression in LNCaP, PC3, and C4-2B PCa cells inhibited cellular proliferation and colony formation, supporting a growth inhibitory role for DUSP22 in PCa cells. DUSP22 expression significantly attenuated epidermal growth factor (EGF) receptor (EGFR) and its downstream ERK1/2 signaling by dephosphorylation. However, DUSP22 failed to suppress the growth of CWR22Rv1 and DU145 cells with elevated phosphorylated (p-)ERK1/2 levels. A serine-to-alanine mutation at position 58, a potential ERK1/2-targeted phosphorylation site in DUSP22, was sufficient to suppress growth of CWR22Rv1 cells with elevated p-ERK1/2 levels, suggesting a mutually antagonistic relationship between DUSP22 and ERK1/2 dependent on phosphorylation status. We showed that DUSP22 can suppress prostate-specific antigen gene expression through phosphatase-dependent pathways, suggesting that DUSP22 is an important regulator of the androgen receptor (AR) in PCa cells. Mechanistically, DUSP22 can interact with AR as a regulatory partner and interfere with EGF-induced AR phosphorylation at Tyr534, suggesting that DUSP22 serves as a crucial suppressor of both EGFR and AR-dependent signaling in PCa cells via dephosphorylation. Our findings indicate that loss of function of DUSP22 in PCa cells leads to aberrant activation of both EGFR-ERKs and AR signaling and ultimately progression of PCa, supporting the potential for novel therapeutic design of harnessing DUSP22 in the treatment of PCa.-Lin, H.-P., Ho, H.-M., Chang, C.-W., Yeh, S.-D., Su, Y.-W., Tan, T.-H., Lin, W.-J. DUSP22 suppresses prostate cancer proliferation by targeting the EGFR-AR axis.


Subject(s)
Dual-Specificity Phosphatases/metabolism , ErbB Receptors/metabolism , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Cell Proliferation , Dual-Specificity Phosphatases/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics , Phosphorylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Binding
12.
J Sep Sci ; 43(16): 3183-3196, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32495501

ABSTRACT

Proton pump inhibitors, including omeprazole, rabeprazole, lansoprazole, and pantoprazole, achieved simultaneous enantioselective determination in the human plasma by chiral liquid chromatography-tandem mass spectrometry. The four corresponding stable isotope-labeled proton pump inhibitors were adopted as the internal standards. Each enantiomer and the internal standards were extracted with acetonitrile containing 0.1% ammonia, then separated with a Chiralpak IC column (5 µm, 4.6 mm × 150 mm) within 10 min. The mobile phase was composed of acetonitrile-ammonium acetate (10 mM) containing 0.2% acetic acid (50:50, v/v). To quantify all enantiomers, an API 4000 tandem mass spectrometer was used, and multiple reaction monitoring transitions were performed on m/z 360.1→242.1, 384.1→200.1, 370.1→252.1, and 346.1→198.1, respectively. No significant matrix effect was observed for all analytes. The calibration curve for all enantiomers were linear from 1.25 to 2500 ng/mL. The precisions for intra- and inter-run were < 14.2%, and the accuracy fell in the interval of -5.3 to 8.1%. Stability of samples was confirmed under the storage and processing conditions. The developed method was also suitable for separation and determination of ilaprazole enantiomers. The validated method combining the equilibrium dialysis method was applied to the protein binding ratio studies of four pairs proton pump inhibitor enantiomers in human plasma.


Subject(s)
Lansoprazole/blood , Omeprazole/blood , Pantoprazole/blood , Rabeprazole/blood , Chromatography, High Pressure Liquid , Humans , Molecular Structure , Stereoisomerism , Tandem Mass Spectrometry
13.
J Cell Physiol ; 234(9): 14445-14459, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30637723

ABSTRACT

Critical limb ischemia (CLI) is the advanced stage of peripheral artery disease spectrum and is defined by limb pain or impending limb loss because of compromised blood flow to the affected extremity. Current conventional therapies for CLI include amputation, bypass surgery, endovascular therapy, and pharmacological approaches. Although these conventional therapeutic strategies still remain as the mainstay of treatments for CLI, novel and promising therapeutic approaches such as proangiogenic gene/protein therapies and stem cell-based therapies have emerged to overcome, at least partially, the limitations and disadvantages of current conventional therapeutic approaches. Such novel CLI treatment options may become even more effective when other complementary approaches such as utilizing proper bioscaffolds are used to increase the survival and engraftment of delivered genes and stem cells. Therefore, herein, we address the benefits and disadvantages of current therapeutic strategies for CLI treatment and summarize the novel and promising therapeutic approaches for CLI treatment. Our analyses also suggest that these novel CLI therapeutic strategies show considerable advantages to be used when current conventional methods have failed for CLI treatment.

