Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Water Res ; 157: 647-662, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31004980

ABSTRACT

Wastewater treatment plant (WWTP) discharge is often considered a principal source of surface water contamination. In this study, a three-dimensional fully-integrated groundwater-surface water model was used to simulate the transport characteristics and cumulative loading of an artificial sweetener (acesulfame) and fecal indicator bacteria (Escherichia coli) from WWTPs within a 6800 km2 mixed-use, highly impacted watershed in Ontario, Canada. The model, which employed 3.5 × 106 computational nodes and 15 layers, facilitated a comprehensive assessment of groundwater-surface water interactions under high and low flow conditions; processes typically not accounted for in WWTP cumulative effects models. Simulations demonstrate that the model had significant capacity in reproducing the average and transient multi-year groundwater and surface water flow conditions in the watershed. As a proxy human-specific conservative tracer, acesulfame was useful for model validation and to help inform the representation of watershed-scale transport processes. Using a uniform WWTP acesulfame loading rate of 7.14 mg person-1 day-1, the general spatial trends and magnitudes of the acesulfame concentration profile along the main river reach within the watershed were reproduced; however, model performance was improved by tuning individual WWTP loading rates. Although instream dilution and groundwater-surface water interactions were strongly dependent on flow conditions, the main reach primarily consisted of groundwater discharge zones. For this reason, hydrodynamic dispersion in the hyporheic zone is shown as the predominant mechanism driving acesulfame into near-stream shallow groundwater, while under high flow conditions, the simulations demonstrate the potential for advective flushing of the shallow groundwater. Regarding the cumulative impact of the WWTPs on E. coli concentrations in the surface flow system, simulated transient E. coli levels downstream of WWTPs in the watershed were significantly lower than observed values, thus highlighting the potential importance of other sources of E. coli in the watershed.


Subject(s)
Groundwater , Wastewater , Environmental Monitoring , Escherichia coli , Humans , Ontario , Sweetening Agents , Thiazines
2.
J Contam Hydrol ; 102(1-2): 105-19, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-18929427

ABSTRACT

The transfer of contaminant mass between the nonaqueous- and aqueous-phases is a process of central importance for the remediation of sites contaminated by dense nonaqueous-phase liquids (DNAPLs). This paper describes a comparison of the results obtained with various alternative DNAPL-aqueous-phase mass transfer models contained in the literature for predicting DNAPL source-zone depletion times in groundwater systems. These dissolution models were largely developed through laboratory column experiments. To gain insight into the implications of various representations of the local-scale kinetic as well as equilibrium DNAPL dissolution processes, aquifer heterogeneity and the complex architecture of a DNAPL source-zone, the aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are analyzed in a conditional stochastic framework. The hydrogeologic setting is a heterogeneous fluvial aquifer in Southwest Germany, referred to as the aquifer analog dataset, that was intensively characterized in three dimensions for hydrogeological parameters that include permeability, effective porosity, grain size, mineralogy and sorption coefficients. By embedding the various dissolution models into the compositional, multiphase flow model, CompFlow, the relative times predicted for complete depletion of a released DNAPL source due to natural dissolution are explored. Issues related to achieving environmental benefits through, for example, partial DNAPL-zone source removal via enhanced remedial technologies are also discussed. In this context, performance metrics in the form of peak aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are compared to each other. This is done for each of the alternative mass transfer models. A significant reduction in the fractional flux at a downstream location from the DNAPL source can be achieved by partial source-zone mass reduction; however, peak concentration levels at the same location remain much higher than the United States Environment Protection Agency (US-EPA) drinking water limits. Although groundwater quality was found to improve more rapidly for the equilibrium dissolution model, it is also shown that dissolution models that promote rapid DNAPL disappearance produce greater prediction uncertainty in the aqueous-phase flux reduction.


Subject(s)
Environmental Restoration and Remediation , Models, Chemical , Water Purification/methods , Computer Simulation , Porosity , Sensitivity and Specificity , Thermal Conductivity , Water Pollutants, Chemical/isolation & purification , Water Purification/instrumentation
3.
J Contam Hydrol ; 96(1-4): 83-96, 2008 Feb 19.
Article in English | MEDLINE | ID: mdl-18022279

