ABSTRACT
ABSTRACT: Mutations in the TP53 gene, particularly multihit alterations, have been associated with unfavorable clinical features and prognosis in patients diagnosed with myelodysplastic syndrome (MDS). Despite this, the role of TP53 gene aberrations in MDS with isolated deletion of chromosome 5 [MDS-del(5q)] remains unclear. This study aimed to assess the impact of TP53 gene mutations and their allelic state in patients with MDS-del(5q). To that end, a comprehensive analysis of TP53 abnormalities, examining both TP53 mutations and allelic imbalances, in 682 patients diagnosed with MDS-del(5q) was conducted. Twenty-four percent of TP53-mutated patients exhibited multihit alterations, whereas the remaining patients displayed monoallelic mutations. TP53-multihit alterations were predictive of an increased risk of leukemic transformation. The impact of monoallelic alterations was dependent on the variant allele frequency (VAF); patients with TP53-monoallelic mutations and VAF <20% exhibited behavior similar to TP53 wild type, and those with TP53-monoallelic mutations and VAF ≥20% presented outcomes equivalent to TP53-multihit patients. This study underscores the importance of considering TP53 allelic state and VAF in the risk stratification and treatment decision-making process for patients with MDS-del(5q).
Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 5 , Myelodysplastic Syndromes , Tumor Suppressor Protein p53 , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult , Alleles , Chromosomes, Human, Pair 5/genetics , Gene Frequency , Mutation , Myelodysplastic Syndromes/genetics , Prognosis , Tumor Suppressor Protein p53/geneticsABSTRACT
Prognostic impact of non-MPN driver gene mutations in primary myelofibrosis. MIPSS70: Mutation-Enhanced International Prognostic Score System.
Subject(s)
Primary Myelofibrosis , Humans , Prognosis , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/genetics , Mutation , Janus Kinase 2/genetics , Gene FrequencyABSTRACT
The molecular landscape of acute lymphoblastic leukemia (ALL) is highly heterogeneous, and genetic lesions are clinically relevant for diagnosis, risk stratification, and treatment guidance. Next-generation sequencing (NGS) has become an essential tool for clinical laboratories, where disease-targeted panels are able to capture the most relevant alterations in a cost-effective and fast way. However, comprehensive ALL panels assessing all relevant alterations are scarce. Here, we design and validate an NGS panel including single-nucleotide variants (SNVs), insertion-deletions (indels), copy number variations (CNVs), fusions, and gene expression (ALLseq). ALLseq sequencing metrics were acceptable for clinical use and showed 100% sensitivity and specificity for virtually all types of alterations. The limit of detection was established at a 2% variant allele frequency for SNVs and indels, and at a 0.5 copy number ratio for CNVs. Overall, ALLseq is able to provide clinically relevant information to more than 83% of pediatric patients, making it an attractive tool for the molecular characterization of ALL in clinical settings.
Subject(s)
DNA Copy Number Variations , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , INDEL Mutation , High-Throughput Nucleotide Sequencing , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Polymorphism, Single NucleotideABSTRACT
The prognosis of t(1;19)(q23;p13)/transcription factor 3-pre-B-cell leukaemia homeobox 1 (TCF3-PBX1) in adolescent and adult patients with acute lymphoblastic leukaemia (ALL) treated with measurable residual disease (MRD)-oriented trials remains controversial. In the present study, we analysed the outcome of adolescent and adult patients with t(1;19)(q23;p13) enrolled in paediatric-inspired trials. The patients with TCF3-PBX1 showed similar MRD clearance and did not have different survival compared with other B-cell precursor ALL patients. However, patients with TCF3-PBX1 had a significantly higher cumulative incidence of relapse, especially among patients aged ≥35 years carrying additional cytogenetic alterations. These patients might benefit from additional/intensified therapy (e.g. immunotherapy in first complete remission with or without subsequent haematopoietic stem cell transplantation).
