Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 350
Filter
1.
Chemistry ; : e202402290, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092488

ABSTRACT

Organoboron compounds offer a new strategy to design optoelectronic materials with high fluorescence efficiency. In this paper, the organoboron compound B-BNBP with double B←N bridged bipyridine bearing four fluorine atoms as core unit is facilely synthesized and exhibits a narrowband emission spectrum and a high photoluminescence quantum yield (PLQY) of 86.53% in solution. Its polymorphic crystals were controllable prepared by different solution self-assembly methods. Two microcrystals possess different molecular packing modes, one-dimensional microstrips (1D-MSs) for H-aggregation and two-dimensional microdisks (2D-MDs) for J-aggregation, owing to abundant intermolecular interactions of four fluorine atoms sticking out conjugated plane. Their structure-property relationships were investigated by crystallographic analysis and theoretical calculation. Strong emission spectra with the full width at half maximum (FWHM) of less than 30 nm can also be observed in thin film and 2D-MDs. 1D-MSs possess thermally activated delayed fluorescence (TADF) property and exhibit superior optical waveguide performance with an optical loss of 0.061 dB/µm. This work enriches the diversity of polymorphic microcrystals and further reveals the structure-property relationship in organoboron micro/nano-crystals.

2.
Inorg Chem ; 63(4): 1784-1792, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38232070

ABSTRACT

Catalytic hydrogenation of nitrobenzene (Ph-NO2) to aniline (Ph-NH2) is a model reaction in the field of catalysis, in which the development of efficient catalysts remains a great challenge due to the lack of strategies to solve activity and selectivity problems. In this work, the mechanism of Ph-NO2 hydrogenation over Pt1 supported on phosphomolybdic acid (α-PMA) was proposed by density functional theory (DFT) calculations. The results show that the dissociation of the first and second N-O bonds is triggered by single H-induced and double H-induced mechanisms, respectively. The limiting potential of the reaction process is -0.19 V, which is the smallest potential in the field of Ph-NO2 reduction reaction to date. In the whole reaction process, the catalytic active site is the Pt atom, and polyoxometalate plays the role of an electronic sponge in the reaction. Additionally, based on experimentally confirmed Pt1/Na3PMA, the reduction capacity of Pd1/Na3PMA toward Ph-NO2 was predicted by DFT calculation. The distinctive adsorption patterns of Ph-NO2 on Pt1/Na3PMA and Pd1/Na3PMA were elucidated using the DOS diagram and fragment molecular orbital analysis. We anticipate that our theoretical calculations can provide novel perspectives for experimental researchers.

3.
Inorg Chem ; 63(30): 14032-14039, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39007651

ABSTRACT

Carbon dioxide (CO2) coupled with epoxide to generate cyclic carbonate stands out in carbon neutrality due to its 100% atom utilization. In this work, the mechanism of CO2 cycloaddition with propylene oxide (PO) cocatalyzed by windmill-shaped polyoxovanadate, [(C2N2H8)4(CH3O)4VIV4VV4O16]·4CH3OH (V8-1), and n-Bu4NX (X = Br, I) was thoroughly investigated using density functional theory (DFT) calculations. The ring-opening, CO2-insertion, and ring-closing steps of the process were extensively studied. Our work emphasizes the synergistic effect between V8-1 and n-Bu4NX (X = Br, I). Through the analysis of an independent gradient model based on Hirshfeld partition (IGMH), it was found that the attack of n-Bu4NX (X = Br, I) on Cß of PO triggers a distinct attractive interaction between the active fragment and the surrounding framework, serving as the primary driving force for the ring opening of PO. Furthermore, the effect of different cocatalysts was explored, with n-Bu4NI being more favorable than n-Bu4NBr. Moreover, the role of V8-1 in the CO2 cycloaddition reaction was clarified as not only acting as Lewis acid active sites but also serving as "electron sponges". This work is expected to advance the development of novel catalysts for organic carbonate formation.