14.
J Cell Physiol ; 234(6): 7903-7914, 2019 06.
Article in English | MEDLINE | ID: mdl-30515810

ABSTRACT

Wound healing is a complex but a fine-tuned biological process in which human skin has the ability to regenerate itself following damage. However, in particular conditions such as deep burn or diabetes the process of wound healing is compromised. Despite investigations on the potency of a wide variety of stem cells for wound healing, adipose-derived stem cells (ASCs) seem to possess the least limitations for clinical applications, and literature showed that ASCs can improve the process of wound healing very likely by promoting angiogenesis and/or vascularisation, modulating immune response, and inducing epithelialization in the wound. In the present review, advantages and disadvantages of various stem cells which can be used for promoting wound healing are discussed. In addition, potential mechanisms of action by which ASCs may accelerate wound healing are summarised. Finally, clinical studies applying ASCs for wound healing and the associated limitations are reviewed.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic/physiology , Wound Healing/genetics , Adipocytes/cytology , Cell Differentiation/genetics , Humans , Neovascularization, Physiologic/genetics , Re-Epithelialization/genetics , Skin/growth & development , Skin/metabolism , Wound Healing/physiology
15.
J Cell Physiol ; 234(9): 16549-16561, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30784063

ABSTRACT

Methotrexate (MTX), a widely used antimetabolite in paediatric cancer to treatment, has been widely reported to cause bone loss and bone marrow (BM) microvascular (particularly sinusoids) damage. Investigations must now investigate how MTX-induced bone loss and microvasculature damage can be attenuated/prevented. In the present study, we examined the potency of icariin, an herbal flavonoid, in reducing bone loss and the dilation/damage of BM sinusoids in rats caused by MTX treatment. Groups of young rats were treated with five daily MTX injections (0.75 mg/kg) with and without icariin oral supplementation until Day 9 after the first MTX injection. Histological analyses showed a significant reduction in the bone volume/tissue volume (BV/TV) fraction (%) and trabecular number in the metaphysis trabecular bone of MTX-treated rats, but no significant changes in trabecular thickness and trabecular spacing. However, the BV/TV (%) and trabecular number were found to be significantly higher in MTX + icariin-treated rats than those of MTX alone-treated rats. Gene expression analyses showed that icariin treatment maintained expression of osteogenesis-related genes but suppressed the induction of adipogenesis-related genes in bones of MTX-treated rats. In addition, icariin treatment attenuated MTX-induced dilation of BM sinusoids and upregulated expression of endothelial cell marker CD31 in the metaphysis bone of icariin + MTX-treated rats. Furthermore, in vitro studies suggest that icariin treatment can potentially enhance the survival of cultured rat sinusoidal endothelial cells against cytotoxic effect of MTX and promote their migration and tube formation abilities, which is associated with enhanced production of nitric oxide.

16.
J Cell Physiol ; 234(7): 11276-11286, 2019 07.
Article in English | MEDLINE | ID: mdl-30565680

ABSTRACT

Cancer chemotherapy can cause significant damage to the bone marrow (BM) microvascular (sinusoidal) system. Investigations must now address whether and how BM sinusoidal endothelial cells (SECs) can be protected during chemotherapy. Herein we examined the potential protective effects of genistein, a soy-derived flavonoid, against BM sinusoidal damage caused by treatment with methotrexate (MTX). The groups of young adult rats were gavaged daily with genistein (20 mg/kg) or placebo. After 1 week, rats also received daily injections of MTX (0.75 mg/kg) or saline for 5 days and were killed after a further 4 days. Histological analyses showed that BM sinusoids were markedly dilated ( p < 0.001) in the MTX-alone group but were unaffected or less dilated in the genistein+MTX group. In control rats, genistein significantly enhanced expression of vascular endothelial growth factor (VEGF; p < 0.01), particularly in osteoblasts, and angiogenesis marker CD31 ( p < 0.001) in bone. In MTX-treated rats, genistein suppressed MTX-induced apoptosis of BM SECs ( p < 0.001 vs MTX alone group) and tended to increase expression of CD31 and VEGF ( p < 0.05). Our in vitro studies showed that genistein in certain concentrations protected cultured SECs from MTX cytotoxic effects. Genistein enhanced tube formation of cultured SECs, which is associated with its ability to induce expression of endothelial nitric oxide synthase and production of nitric oxide. These data suggest that genistein can protect BM sinusoids during MTX therapy, which is associated, at least partially, with its indirect effect of promoting VEGF expression in osteoblasts and its direct effect of enhancing nitric oxide production in SECs.