Subject(s)
Chromosomes, Human, Pair 19 , Chromosomes, Human, Pair 1 , Neoplasm, Residual/therapy , Oncogene Proteins, Fusion/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Translocation, Genetic , Adolescent , Adult , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Chromosome Banding , Disease Management , Female , Humans , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Neoplasm, Residual/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Prognosis , Remission Induction , Treatment Outcome , Young AdultABSTRACT
In myelodysplastic syndromes (MDS), the 20q deletion [del(20q)] may cause deletion of the ASXL1 gene. We studied 153 patients with MDS and del(20q) to assess the incidence, prognostic value and impact on response to azacitidine (AZA) of ASXL1 chromosomal alterations and genetic mutations. Additionally, in vitro assay of the response to AZA in HAP1 (HAP1WT ) and HAP1 ASXL1 knockout (HAP1KN ) cells was performed. ASXL1 chromosomal alterations were detected in 44 patients (28·5%): 34 patients (22%) with a gene deletion (ASXL1DEL ) and 10 patients (6·5%) with additional gene copies. ASXL1DEL was associated with a lower platelet count. The most frequently mutated genes were U2AF1 (16%), ASXL1 (14%), SF3B1 (11%), TP53 (7%) and SRSF2 (6%). ASXL1 alteration due to chromosomal deletion or genetic mutation (ASXL1DEL /ASXL1MUT ) was linked by multivariable analysis with shorter overall survival [hazard ratio, (HR) 1·84; 95% confidence interval, (CI): 1·11-3·04; P = 0·018] and a higher rate for acute myeloid leukaemia progression (HR 2·47; 95% CI: 1·07-5·70, P = 0·034). ASXL1DEL /ASXL1MUT patients were correlated by univariable analysis with a worse response to AZA. HAP1KN cells showed more resistance to AZA compared to HAP1WT cells. In conclusion, ASXL1 alteration exerts a negative impact on MDS with del(20q) and could become useful for prognostic risk stratification and treatment decisions.
Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Azacitidine/therapeutic use , Chromosome Deletion , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Repressor Proteins/genetics , Aged , Aged, 80 and over , Female , Humans , Incidence , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/diagnosis , PrognosisABSTRACT
The landscape of medical sequencing has rapidly changed with the evolution of next generation sequencing (NGS). These technologies have contributed to the molecular characterization of the myelodysplastic syndromes (MDS) and chronic myelomonocytic leukaemia (CMML), through the identification of recurrent gene mutations, which are present in >80% of patients. These mutations contribute to a better classification and risk stratification of the patients. Currently, clinical laboratories include NGS genomic analyses in their routine clinical practice, in an effort to personalize the diagnosis, prognosis and treatment of MDS and CMML. NGS technologies have reduced the cost of large-scale sequencing, but there are additional challenges involving the clinical validation of these technologies, as continuous advances are constantly being made. In this context, it is of major importance to standardize the generation, analysis, clinical interpretation and reporting of NGS data. To that end, the Spanish MDS Group (GESMD) has expanded the present set of guidelines, aiming to establish common quality standards for the adequate implementation of NGS and clinical interpretation of the results, hoping that this effort will ultimately contribute to the benefit of patients with myeloid malignancies.