4.
Inorg Chem ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087570

ABSTRACT

The conversion of CO2 into useful chemicals via photocatalysts is a promising strategy for resolving the environmental problems caused by the addition of CO2. Herein, a series of composite photocatalysts MOP@TpPa-CH3 based on MOP-NH2 and TpPa-CH3 through covalent bridging have been prepared via a facile room-temperature evaporation method and employed for photocatalytic CO2 reduction. The photocatalytic performances of MOP@TpPa-CH3 are greater than those of TpPa-CH3 and MOP-NH2, where the CO generation rate of MOP@TpPa-CH3 under 10% CO2 still reaches 119.25 µmol g-1 h-1, which is 2.18 times higher than that under pure CO2 (54.74 µmol g-1 h-1). To investigate the structural factors affecting the photocatalytic activity, MOP@TBPa-CH3 without C═O groups is synthesized, and the photoreduction performance is also evaluated. The controlling experimental results demonstrate that the excellent photoreduction CO2 performance of MOP@TpPa-CH3 in a 10% CO2 atmosphere is due to the presence of C═O groups in TpPa-CH3. This work offers a new design and construction strategy for novel MOP@COF composites.

5.
Phys Chem Chem Phys ; 26(11): 8716-8723, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416055

ABSTRACT

Carbon nanorings have attracted substantial interest from synthetic chemists due to their unique topological structures and distinct physical properties. An intriguing π-conjugated double-nanoring structure, denoted as [8]CPP-[10]cyclacene, was constructed via the integration of [8]cycloparaphenylene ([8]CPP) into [10]cyclacene. Using the external electric field stimuli-responsiveness of [8]CPP-[10]cyclacene, directional charge transfer can be induced, resulting in the emergence of intriguing properties. The effects of the external electric field in three specific directions were explored, vertically in the [8]CPP unit (Fy), vertically in the [10]cyclacene unit (Fz), and horizontally along the double nanorings diameter (Fx). Interestingly, the external electric field vertically to the [10]cyclacene unit significantly enhanced the first hyperpolarizability (ßtot) compared to that vertically to the [8]CPP unit. Notably, [8]CPP-[10]cyclacene under Fx exhibited significantly larger the ßtot values (1.48 × 105 a.u.) than those of vertical Fy and Fz. This work opens up a wide range of nonlinear optics, making it a compelling area to explore in the field of carbon nanomaterials.

6.
Inorg Chem ; 62(3): 1156-1164, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36625518

ABSTRACT

Iridium/nickel (Ir/Ni) metallaphotoredox dual catalysis overcomes the challenging reductive elimination (RE) of Ni(II) species and has made a breakthrough progress to construct a wide range of C-X (X = C, N, S, and P) bonds. However, the corresponding reaction mechanisms are still ambiguous and controversial because the systematic research on the nature of this synergistic catalysis is not sufficient. Herein, IrIII/NiII and IrIII/Ni0 metallaphotoredox catalysis have been theoretically explored taking the aryl esterification reaction of benzoic acid and aryl bromide as an example by a combination of density functional theory (DFT), molecular dynamics, and time-dependent DFT computations. It is found that an electron-transfer mechanism is applicable to IrIII/NiII metallaphotoredox catalysis, but an energy-transfer mechanism is applicable to IrIII/Ni0 combination. The IrIII/NiII metallaphotoredox catalysis succeeds to construct a NiI-NiIII catalytic cycle to avoid the challenging RE of Ni(II) species, while the RE occurs from triplet excited-state Ni(II) species in the IrIII/Ni0 metallaphotoredox catalysis. In addition, the lower lowest unoccupied molecular orbital energy level of Ni(III) species than that of Ni(II) species accelerates RE from Ni(III) one. The triplet excited-state Ni(II) species can resemble a Ni(III) center, considering the metal-to-ligand charge transfer character to promote the RE.


Subject(s)
Electrons , Electron Transport
7.
Inorg Chem ; 62(20): 7753-7763, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37154416

ABSTRACT

To elucidate the luminescence mechanism of highly efficient blue Cu(N^N)(POP)+-type thermally activated delayed fluorescence (TADF) materials, we have selected Cu(pytfmpz)(POP)+ (1) and Cu(pympz)(POP)+ (2) as targets to investigate the photophysical properties in both solution and solid phases. The self-consistent electrostatic potential (ESP) embedded charge within the quantum mechanics/molecular mechanics (QM/MM) method demonstrates a greater advantage over the charge equilibrium (QEQ) in accurately calculating atomic charges and reasonably describing the polarization effect, ultimately resulting in a favorable consistency between simulation and experimental measurements. After systematic and quantitative simulation, it has been found that complex 2, with an electron-donating group of -CH3, exhibits a much more blue-shifted spectrum and a significantly enhanced efficiency in comparison to complex 1 with -CF3. This is due to the widened HOMO-LUMO gap as well as the narrowed energy gap between the lowest singlet and triplet excited states (ΔEST), respectively. Then, the designed complex 3 is introduced with a stronger electron donor and larger tert-butyl group, which plays a key role in simultaneously suppressing the structural distortion and reducing the ΔEST. This leads to a faster reverse intersystem crossing process than that of the two experimental complexes in solution, turning out to be a new deep-blue-emitting material with excellent TADF performance.