ABSTRACT

When considering natural attenuation as a remediation strategy at a site contaminated by a light non-aqueous phase liquid (LNAPL), it is important to consider the emission of contaminants from the source zone. A quantification of source-zone emissions is essential both for comparison with down-gradient mass fluxes to provide an estimate of fractional mass flux reduction, as well as for estimating the source lifetime. Because the spatial distribution of LNAPL at a field site is strongly dependent on both the spill circumstances and the heterogeneity of the geologic materials, which can be problematic for in-situ determination, alternative methods for estimating source-zone emissions are needed. In this work, a three-dimensional multiphase flow and transport modelling approach is used to investigate the relationship between the lateral extent of an LNAPL body and the emission of contaminants to groundwater at a contaminated site. For simulations involving an LNAPL release in an aquifer comprised of heterogeneous porosity and permeability distributions that were generated geostatistically, it is shown that a simple linear relationship exists between the lateral extent of the LNAPL body in the capillary fringe and the emission to the aqueous phase. The parameters describing the relationship are found to be linear functions of the groundwater flow velocity and the vertical infiltration rate. This site-specific relationship provides a simple method to estimate contaminant emissions to groundwater at LNAPL contaminated sites.


Subject(s)
Water Pollutants/analysis , Water Pollutants/chemistry , Chemical Phenomena , Chemistry, Physical , Computer Simulation , Germany , Water Movements
4.
Ground Water ; 44(6): 853-63, 2006.
Article in English | MEDLINE | ID: mdl-17087757

ABSTRACT

At sites where a dense nonaqueous phase liquid (DNAPL) was spilled or released into the subsurface, estimates of the mass of DNAPL contained in the subsurface from core or monitoring well data, either in the nonaqueous or aqueous phase, can be highly uncertain because of the erratic distribution of the DNAPL due to geologic heterogeneity. In this paper, a multiphase compositional model is applied to simulate, in detail, the DNAPL saturations and aqueous-phase plume migration in a highly characterized, heterogeneous glaciofluvial aquifer, the permeability and porosity data of which were collected by researchers at the University of Tübingen, Germany. The DNAPL saturation distribution and the aqueous-phase contaminant mole fractions are then reconstructed by sampling the data from the forward simulation results using two alternate approaches, each with different degrees of sampling conditioning. To reconstruct the DNAPL source zone architecture, the aqueous-phase plume configuration, and the contaminant mass in each phase, one method employs the novel transition probability/Markov chain approach (TP/MC), while the other involves a traditional variogram analysis of the sampled data followed by ordinary kriging. The TP/MC method is typically used for facies and/or hydraulic conductivity reconstruction, but here we explore the applicability of the TP/MC method for the reconstruction of DNAPL source zones and aqueous-phase plumes. The reconstructed geometry of the DNAPL source zone, the dissolved contaminant plume, and the estimated mass in each phase are compared using the two different geostatistical modeling approaches and for various degrees of data sampling from the results of the forward simulation. It is demonstrated that the TP/MC modeling technique is robust and accurate and is a preferable alternative compared to ordinary kriging for the reconstruction of DNAPL saturation patterns and dissolved-phase contaminant plumes.


Subject(s)
Environmental Restoration and Remediation , Markov Chains , Models, Theoretical , Computer Simulation , Trichloroethylene
5.
J Contam Hydrol ; 47(1): 53-84, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11286082

ABSTRACT

One of the most common methods to dispose of domestic wastewater involves the release of septic effluent from drains located in the unsaturated zone. Nitrogen from such systems is currently of concern because of nitrate contamination of drinking water supplies and eutrophication of coastal waters. The objectives of this study are to develop and assess the performance of a mechanistic flow and reactive transport model which couples the most relevant physical, geochemical and biochemical processes involved in wastewater plume evolution in sandy aquifers. The numerical model solves for variably saturated groundwater flow and reactive transport of multiple carbon- and nitrogen-containing species in a three-dimensional porous medium. The reactive transport equations are solved using the Strang splitting method which is shown to be accurate for Monod and first- and second-order kinetic reactions, and two to four times more efficient than sequential iterative splitting. The reaction system is formulated as a fully kinetic chemistry problem, which allows for the use of several special-purpose ordinary differential equation (ODE) solvers. For reaction systems containing both fast and slow kinetic reactions, such as the combined nitrogen-carbon system, it is found that a specialized stiff explicit solver fails to obtain a solution. An implicit solver is more robust and its computational performance is improved by scaling of the fastest reaction rates. The model is used to simulate wastewater migration in a 1-m-long unsaturated column and the results show significant oxidation of dissolved organic carbon (DOC), the generation of nitrate by nitrification, and a slight decrease in pH.