Subject(s)
High-Throughput Nucleotide Sequencing , Leukemia, Myelomonocytic, Chronic/genetics , Myelodysplastic Syndromes/genetics , Guidelines as Topic , Humans , SpainABSTRACT
STUDY QUESTION: Does dexamethasone (DXM) incubation avoid the reintroduction of leukemic malignant cells after ovarian tissue retransplantation in vivo? SUMMARY ANSWER: DXM incubation prior to retransplantation of ovarian tissue does not prevent reintroduction of leukemic cells. WHAT IS KNOWN ALREADY: Retransplantation of cryopreserved ovarian cortex from patients diagnosed with acute lymphoblastic leukemia (ALL) involves a risk of reintroducing malignant cells. DXM treatment is effective at inducing leukemic cell death in vitro. STUDY DESIGN, SIZE, DURATION: This was an experimental study where ovarian cortex fragments from patients with ALL were randomly allocated to incubation with or without DXM (n = 11/group) and grafted to 22 immunodeficient mice for 6 months. In a parallel experiment, 22 immunodeficient mice were injected i.p. with varying amounts of RCH-ACV ALL cells (human leukemia cell line) and maintained for 4 months. PARTICIPANTS/MATERIALS, SETTING, METHODS: Cryopreserved ovarian fragments from patients with ALL were exposed in vitro to 0.4 µM DXM or basal media (control) prior to xenograft into ovariectomized severe combined immunodeficiency (SCID) mice (experiment 1). After 6 months of monitoring, leukemia cell contamination was assessed in ovarian grafts and mouse organs by histology, PCR (presence of mouse mtDNA and absence of p53 were together considered a negative result for the presence of human cells) and detection of immunoglobulin monoclonality and specific ALL markers if present in the patient.In experiment 2, a series of 22 immunodeficient female mice was injected with specific doses of the leukemia cell line RCH-ACV (103 - 5 × 106, n = 4/group) to assess the engraftment competence of the SCID model. MAIN RESULTS AND THE ROLE OF CHANCE: ALL metastatic cells were detected, by PCR, in five DXM-treated and one control human ovarian tissue graft as well as in a control mouse liver, although malignant cell infiltration was not detected by histology in any sample after 6 months. In total, minimal residual disease was present in three DXM-treated and three control mice.RCH-ACV cells were detected in liver and spleen samples after the injection of as little as 103 cells, although only animals receiving 5 × 106 cells developed clinical signs of disease and metastases. LIMITATIONS, REASONS FOR CAUTION: This is an experimental study where the malignant potential of leukemic cells contained in human ovarian tissues has been assessed in immunodeficient mice. WIDER IMPLICATIONS OF THE FINDINGS: These results indicate that DXM incubation prior to retransplantation of ovarian tissue does not prevent reintroduction of leukemic cells. Therefore, caution should be taken in retransplanting ovarian tissue from patients with leukemia until safer systems are developed, as leukemic cells present in ovarian grafts were able to survive, proliferate and migrate after cryopreservation and xenograft. STUDY FUNDING/COMPETING INTEREST(S): Funded by the Regional Valencian Ministry of Education (PROMETEO/2018/137) and by the Spanish Ministry of Economy and Competitiveness (PI16/FIS PI16/01664 and PTQ-16-08222 for S.H. participation). There are no competing interests.
Subject(s)
Dexamethasone/therapeutic use , Fertility Preservation/methods , Ovary/transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/prevention & control , Animals , Cryopreservation , Disease Models, Animal , Female , Mice , Mice, SCIDABSTRACT
Somatic mutations in patients with myelodysplastic syndromes (MDS) undergoing allogeneic hematopoietic stem cell transplantation (HSTC) are associated with adverse outcome, but the role of chronic graft-versus-host disease (cGVHD) in this subset of patients remains unknown. We analyzed bone marrow samples from 115 patients with MDS collected prior to HSCT using next-generation sequencing. Seventy-one patients (61%) had at least one mutated gene. We found that patients with a higher number of mutated genes (more than 2) had a worse outcome (2 years overall survival [OS] 54.8% vs. 31.1%, p = 0.035). The only two significant variables in the multivariate analysis for OS were TET2 mutations (p = 0.046) and the development of cGVHD, considered as a time-dependent variable (p < 0.001), correlated with a worse and a better outcome, respectively. TP53 mutations also demonstrated impact on the cumulative incidence of relapse (CIR) (1 year CIR 47.1% vs. 9.8%, p = 0.006) and were related with complex karyotype (p = 0.003). cGVHD improved the outcome even among patients with more than 2 mutated genes (1-year OS 88.9% at 1 year vs. 31.3%, p = 0.02) and patients with TP53 mutations (1-year CIR 20% vs. 42.9%, p = 0.553). These results confirm that cGVHD could ameliorate the adverse impact of somatic mutations in patients with MDS with HSCT.
Subject(s)
Chromosome Aberrations , Graft vs Host Disease/genetics , Hematopoietic Stem Cell Transplantation , Myelodysplastic Syndromes/genetics , Allografts , Bone Marrow/pathology , Chronic Disease , Female , Graft vs Host Disease/pathology , High-Throughput Nucleotide Sequencing , Humans , Incidence , Male , Middle Aged , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/therapy , Retrospective StudiesABSTRACT
The platelet-derived growth factor receptor ß (PDGFRB) gene translocations lead to a spectrum of chronic myeloid neoplasms, frequently associated with eosinophilia. Clinical heterogeneity is associated with a molecular one. Here, we report a novel case of a patient harboring a t(5;8)(q33;p22) translocation, resulting in the PCM1/PDGFRB fusion. Conventional cytogenetics and RNA sequencing were performed to identify the chromosomes and the genes involved in the rearrangement, respectively. This study shows that the combination of different strategies is pivotal to fine-tune the diagnosis and the clinical management of the patient. After 1 year of treatment with imatinib, the patient achieves hematological and molecular remission. We present an attractive strategy to identify novel and/or cryptic fusions, which will be relevant for clinicians dealing with the diagnosis of the patients with myelodysplastic syndrome/myeloproliferative diseases with atypical manifestations.
Subject(s)
Autoantigens , Cell Cycle Proteins , Imatinib Mesylate/administration & dosage , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Oncogene Proteins, Fusion , Receptor, Platelet-Derived Growth Factor beta , Sequence Analysis, RNA , Autoantigens/genetics , Autoantigens/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomes, Human, Pair 5/genetics , Chromosomes, Human, Pair 5/metabolism , Chromosomes, Human, Pair 8/genetics , Chromosomes, Human, Pair 8/metabolism , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptor, Platelet-Derived Growth Factor beta/metabolism , Translocation, GeneticABSTRACT
Treatment with azacitidine (AZA) has been suggested to be of benefit for higher-risk myelodysplastic syndrome (HR-MDS) patients with chromosome 7 abnormalities (Abn 7). This retrospective study of 235 HR-MDS patients with Abn 7 treated with AZA (n = 115) versus best supportive care (BSC; n = 120), assessed AZA treatment as a time-varying variable in multivariable analysis. A Cox Regression model with time-interaction terms of overall survival (OS) at different time points confirmed that, while chromosome 7 cytogenetic categories (complex karyotype [CK] versus non-CK) and International Prognostic Scoring System risk (high versus intermediate-2) retained poor prognosis over time, AZA treatment had a favourable impact on OS during the first 3 years of treatment compared to BSC (Hazard ratio [HR] 0·5 P < 0·001 at 1 year, 0·7 P = 0·019 at 2 years; 0·73 P = 0·029 at 3 years). This benefit was present in all chromosome 7 categories, but tended to be greater in patients with CK (risk reduction of 82%, 68% and 53% at 1, 3 and 6 months in CK patients; 79% at 1 month in non-CK patients, P < 0·05 for all). AZA also significantly improved progression-free survival (P < 0·01). This study confirms a time-dependent benefit of AZA on outcome in patients with HR-MDS and cytogenetic abnormalities involving chromosome 7, especially for those with CK.