8.
Inorg Chem ; 62(39): 15992-15999, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37735108

ABSTRACT

Metal-organic frameworks constructed from Zr usually possess excellent chemical and physical stability. Therefore, they have become attractive platforms in various fields. In this work, two families of hybrid materials based on ZrSQU have been designed and synthesized, named Im@ZrSQU and Cu@ZrSQU, respectively. Im@ZrSQU was prepared through the impregnation method and employed for proton conduction. Im@ZrSQU exhibited terrific proton conduction performance in an anhydrous environment, with the highest proton conduction value of 3.6 × 10-2 S cm-1 at 110 °C. In addition, Cu@ZrSQU was synthesized via the photoinduction method for the photoreduction of CO2, which successfully promoted the conversion of CO2 into CO and achieved the CO generation rate of up to 12.4 µmol g-1 h-1. The photocatalytic performance of Cu@ZrSQU is derived from the synergistic effect of Cu NPs and ZrSQU. Based on an in-depth study and discussion toward ZrSQU, we provide a versatile platform with applications in the field of proton conduction and photocatalysis, which will guide researchers in their further studies.

9.
J Chem Inf Model ; 63(14): 4392-4404, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37418660

ABSTRACT

Two-photon photodynamic therapy (TP-PDT), as a treatment technology with deep penetration and less damage, provides a broad prospect for cancer treatment. Nowadays, the development of TP-PDT suffers from the low two-photon absorption (TPA) intensity and short triplet state lifetime of photosensitizers (PSs) used in TP-PDT. Herein, we propose some novel modification strategies based on the thionated NpImidazole (the combination of naphthalimide and imidazole) derivatives to make efforts on those issues and obtain corresponding fluorescent probes for detecting ClO- and excellent PSs for TP-PDT. Density functional theory (DFT) and time-dependent DFT (TD-DFT) are used to help us characterize the photophysical properties and TP-PDT process of the newly designed compounds. Our results show that the introduction of different electron-donating groups at the position 4 of NpImidazole can effectively improve their TPA and emission properties. Specifically, 3s with a N,N-dimethylamino group has a large triplet state lifetime (τ = 699 µs) and TPA cross section value (δTPA = 314 GM), which can effectively achieve TP-PDT; additionally, 4s (with electron-donating group 2-oxa-6-azaspiro[3.3]heptane in NpImidazole) effectively realizes the dual-function of a PS for TP-PDT (τ = 25,122 µs, δTPA = 351 GM) and a fluorescent probe for detecting ClO- (Φf = 29% of the product 4o). Moreover, an important problem is clarified from a microscopic perspective, that is, why the transition property of 3s and 4s (1π-π*) from S1 to S0 is different from that of 1s and 2s (1n-π*). It is hoped that our work can provides valuable theoretical clues for the design and synthesis of heavy-atom-free NpImidazole-based PSs and fluorescent probes for the detection of hypochlorite.


Subject(s)
Photochemotherapy , Hypochlorous Acid , Fluorescent Dyes , Photosensitizing Agents/pharmacology , Photons
10.
Molecules ; 28(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37836811

ABSTRACT

Recently, non-fullerene-based organic solar cells (OSCs) have made great breakthroughs, and small structural differences can have dramatic impacts on the power conversion efficiency (PCE). We take ITIC and its isomers as examples to study their effects on the performance of OSCs. ITIC and NFBDT only differed in the side chain position, and they were used as models with the same donor molecule, PBDB-T, to investigate the main reasons for the difference in their performance in terms of theoretical methods. In this work, a detailed comparative analysis of the electronic structure, absorption spectra, open circuit voltage and interfacial parameters of the ITIC and NFBDT systems was performed mainly by combining the density functional theory/time-dependent density functional theory and molecular dynamics simulations. The results showed that the lowest excited state of the ITIC molecule possessed a larger ∆q and more hybrid FE/CT states, and PBDB-T/ITIC had more charge separation paths as well as a larger kCS and smaller kCR. The reason for the performance difference between PBDB-T/ITIC and PBDB-T/NFBDT was elucidated, suggesting that ITIC is a superior acceptor based on a slight modulation of the side chain and providing a guiding direction for the design of superior-performing small molecule acceptor materials.

11.
Angew Chem Int Ed Engl ; 62(31): e202307632, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37280179

ABSTRACT

In this work, we innovatively assembled two types of traditional photosensitizers, that is pyridine ruthenium/ferrum (Ru(bpy)3 2+ /Fe(bpy)3 2+ ) and porphyrin/metalloporphyrin complex (2HPor/ZnPor) by covalent linkage to get a series of dual photosensitizer-based three-dimensional metal-covalent organic frameworks (3D MCOFs), which behaved strong visible light-absorbing ability, efficient electron transfer and suitable band gap for highly efficient photocatalytic hydrogen (H2 ) evolution. Rubpy-ZnPor COF achieved the highest H2 yield (30 338 µmol g-1 h-1 ) with apparent quantum efficiency (AQE) of 9.68 %@420 nm, which showed one of the best performances among all reported COF based photocatalysts. Furthermore, the in situ produced H2 was successfully tandem used in the alkyne hydrogenation with ≈99.9 % conversion efficiency. Theoretical calculations reveal that both the two photosensitizer units in MCOFs can be photoexcited and thus contribute optimal photocatalytic activity. This work develops a general strategy and shows the great potential of using multiple photosensitive materials in the field of photocatalysis.

12.
J Org Chem ; 87(23): 16039-16046, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36379013

ABSTRACT

Pd-catalyzed borylation of fluorobenzene was theoretically studied. DFT calculations revealed that the reaction occurs through an unprecedented 3 + 6-membered ring transition state, in which one LiHMDS (HMDS = hexamethyldisilazane) acts as a ligand and another LiHMDS is essential to provide Li···N and Li···F interactions, overcoming the large destabilization of the strong phenyl-F bond distortion. The characteristic feature of LiHMDS was elucidated by comparing it with HMDS and NaHMDS analogues.


Subject(s)
Fluorobenzenes , Palladium , Palladium/chemistry , Models, Molecular , Ligands
13.
Inorg Chem ; 61(26): 10190-10197, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35729805

ABSTRACT

The IrIII/NiII-metallaphotoredox-catalyzed enantioselective decarboxylative arylation of α-amino acids has been systematically investigated using density functional theory calculations. The combination of oxidative quenching (IrIII-*IrIII-IrIV-IrIII) or reductive quenching (IrIII-*IrIII-IrII-IrIII) cycle with the nickel catalytic cycle (NiII-NiI-NiIII-NiII) is possible. The favorable reaction mechanism consists of three major processes: single-electron transfer, oxidative addition, and stepwise outer-sphere reductive elimination. The rate-determining step is the oxidative addition. Unexpectedly, the enantio-determining C-C bond formation occurs via an ion-pair intermediate involved in the stepwise outer-sphere reductive elimination process, which is unusual in the IrIII/NiII-metallaphotoredox catalysis. Furthermore, computational results reveal that the high enantioselectivity of this reaction is mainly dependent on the steric effect of substituents on substrates. This theoretical study provides useful knowledge for deep insights into the activity and selectivity of visible-light-mediated enantioselective metallaphotoredox dual catalysis at the molecular and atomic levels and benefits the development of asymmetric synthesis.


Subject(s)
Amino Acids , Nickel , Catalysis , Nickel/chemistry , Oxidation-Reduction , Stereoisomerism
14.
Inorg Chem ; 61(13): 5318-5325, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35302364

ABSTRACT

Herein, a N-rich metal-organic framework (MOF) with four kinds of cages, Zn4(ade)2(TCA)2(H2O) (NENU-1000, Hade = adenine, H3TCA = 4,4',4″-tricarboxytriphenylamine, NENU = Northeast Normal University), was prepared by the mixed-ligand strategy. Cationic dyes can be selectively absorbed by NENU-1000 at proper concentrations, but not neutral and anionic dyes, which perhaps can be assigned to the N-rich neutral framework of NENU-1000. When NENU-1000 was introduced to a relatively lower concentration of cationic dye solutions (e.g., rhodamine B or basic red 2), the colors of these systems faded quickly. Furthermore, the faded solutions can be used for the detection of methanol and other small alcohol molecules with either the naked eye or common UV-vis spectra. The effect of the length of carbon chain, the position of the -OH group, and the number of the hydroxyl group of the alcohols was explored for the color development rate. In addition, the performance of NENU-1000 in iodine sorption and release was also studied.


Subject(s)
Coloring Agents , Metal-Organic Frameworks , Alcohols , Carbon , Humans
15.
Inorg Chem ; 61(29): 11359-11365, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35819880

ABSTRACT

The photoreduction deposition method is employed to fabricate a family of silver nanoparticle (Ag NP)-modified polyoxometalate-based metal-organic framework (NENU-5) photocatalysts, named Ag/NENU-5. The title photocatalysts, Ag/NENU-5, can be used for the photocatalytic reduction of CO2 and are observed to efficiently reduce CO2 into CO, in which the highest reduction rate is 22.28 µmol g-1 h-1, 3 times greater than that of NENU-5. Photocatalytic reduction performances of CO2 have been extremely improved after the incorporation of Ag NPs as the cocatalyst. The enhancement of the photocatalytic reduction of CO2 has been attributed to the synergistic effects of Ag NPs and NENU-5, inhibiting the charge recombination during the photocatalytic process and increasing the reaction active sites. Furthermore, the influence of Ag NPs on the photocatalytic activity has also been investigated. The experimental results clearly reveal that the size of Ag NPs could exert a main effect on the photocatalytic activity, and the reasonable size of Ag NPs is able to enhance the photocatalytic reduction activity toward CO2 significantly.

16.
Inorg Chem ; 61(8): 3736-3745, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35175759

ABSTRACT

Constructing high-quality white organic light-emitting diodes (WOLEDs) remains a big challenge because of high demands on the electroluminescence (EL) performance including high efficiency, excellent spectral stability, and low roll-off simultaneously. To achieve effective energy transfer and trap-assisted recombination in the emissive layer, herein, four Ir(III) phosphors, namely, mOMe-Ir-PI (1), pOMe-Ir-PI (2), mOMe-Ir-PB (3), and pOMe-Ir-PB (4), were strategically designed via simple regulation of the substituent moiety and π conjugation of the chelated ligands. Their photophysical and EL properties were systematically investigated. When these phosphors are employed as doped emitters, the monochromic green organic light-emitting diodes not only exhibit a superior performance with the characteristics of 50.2 cd A-1, 39.2 lm W-1, and 15.1%, but also maintain a negligible roll-off ratio of 0.2% at 1000 cd m-2, which are better than those of commercial green Ir(ppy)2acac and Ir(ppy)3 in the same device configuration. Inspired by these outstanding performances, we successfully fabricated the warm WOLED utilizing 2 as a green component, affording a peak efficiency of 42.0 cd A-1, 29.3 lm W-1, and 18.6% and retaining at 39.9 cd A-1, 23.7 lm W-1, and 17.4% even at 1000 cd m-2. The results herein demonstrate the superiority of the molecular design and propose a simple method toward the development of promising Ir(III) phosphors for high-efficiency WOLEDs.

17.
Inorg Chem ; 61(50): 20299-20307, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36480739

ABSTRACT

Nondoped organic light-emitting diodes (OLEDs) are of paramount importance for display and lighting applications owing to their advantages of facile fabrication and outstanding stability. However, nondoped OLEDs achieving extraordinary electroluminescence (EL) performance and low turn-on voltage (Von) remain sparse. Here, three Ir(III) complexes featuring N-heterocyclic carbene (NHC) auxiliary ligands functionalized with electron-deficient aromatic sulfonyl or phosphine oxide groups are reported as promising emitters for nondoped OLEDs. All Ir(III) complexes exhibit green emission with relatively high neat film efficiency. Although the photoluminescence spectra of three complexes reveal similarities, there are distinct differences in the nondoped EL performance. The nondoped device N3 based on tBu-Ir-ISO displays the most eminent EL performances and presents a low Von of 2.1 V, a power efficiency of 30.7 lm W-1, and a maximum current efficiency of 27.0 cd A-1, which can be attributed to steric hindrance and balanced carrier-transporting ability induced by electron-deficient substituents. Moreover, doped devices D1-D3 also realize excellent EL performance. It is believed that the strategy reported herein is a simple and efficient way of constructing excellent Ir(III) complexes for nondoped phosphorescent OLEDs.

18.
Phys Chem Chem Phys ; 24(13): 7617-7623, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35293419

ABSTRACT

Photoredox/transition-metal dual catalysis could efficiently construct C-N bonds by a cross-coupling reaction. The limitations of low recovery, low utilization rate and high cost have hindered the application and development of low-cost and efficient transition metal catalytic cycles. The integration of heterogeneous metal and transition metal catalysis is an appealing alternative to realize the oxidation state modulation of active species. With the support of density functional theory (DFT) calculation, we have explored the mechanistic details of Ni-catalyzed C-N cross-coupling of aryl bromide and cyclic amine assisted by zinc powder. Zinc successfully regulates the oxidation state of NiII → NiI, thus achieving the NiI-NiIII-NiI catalytic cycle in the absence of light. In comparison, when the Ni(0) complex is employed as the initial catalyst, organic zinc reagents can still be involved in the transmetalation process to accelerate the cross-coupling reaction. We hope that such computational studies can provide theoretical reference for the design and development of low-cost and efficient catalytic systems for C-N cross-couplings.

19.
Phys Chem Chem Phys ; 24(43): 26853-26862, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36317503

ABSTRACT

The emergence and development of radical luminescent materials is a huge breakthrough toward high-performance organic light-emitting diodes (OLEDs) without spin-statistical limits. Herein, we design a series of radicals based on tris(2,4,6-trichlorophenyl)methyl (TTM) by combining skeleton-engineering and periphery-engineering strategies, and present some insights into how different chemical modifications can modulate the chemical stability and luminescence properties of radicals by quantum chemistry methods. Firstly, through the analysis of the geometric structure changes from the lowest doublet excited state (D1) to the doublet ground state (D0) states, the emission energy differences between the BN orientation isomers are explained, and it is revealed that the radical with a smaller dihedral angle difference can more effectively suppress the geometric relaxation of the excited states and bring a higher emission energy. Meanwhile, a comparison of the excited state properties in different radicals can help us to disclose the luminescence behavior, that is, the enhanced luminescent intensity of the radical is caused by the intensity borrowing between the charge transfer (CT) state and the dark locally excited (LE) state. In addition, an efficient algorithm for calculating the internal conversion rate (kIC) is introduced and implemented, and the differences in kIC values between designed radicals are explained. More specifically, the delocalization of hole and electron wave functions can reduce nonadiabatic coupling matrix elements (NACMEs), thus hindering the non-radiative decay process. Finally, the double-regulation of chemical stability and luminescence properties was realized through the synergistic effect of skeleton-engineering and periphery-engineering, and to screen the excellent doublet emitter (BN-41-MPTTM) theoretically.

20.
Chemistry ; 27(37): 9571-9579, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-33786898

ABSTRACT

Quantum mechanical and molecular dynamics simulations have been carried out on a series of anthracene-o-carborane derivatives (ANT-H, ANT-Ph, ANT-Me and ANT-TMS) with rare red-light emission in the solid state. The simulation of the heating process of the crystals and further comparison of the molecular structures and excited-state properties before and after heating help us to disclose the thermochromic behavior, that is, the red-shift emission is caused by elongation of the C1-C2 bond in the carborane moiety after heating. Thus, we believe that the molecular structure in the crystal is severely affected by heating. Transformation of the molecular conformation appears in the ANT-H crystal with increasing temperature. More specifically, the anthracene moiety moves from nearly parallel to the C1-C2 bond to nearly perpendicular, causing the short-wavelength emission to disappear after heating. As for the aggregation-induced emission phenomenon, the structures and photophysical properties were investigated comparatively in both the isolated and crystal states; the results suggested that the energy dissipation in crystal surroundings was greatly reduced through hindering structure relaxation from the excited to the ground state. We expect that discussion of the thermochromic behavior will provide a new analysis perspective for the molecular design of o-carborane derivatives.

SELECTION OF CITATIONS
SEARCH DETAIL