Subject(s)
Anticarcinogenic Agents/pharmacology , Antimetabolites, Antineoplastic/adverse effects , Bone Marrow/blood supply , Genistein/pharmacology , Methotrexate/adverse effects , Animals , Bone Marrow/drug effects , Endothelial Cells/drug effects , Male , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/biosynthesis , Osteoblasts/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/biosynthesis
17.
J Cell Biochem ; 120(3): 4180-4191, 2019 03.
Article in English | MEDLINE | ID: mdl-30260048

ABSTRACT

Cancer treatments with cytotoxic drugs have been shown to cause bone loss. However, effects on bone are less clear for ErbB-targeting tyrosine kinase inhibitors or their combination use with cytotoxic drugs. This study examined the effects of individual or combination treatments with breast cancer drugs lapatinib (a dual ErbB1/ErbB2 inhibitor) and paclitaxel (a microtubule-stabilizing cytotoxic agent) on bone and bone marrow of rats. Wistar rats received lapatinib (240 mg/kg) daily, paclitaxel (12 mg/kg) weekly, or their combination for 4 weeks, and effects on bone/bone marrow were examined at the end of week 4. Microcomputed tomographical structural analyses showed a reduction in trabecular bone volume in tibia following the lapatinib, paclitaxel or their combination treatments ( P < 0.05). Histomorphometry analyses revealed marked increases in bone marrow adipocyte contents in all treatment groups. Reverse transcription polymerase chain reaction gene expression studies with bone samples and cell culture studies with isolated bone marrow stromal cells showed that the all treatment groups displayed significantly reduced levels of osterix expression and osteogenic differentiation potential but increased expression levels of adipogenesis transcription factor peroxisome proliferator-activated receptor γ. In addition, these treatments suppressed the expression of Wnt10b and/or increased expression of Wnt antagonists (secreted frizzled-related protein 1, Dickkopf-related protein 1 and/or sclerostin). Furthermore, all treatment groups showed increased numbers of bone-resorbing osteoclasts on trabecular bone surfaces, although only the lapatinib group displayed increased levels of osteoclastogenic signal (receptor activator of nuclear factor κΒ ligand/osteoclastogenesis inhibitor osteoprotegrin expression ratio) in the bones. Thus, inhibiting ErbB1 and ErbB2 by lapatinib or blocking cell division by paclitaxel or their combination causes significant trabecular bone loss and bone marrow adiposity involving a switch in osteogenesis/adipogenesis potential, altered expression of some major molecules of the Wnt/ß-catenin signalling pathway, and increased recruitment of bone-resorbing osteoclasts.


Subject(s)
Adiposity/drug effects , Bone Marrow/metabolism , Bone Resorption/chemically induced , Lapatinib/pharmacology , Paclitaxel/pharmacology , Protein Kinase Inhibitors/pharmacology , Tubulin Modulators/pharmacology , Animals , Bone Morphogenetic Proteins/genetics , Drug Therapy, Combination , Gene Expression/drug effects , Genetic Markers/genetics , Intercellular Signaling Peptides and Proteins/genetics , Lapatinib/administration & dosage , Lapatinib/adverse effects , Membrane Proteins/genetics , PPAR gamma/genetics , Paclitaxel/administration & dosage , Paclitaxel/adverse effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Rats , Rats, Wistar , Survivin/genetics , Transcription Factors/genetics , Tubulin Modulators/administration & dosage , Tubulin Modulators/adverse effects , Wnt Proteins/genetics , Wnt Signaling Pathway/drug effects
18.
J Biochem Mol Toxicol ; 33(11): e22394, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31557376

ABSTRACT

Triptolide (TP), a major active ingredient of Tripterygium wilfordii, exerts potent immunosuppressive effects in the treatment of rheumatoid arthritis but is not widely used in clinical practice due to its multiorgan toxicity, particularly hepatotoxicity, nephrotoxicity, and reproductive toxicity. An LC-MS/MS approach was employed to explore the endocrine-disrupting effects of TP. The endocrine-disrupting effects of various concentrations (0-100 nM) of TP for 48 hour were firstly investigated using an in vitro model (H295R cell line). It was found that TP did not decrease cell viability. The transcriptional levels of steroidogenic enzymes in H295R cells were assessed by quantificational real-time polymerase chain reaction. The possible adrenal and endocrine effects of oral administration of TP (0, 50, and 500 µg/kg) for 28 days on both normal and collagen-induced arthritis (CIA) rats were also explored. The serum and adrenal tissue hormone levels (corticosterone and progesterone) and adrenal histopathology were analyzed, with the results that TP significantly decreased the level of cortisol in H295R cells and the level of plasma corticosterone in both normal and CIA rats. Histological alterations in adrenal cortex were observed at the dose of 500 µg/kg. Exposure to TP for 48 hour had an obvious inhibitory effect on the messenger RNA transcript levels of HSD3B2, CYP21A2, CYP17A1, and CYP11B1, which is essential for the synthesis of corticosteroids. In a word, TP leads to the disorder of corticosteroid synthesis and secretion, and corticosteroid may be a potential biomarker for the treatment of multiorgan toxicity of TP.


Subject(s)
Adrenal Cortex Hormones/metabolism , Diterpenes/toxicity , Gonadal Hormones/metabolism , Phenanthrenes/toxicity , Plant Extracts/toxicity , Adrenal Cortex/pathology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, Liquid , Epoxy Compounds/toxicity , Female , Gene Expression/drug effects , Humans , Progesterone Reductase/metabolism , RNA, Messenger/drug effects , RNA, Messenger/genetics , Rats , Rats, Wistar , Signal Transduction/drug effects , Steroid Hydroxylases/metabolism , Tandem Mass Spectrometry , Tripterygium/chemistry
19.
J Cell Physiol ; 233(3): 2133-2145, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28370021

ABSTRACT

Neurotrophins and their receptors are key molecules that are known to be critical in regulating nervous system development and maintenance and have been recognized to be also involved in regulating tissue formation and healing in skeletal tissues. Studies have shown that neurotrophins and their receptors are widely expressed in skeletal tissues, implicated in chondrogenesis, osteoblastogenesis, and osteoclastogenesis, and are also involved in regulating tissue formation and healing events in skeletal tissue. Increased mRNA expression for neurotrophins NGF, BDNF, NT-3, and NT-4, and their Trk receptors has been observed in injured bone tissues, and NT-3 and its receptor, TrkC, have been identified to have the highest induction at the injury site in a drill-hole injury repair model in both bone and the growth plate. In addition, NT-3 has also recently been shown to be both an osteogenic and angiogenic factor, and this neurotrophin can also enhance expression of the key osteogenic factor, BMP-2, as well as the major angiogenic factor, VEGF, to promote bone formation, vascularization, and healing of the injury site. Further studies, however, are needed to investigate if different neurotrophins have differential roles in skeletal repair, and if NT-3 can be a potential target of intervention for promoting bone fracture healing.


Subject(s)
Bone Remodeling/physiology , Bone and Bones/embryology , Chondrogenesis/physiology , Nerve Growth Factors/metabolism , Osteogenesis/physiology , Receptor, trkC/metabolism , Bone Morphogenetic Protein 2/biosynthesis , Bone and Bones/blood supply , Neovascularization, Physiologic/physiology , Nerve Growth Factors/genetics , Neurotrophin 3 , Osteoblasts/physiology , Receptor, trkC/genetics , Vascular Endothelial Growth Factor A/biosynthesis
20.
Anal Bioanal Chem ; 410(17): 3943-3951, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29651526

ABSTRACT

Surface plasmon resonance (SPR) has become a well-recognized label-free technique for measuring the binding kinetics between biomolecules since the invention of the first SPR-based immunosensor in 1980s. The most popular and traditional format for SPR analysis is to monitor the real-time optical signals when a solution containing ligand molecules is flowing over a sensor substrate functionalized with purified receptor molecules. In recent years, rapid development of several kinds of SPR imaging techniques have allowed for mapping the dynamic distribution of local mass density within single living cells with high spatial and temporal resolutions and reliable sensitivity. Such capability immediately enabled one to investigate the interaction between important biomolecules and intact cells in a label-free, quantitative, and single cell manner, leading to an exciting new trend of cell-based SPR bioanalysis. In this Trend Article, we first describe the principle and technical features of two types of SPR imaging techniques based on prism and objective, respectively. Then we survey the intact cell-based applications in both fundamental cell biology and drug discovery. We conclude the article with comments and perspectives on the future developments. Graphical abstract Recent developments in surface plasmon resonance (SPR) imaging techniques allow for label-free mapping the mass-distribution within single living cells, leading to great expansions in biomolecular interactions studies from homogeneous substrates functionalized with purified biomolecules to heterogeneous substrates containing individual living cells.


Subject(s)
Cell Biology , Surface Plasmon Resonance , Biosensing Techniques/methods , Cells , Drug Discovery , Humans , Surface Plasmon Resonance/methods
SELECTION OF CITATIONS
SEARCH DETAIL