Subject(s)
Azacitidine/administration & dosage , Chromosomes, Human, Pair 7/genetics , Myelodysplastic Syndromes , Registries , Aged , Chromosome Aberrations , Disease-Free Survival , Female , Humans , Male , Middle Aged , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/mortality , Retrospective Studies , Risk Factors , Survival RateABSTRACT
Chronic myelomonocytic leukemia (CMML) is a myelodysplastic/myeloproliferative neoplasm with variable clinical course. To predict the clinical outcome, we previously developed a CMML-specific prognostic scoring system (CPSS) based on clinical parameters and cytogenetics. In this work, we tested the hypothesis that accounting for gene mutations would further improve risk stratification of CMML patients. We therefore sequenced 38 genes to explore the role of somatic mutations in disease phenotype and clinical outcome. Overall, 199 of 214 (93%) CMML patients carried at least 1 somatic mutation. Stepwise linear regression models showed that these mutations accounted for 15% to 24% of variability of clinical phenotype. Based on multivariable Cox regression analyses, cytogenetic abnormalities and mutations in RUNX1, NRAS, SETBP1, and ASXL1 were independently associated with overall survival (OS). Using these parameters, we defined a genetic score that identified 4 categories with significantly different OS and cumulative incidence of leukemic evolution. In multivariable analyses, genetic score, red blood cell transfusion dependency, white blood cell count, and marrow blasts retained independent prognostic value. These parameters were included into a clinical/molecular CPSS (CPSS-Mol) model that identified 4 risk groups with markedly different median OS (from >144 to 18 months, hazard ratio [HR] = 2.69) and cumulative incidence of leukemic evolution (from 0% to 48% at 4 years, HR = 3.84) (P < .001). The CPSS-Mol fully retained its ability to risk stratify in an independent validation cohort of 260 CMML patients. In conclusion, integrating conventional parameters and gene mutations significantly improves risk stratification of CMML patients, providing a robust basis for clinical decision-making and a reliable tool for clinical trials.
Subject(s)
Biomarkers, Tumor/genetics , Chromosome Aberrations , Leukemia, Myelomonocytic, Chronic/genetics , Mutation/genetics , Risk Assessment/methods , Adult , Aged , Aged, 80 and over , Clinical Decision-Making , Cohort Studies , Female , Follow-Up Studies , Humans , Leukemia, Myelomonocytic, Chronic/pathology , Male , Middle Aged , Neoplasm Grading , Phenotype , Prognosis , Risk Factors , Survival Rate , Young AdultABSTRACT
BACKGROUND: The antitumoral effects of different Toll-like receptor (TLRs) agonists is mediated by activating immune responses to suppress tumors growth, although TLR ligands may also have a direct effect on tumoral cells. Given that TLR signaling induces hematopoietic cell differentiations this may serve as a novel differentiation therapeutic approach for AML. METHODS: We investigated the effects of agonists for the ten human TLRs on the proliferation, apoptosis, cell cycle and differentiation of ten different types of myeloid leukemia cell lines (HL-60, U-937, KG-1, KG-1a, K-562, Kasumi-1, EOL-1, NB4, MOLM-13 and HEL). Proliferation was measured using the CellTiter 96® Aqueous One Solution Cell Proliferation Assay (Promega). Staining and analysis with a flow cytometer was used to identify cell cycle progression and apoptosis. Differentiation was measured by staining cells with the EuroFlow™ antibody panel for AML and analyzed by flow cytometry. FlowJo software was used to analyze the cytometric data. In all experiments, statistical significance was determined by a two-tailed t test. RESULTS: The activation of particular TLRs on some cell lines can induce growth inhibition and Imiquimod (a TLR 7 agonist) was the most effective agonist in all leukemic cell lines examined. Imiquimod was able to induce apoptosis, as well as to induce cell cycle alteration and upregulation of myeloid differentiation markers on some of the cell lines tested. CONCLUSIONS: Our results, together with the known efficacy of Imiquimod against many tumor entities, suggest that Imiquimod can be a potential alternative therapy to AML. This drug has a direct cytotoxic effect on leukemic cells, has the potential to induce differentiation, and can also stimulate the activation of cellular immune responses anti-AML.
ABSTRACT
Chromosomal translocations are rare in the myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML). With the exception of t(3q), translocations are not explicitly considered in the cytogenetic classification of the IPSS-R and their impact on disease progression and patient survival is unknown. The present study was aimed at determining the prognostic impact of translocations in the context of the cytogenetic classification of the IPSS-R. We evaluated 1,653 patients from the Spanish Registry of MDS diagnosed with MDS or CMML and an abnormal karyotype by conventional cytogenetic analysis. Translocations were identified in 168 patients (T group). Compared with the 1,485 patients with abnormal karyotype without translocations (non-T group), the T group had a larger proportion of patients with refractory anemia with excess of blasts and higher scores in both the cytogenetic and global IPSS-R. Translocations were associated with a significantly shorter survival and higher incidence of transformation into AML at univariate analysis but both features disappeared after multivariate adjustment for the IPSS-R cytogenetic category. Patients with single or double translocations other than t(3q) had an outcome similar to those in the non-T group in the intermediate cytogenetic risk category of the IPSS-R. In conclusion, the presence of translocations identifies a subgroup of MDS/CMML patients with a more aggressive clinical presentation that can be explained by a higher incidence of complex karyotypes. Single or double translocations other than t(3q) should be explicitly considered into the intermediate risk category of cytogenetic IPSS-R classification.
Subject(s)
Leukemia, Myelomonocytic, Chronic/genetics , Myelodysplastic Syndromes/genetics , Translocation, Genetic , Aged , Female , Humans , Karyotyping , Male , Middle Aged , Prognosis , Spain , Survival RateABSTRACT
Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic disorder with heterogeneous clinical, morphological and genetic characteristics. Clonal cytogenetic abnormalities are found in 20-30% of patients with CMML. Patients with low risk cytogenetic features (normal karyotype and isolated loss of Y chromosome) account for â¼80% of CMML patients and often fall into the low risk categories of CMML prognostic scores. We hypothesized that single nucleotide polymorphism arrays (SNP-A) karyotyping could detect cryptic chromosomal alterations with prognostic impact in these subgroup of patients. SNP-A were performed at diagnosis in 128 CMML patients with low risk karyotypes or uninformative results for conventional G-banding cytogenetics (CC). Copy number alterations (CNAs) and regions of copy number neutral loss of heterozygosity (CNN-LOH) were detected in 67% of patients. Recurrent CNAs included gains in regions 8p12 and 21q22 as well as losses in 10q21.1 and 12p13.2. Interstitial CNN-LOHs were recurrently detected in the following regions: 4q24-4q35, 7q32.1-7q36.3, and 11q13.3-11q25. Statistical analysis showed that some of the alterations detected by SNP-A associated with the patients' outcome. A shortened overall survival (OS) and progression free survival (PFS) was observed in cases where the affected size of the genome (considering CNAs and CNN-LOHs) was >11 Mb. In addition, presence of interstitial CNN-LOH was predictive of poor OS. Presence of CNAs (≥1) associated with poorer OS and PFS in the patients with myeloproliferative CMML. Overall, SNP-A analysis increased the diagnostic yield in patients with low risk cytogenetic features or uninformative CC and added prognostic value to this subset of patients.
Subject(s)
Chromosome Aberrations , Leukemia, Myelomonocytic, Chronic/genetics , Metaphase , Polymorphism, Single Nucleotide , Adult , Age Factors , Aged , Aged, 80 and over , Bone Marrow/pathology , DNA/genetics , DNA Copy Number Variations , Female , Humans , Karyotyping , Leukemia, Myelomonocytic, Chronic/mortality , Leukemia, Myelomonocytic, Chronic/pathology , Loss of Heterozygosity , Male , Middle Aged , Multivariate Analysis , Retrospective Studies , Survival AnalysisABSTRACT
The natural course of chronic myelomonocytic leukemia (CMML) is highly variable but a widely accepted prognostic scoring system for patients with CMML is not available. The main aim of this study was to develop a new CMML-specific prognostic scoring system (CPSS) in a large series of 558 patients with CMML (training cohort, Spanish Group of Myelodysplastic Syndromes) and to validate it in an independent series of 274 patients (validation cohort, Heinrich Heine University Hospital, Düsseldorf, Germany, and San Matteo Hospital, Pavia, Italy). The most relevant variables for overall survival (OS) and evolution to acute myeloblastic leukemia (AML) were FAB and WHO CMML subtypes, CMML-specific cytogenetic risk classification, and red blood cell (RBC) transfusion dependency. CPSS was able to segregate patients into 4 clearly different risk groups for OS (P < .001) and risk of AML evolution (P < .001) and its predictive capability was confirmed in the validation cohort. An alternative CPSS with hemoglobin instead of RBC transfusion dependency offered almost identical prognostic capability. This study confirms the prognostic impact of FAB and WHO subtypes, recognizes the importance of RBC transfusion dependency and cytogenetics, and offers a simple and powerful CPSS for accurately assessing prognosis and planning therapy in patients with CMML.
Subject(s)
Leukemia, Myelomonocytic, Chronic/diagnosis , Outcome Assessment, Health Care/methods , Risk Assessment/methods , Acute Disease , Adult , Aged , Aged, 80 and over , Cohort Studies , Erythrocyte Transfusion/statistics & numerical data , Female , Hemoglobins/analysis , Humans , Leukemia, Myeloid/blood , Leukemia, Myeloid/diagnosis , Leukemia, Myeloid/genetics , Leukemia, Myelomonocytic, Chronic/blood , Leukemia, Myelomonocytic, Chronic/genetics , Male , Middle Aged , Multivariate Analysis , Outcome Assessment, Health Care/statistics & numerical data , Prognosis , Proportional Hazards Models , Reproducibility of Results , Risk Assessment/statistics & numerical data , Risk Factors , Survival Analysis , Young AdultABSTRACT
The impact of lenalidomide treatment on long-term outcomes of patients with lower risk myelodysplastic syndromes (MDS) and chromosome 5q deletion (del(5q)) is unclear. This study used time-dependent multivariate methodology to analyse the influence of lenalidomide therapy on overall survival (OS) and acute myeloblastic leukaemia (AML) progression in 215 patients with International Prognostic Scoring System (IPSS) low or intermediate-1 risk and del(5q). There were significant differences in several relevant characteristics at presentation between patients receiving (n = 86) or not receiving lenalidomide (n = 129). The 5-year time-dependent probabilities of OS and progression to AML were 62% and 31% for patients receiving lenalidomide and 42% and 25% for patients not receiving lenalidomide; differences were not statistically significant in multivariate analysis that included all variables independently associated with those outcomes (OS, P = 0·45; risk of AML, P = 0·31, respectively). Achievement of RBC transfusion independency (P = 0·069) or cytogenetic response (P = 0·021) after lenalidomide was associated with longer OS in multivariate analysis. These data clearly show that response to lenalidomide results in a substantial clinical benefit in lower risk MDS patients with del(5q). Lenalidomide treatment does not appear to increase AML risk in this population of patients.
Subject(s)
Angiogenesis Inhibitors/therapeutic use , Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , Myelodysplastic Syndromes/drug therapy , Thalidomide/analogs & derivatives , Adult , Aged , Aged, 80 and over , Disease Progression , Drug Evaluation/methods , Erythrocyte Transfusion , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Lenalidomide , Male , Middle Aged , Multivariate Analysis , Myelodysplastic Syndromes/genetics , Prognosis , Retrospective Studies , Thalidomide/therapeutic use , Treatment OutcomeABSTRACT
Patients with essential thrombocythemia (ET) and polycythemia vera (PV) have an increased incidence of acute myeloid leukemia and new nonhematologic malignancies compared with the general population. However, information on the factors determining the risk for such complications is limited. In the present study, we investigated whether constitutional genetic variations in DNA repair predispose to leukemic transformation and new nonmyeloid neoplasias in patients with ET and PV. Case-control studies for predisposition to both types of malignancies were nested in a cohort of 422 subjects diagnosed with ET or PV during the period 1973-2010 in several institutions in Spain. A total of 64 incidence cases of leukemia and 50 cases of primary nonmyeloid cancers were accrued. At conditional regression analysis, the Gln/Gln genotype in the XPD codon 751 showed the strongest association with both leukemic transformation (odds ratio [OR] = 4.9; 95% confidence interval [95% CI], 2.0-12) and development of nonmyeloid malignancies (OR = 4.2; 95% CI, 1.5-12). Additional predictive factors were exposure to cytoreductive agents for leukemic transformation (OR = 3.5; 95% CI, 2.0-6.2) and age for nonmyeloid malignancies (OR = 2.0; 95% CI, 1.4-2.8). These findings provide further evidence about the contribution of inherited genetic variations to the pathogenesis and clinical course of myeloproliferative neoplasms.
Subject(s)
Leukemia/genetics , Polycythemia Vera/genetics , Polymorphism, Genetic , Thrombocythemia, Essential/genetics , Xeroderma Pigmentosum Group D Protein/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Leukemia/epidemiology , Leukemia/metabolism , Male , Polycythemia Vera/epidemiology , Polycythemia Vera/metabolism , Retrospective Studies , Thrombocythemia, Essential/epidemiology , Thrombocythemia, Essential/metabolism , Xeroderma Pigmentosum Group D Protein/metabolismABSTRACT
Cytogenetic aberrations identified by metaphase cytogenetics (MC) have diagnostic, prognostic, and therapeutic implications in myelodysplastic syndromes (MDS). However, in some MDS patients MC study is unsuccesful. Single nucleotide polymorphism array (SNP-A) based karyotyping could be helpful in these cases. We performed SNP-A in 62 samples from bone marrow or peripheral blood of primary MDS with an unsuccessful MC study. SNP-A analysis enabled the detection of aberrations in 31 (50%) patients. We used the copy number alteration information to apply the International Prognostic Scoring System (IPSS) and we observed differences in survival between the low/intermediate-1 and intermediate-2/high risk patients. We also saw differences in survival between very low/low/intermediate and the high/very high patients when we applied the revised IPSS (IPSS-R). In conclusion, SNP-A can be used successfully in PB samples and the identification of CNA by SNP-A improve the diagnostic and prognostic evaluation of this group of MDS patients.
Subject(s)
Karyotyping/methods , Myelodysplastic Syndromes/diagnosis , Polymorphism, Single Nucleotide , Bone Marrow/pathology , Female , Gene Dosage , Humans , Male , Myelodysplastic Syndromes/genetics , Oligonucleotide Array Sequence Analysis/methods , PrognosisABSTRACT
The infrequency of translocations in myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemias (CMML) makes their identification and reporting interesting for the recognition of the recurrent ones and the genes involved in these neoplasias. The aims of this study were to identify new translocations associated with MDS and CMML and to establish their frequency in a cohort of 8,016 patients from the Spanish Group of MDS database. The karyotype was evaluable in 5,654 (70%) patients. Among those, 2,014 (36%) had chromosomal abnormalities, including 213 (10%) translocations identified in 195 patients. The translocations were balanced in 183 (86%) cases and unbalanced in 30 (14%) cases. All chromosomes were found to be involved in translocations, with the single exception of the Y chromosome. The chromosomes most frequently involved were in decreasing frequency: 3, 1, 7, 2, 11, 5, 12, 6, and 17. Translocations were found in karyotypes as the unique chromosomal abnormality (33%), associated with another chromosomal abnormality (11%), as a part of a complex karyotype (17%), and as a part of a monosomal karyotype (38%). There were 155 translocations not previously described in MDS or CMML and nine of them appeared to be recurrent.