Subject(s)
Fresh Water , Models, Theoretical , Waste Disposal, Fluid , Housing , Humans , Kinetics , Nitrogen , Water Pollutants, Chemical
6.
J Contam Hydrol ; 47(1): 85-104, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11286083

ABSTRACT

A multicomponent reactive transport model as presented by MacQuarrie and Sudicky [MacQuarrie, K.T.B., Sudicky, E.A., this volume. Multicomponent simulation of wastewater-derived nitrogen and carbon in shallow unconfined aquifers: I. Model formulation and performance, J. Contam. Hydrol.] is applied to a well-studied wastewater plume in a sandy aquifer near Cambridge, Ontario. Domestic wastewater is released into the unsaturated zone via a drain field at a depth of about 0.8 m. The physical transport parameters for the model are obtained by simulating a non-reactive solute, while kinetic input data for the nitrogen and carbon reaction network are obtained from the literature. The model shows that the wastewater-loading rate has little influence on the moisture content in the unsaturated zone, thus oxygen diffusion in the air phase is an important transport mechanism. The model results are in general agreement with the field-determined moisture and oxygen profiles near the drain field. The simulation results show that oxidation of ammonium and dissolved organic carbon (DOC) goes to completion in the 1.5-m distance between the drain field and the water table, and that calcite dissolution limits the pH reduction to about 0.2 units. The model-predicted nitrate concentrations in the core of the plume are in the range of 20-25 mg N/l and are in good agreement with the field data. Overall, the results for the major reactive species from the model simulation agree well with the geochemical data obtained below the drain field and it is concluded that the major physical and biochemical processes have been correctly captured in the current model formulation.


Subject(s)
Fresh Water , Models, Theoretical , Waste Disposal, Fluid , Carbon , New Brunswick , Nitrogen , Sewage , Water Pollutants, Chemical
7.
J Contam Hydrol ; 52(1-4): 29-55, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11695744

ABSTRACT

One of the most common methods to dispose of domestic wastewater involves the release of septic effluent from drains located in the unsaturated zone. Nitrogen from such systems is currently of concern because of nitrate contamination of drinking water supplies and eutrophication of coastal waters. It has been proposed that adding labile carbon sources to septic distribution fields could enhance heterotrophic denitrification and thus reduce nitrate concentrations in shallow groundwater. In this study, a numerical model which solves for variably saturated flow and reactive transport of multiple species is employed to investigate the performance of a drain field design that incorporates a fine-grained denitrification layer. The hydrogeological scenario simulated is an unconfined sand aquifer. The model results suggest that the denitrification layer, supplemented with labile organic carbon, may be an effective means to eliminate nitrogen loading to shallow groundwater. It is also shown that in noncalcareous aquifers, the denitrification reaction may provide sufficient buffering capacity to maintain near neutral pH conditions beneath and down gradient of the drain field. Leaching of excess dissolved organic carbon (DOC) from the denitrification layer is problematic, and causes an anaerobic plume to develop in simulations where the water table is less than 5-6 m below ground surface; this anaerobic plume may lead to other down gradient changes in groundwater quality. A drain field and denitrification layer of smaller dimensions is shown to be just as effective for reducing nitrate, but has the benefit of reducing the excess DOC leached from the layer. This configuration will minimize the impact of wastewater disposal in areas where the water table is as shallow as 3.5 m.


Subject(s)
Models, Theoretical , Nitrogen/metabolism , Soil Microbiology , Soil Pollutants/analysis , Waste Disposal, Fluid/methods , Water Pollutants/analysis , Water Supply , Eutrophication , Hydrogen-Ion Concentration , Oxygen/metabolism
8.
Ground Water ; 49(5): 630-48, 2011.
Article in English | MEDLINE | ID: mdl-21831211

ABSTRACT

This article summarizes several of many field-based studies of subsurface contaminant transport conducted over the last 30 years at the Canadian Forces Base (CFB) Borden site. The field research initially consisted of extensive monitoring of a leachate plume from an abandoned landfill and its analytical and numerical modeling. Lessons learned from these initial studies led to the execution and interpretation of a variety of tracer tests involving conservative and reactive/organic solutes tests performed at various scales. The lessons learned from these tracer tests revealed a number of deficiencies in classical theories of contaminant dispersion and reaction processes as they occur in groundwater, and thus spawned a new era of process-oriented research within the hydrogeological community. The extensively monitored tracer tests were followed by controlled spills of organic contaminants to observe their subsurface movement and distribution as well as the emplacement of a variety of contaminant sources in the saturated and unsaturated zones to study the ambient transport of contaminants. The controlled spills and emplaced sources of various contaminants were then utilized for testing various active and passive remediation technologies. These studies have led to fundamental insights and lessons learned that have significantly contributed to research on contaminant transport in both the saturated and unsaturated zones. Over the years, data generated by the University of Waterloo (UW) researchers and their collaborators continues to be examined by various research groups and has led to additional new insights on subsurface transport of various chemicals.


Subject(s)
Groundwater , Water Pollutants, Chemical/analysis , Ontario , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL