ABSTRACT
Genome sequences are known for two archaic hominins-Neanderthals and Denisovans-which interbred with anatomically modern humans as they dispersed out of Africa. We identified high-confidence archaic haplotypes in 161 new genomes spanning 14 island groups in Island Southeast Asia and New Guinea and found large stretches of DNA that are inconsistent with a single introgressing Denisovan origin. Instead, modern Papuans carry hundreds of gene variants from two deeply divergent Denisovan lineages that separated over 350 thousand years ago. Spatial and temporal structure among these lineages suggest that introgression from one of these Denisovan groups predominantly took place east of the Wallace line and continued until near the end of the Pleistocene. A third Denisovan lineage occurs in modern East Asians. This regional mosaic suggests considerable complexity in archaic contact, with modern humans interbreeding with multiple Denisovan groups that were geographically isolated from each other over deep evolutionary time.
Subject(s)
Genetic Introgression/genetics , Haplotypes/genetics , Hominidae/genetics , Animals , Asian People/genetics , Biological Evolution , Gene Flow , Genetic Variation/genetics , Genome, Human/genetics , Humans , Indonesia , Neanderthals/genetics , OceaniaABSTRACT
One of the regulatory mechanisms influencing the functional capacity of genes is alternative splicing (AS). Previous studies exploring the splicing landscape of human tissues have shown that AS has contributed to human biology, especially in disease progression and the immune response. Nonetheless, this phenomenon remains poorly characterized across human populations, and it is unclear how genetic and environmental variation contribute to AS. Here, we examine a set of 115 Indonesian samples from three traditional island populations spanning the genetic ancestry cline that characterizes Island Southeast Asia. We conduct a global AS analysis between islands to ascertain the degree of functionally significant AS events and their consequences. Using an event-based statistical model, we detected over 1,500 significant differential AS events across all comparisons. Additionally, we identify over 6,000 genetic variants associated with changes in splicing (splicing quantitative trait loci [sQTLs]), some of which are driven by Papuan-like genetic ancestry, and only show partial overlap with other publicly available sQTL datasets derived from other populations. Computational predictions of RNA binding activity reveal that a fraction of these sQTLs directly modulate the binding propensity of proteins involved in the splicing regulation of immune genes. Overall, these results contribute toward elucidating the role of genetic variation in shaping gene regulation in one of the most diverse regions in the world.
ABSTRACT
Lack of diversity in human genomics limits our understanding of the genetic underpinnings of complex traits, hinders precision medicine, and contributes to health disparities. To map genetic effects on gene regulation in the underrepresented Indonesian population, we have integrated genotype, gene expression, and CpG methylation data from 115 participants across three island populations that capture the major sources of genomic diversity in the region. In a comparison with European datasets, we identify eQTLs shared between Indonesia and Europe as well as population-specific eQTLs that exhibit differences in allele frequencies and/or overall expression levels between populations. By combining local ancestry and archaic introgression inference with eQTLs and methylQTLs, we identify regulatory loci driven by modern Papuan ancestry as well as introgressed Denisovan and Neanderthal variation. GWAS colocalization connects QTLs detected here to hematological traits, and further comparison with European datasets reflects the poor overall transferability of GWAS statistics across diverse populations. Our findings illustrate how population-specific genetic architecture, local ancestry, and archaic introgression drive variation in gene regulation across genetically distinct and in admixed populations and highlight the need for performing association studies on non-European populations.
Subject(s)
Gene Expression Regulation , Genetics, Population , Genome, Human , Quantitative Trait Loci , Computational Biology/methods , DNA Methylation , Databases, Genetic , Genome-Wide Association Study , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Indonesia , Male , Models, Genetic , Molecular Sequence Annotation , Multifactorial Inheritance , Quantitative Trait, Heritable , Selection, Genetic , Whole Genome SequencingABSTRACT
Island Southeast Asia (ISEA) and Oceania host one of the world's richest assemblages of human phenotypic, linguistic, and cultural diversity. Despite this, the region's male genetic lineages are globally among the last to remain unresolved. We compiled â¼9.7 Mb of Y chromosome (chrY) sequence from a diverse sample of over 380 men from this region, including 152 first reported here. The granularity of this data set allows us to fully resolve and date the regional chrY phylogeny. This new high-resolution tree confirms two main population bursts: multiple rapid diversifications following the region's initial settlement â¼50 kya, and extensive expansions <6 kya. Notably, â¼40-25 kya the deep rooting local lineages of C-M130, M-P256, and S-B254 show almost no further branching events in ISEA, New Guinea, and Australia, matching a similar pause in diversification seen in maternal mitochondrial DNA lineages. The main local lineages start diversifying â¼25 kya, at the time of the last glacial maximum. This improved chrY topology highlights localized events with important historical implications, including pre-Holocene contact between Mainland and ISEA, potential interactions between Australia and the Papuan world, and a sustained period of diversification following the flooding of the ancient Sunda and Sahul continents as the insular landscape observed today formed. The high-resolution phylogeny of the chrY presented here thus enables a detailed exploration of past isolation, interaction, and change in one of the world's least understood regions.
Subject(s)
Asian People , DNA, Mitochondrial , Asia, Southeastern , DNA, Mitochondrial/genetics , Humans , Male , Mitochondria/genetics , PhylogenyABSTRACT
Indonesia is the world's fourth most populous country, host to striking levels of human diversity, regional patterns of admixture, and varying degrees of introgression from both Neanderthals and Denisovans. However, it has been largely excluded from the human genomics sequencing boom of the last decade. To serve as a benchmark dataset of molecular phenotypes across the region, we generated genome-wide CpG methylation and gene expression measurements in over 100 individuals from three locations that capture the major genomic and geographical axes of diversity across the Indonesian archipelago. Investigating between- and within-island differences, we find up to 10.55% of tested genes are differentially expressed between the islands of Sumba and New Guinea. Variation in gene expression is closely associated with DNA methylation, with expression levels of 9.80% of genes correlating with nearby promoter CpG methylation, and many of these genes being differentially expressed between islands. Genes identified in our differential expression and methylation analyses are enriched in pathways involved in immunity, highlighting Indonesia's tropical role as a source of infectious disease diversity and the strong selective pressures these diseases have exerted on humans. Finally, we identify robust within-island variation in DNA methylation and gene expression, likely driven by fine-scale environmental differences across sampling sites. Together, these results strongly suggest complex relationships between DNA methylation, transcription, archaic hominin introgression and immunity, all jointly shaped by the environment. This has implications for the application of genomic medicine, both in critically understudied Indonesia and globally, and will allow a better understanding of the interacting roles of genomic and environmental factors shaping molecular and complex phenotypes.
Subject(s)
DNA Methylation , Ethnicity/genetics , Gene-Environment Interaction , Transcriptome , CpG Islands , Environment , Epigenesis, Genetic/physiology , Ethnicity/statistics & numerical data , Gene Expression Profiling/statistics & numerical data , Genetics, Population , Genome-Wide Association Study/statistics & numerical data , Genomics/methods , Humans , Indonesia/epidemiology , Islands/epidemiology , Pacific Islands/epidemiology , Pedigree , Phenotype , Polymorphism, Single Nucleotide , RNA-SeqABSTRACT
The settlement of Sahul, the lost continent of Oceania, remains one of the most ancient and debated human migrations. Modern New Guineans inherited a unique genetic diversity tracing back 50,000 years, and yet there is currently no model reconstructing their past population dynamics. We generated 58 new whole-genome sequences from Papua New Guinea, filling geographical gaps in previous sampling, specifically to address alternative scenarios of the initial migration to Sahul and the settlement of New Guinea. Here, we present the first genomic models for the settlement of northeast Sahul considering one or two migrations from Wallacea. Both models fit our data set, reinforcing the idea that ancestral groups to New Guinean and Indigenous Australians split early, potentially during their migration in Wallacea where the northern route could have been favored. The earliest period of human presence in Sahul was an era of interactions and gene flow between related but already differentiated groups, from whom all modern New Guineans, Bismarck islanders, and Indigenous Australians descend. The settlement of New Guinea was probably initiated from its southeast region, where the oldest archaeological sites have been found. This was followed by two migrations into the south and north lowlands that ultimately reached the west and east highlands. We also identify ancient gene flows between populations in New Guinea, Australia, East Indonesia, and the Bismarck Archipelago, emphasizing the fact that the anthropological landscape during the early period of Sahul settlement was highly dynamic rather than the traditional view of extensive isolation.
Subject(s)
Ethnicity , Human Migration , Australia , Humans , Papua New Guinea , PhylogenyABSTRACT
An important public health question is understanding how changes in human environments can drive changes in the gut microbiota that influence risks associated with human health and wellbeing. It is well-documented that the modernization of societies is strongly correlated with intergenerational change in the frequency of nutrition-related chronic diseases in which microbial dysbiosis is implicated. The population of Bali, Indonesia, is well-positioned to study the interconnection between a changing food environment and microbiome patterns in its early stages, because of a recent history of modernization. Here, we characterize the fecal microbiota and diet history of the young adult women in Bali, Indonesia (n = 41) in order to compare microbial patterns in this generation with those of other populations with different histories of a modern food environment (industrialized supply chain). We found strong support for two distinct fecal microbiota community types in our study cohort at similar frequency: a Prevotella-rich (Type-P) and a Bacteroides-rich (Type-B) community (p < 0.001, analysis of similarity, Wilcoxon test). Although Type-P individuals had lower alpha diversity (p < 0.001, Shannon) and higher incidence of obesity, multivariate analyses with diet data showed that community types significantly influenced associations with BMI. In a multi-country dataset (n = 257), we confirmed that microbial beta diversity across subsistent and industrial populations was significantly associated with Prevotella and Bacteroides abundance (p < 0.001, generalized additive model) and that the prevalence of community types differs between societies. The young adult Balinese microbiota was distinctive in having an equal prevalence of two community types. Collectively, our study showed that the incorporation of community types as an explanatory factor into study design or modeling improved the ability to identify microbiome associations with diet and health metrics.
Subject(s)
Gastrointestinal Microbiome , Microbiota , Cohort Studies , Diet , Feces , Female , Humans , Young AdultABSTRACT
Following the publication of this article [1], the authors reported that the captions of Figs. 3 and 4 were published in the incorrect order, whereby they mismatch with their corresponding images.
ABSTRACT
BACKGROUND: Primaquine is the only widely used drug that prevents Plasmodium vivax malaria relapses, but adherence to the standard 14-day regimen is poor. We aimed to assess the efficacy of a shorter course (7 days) of primaquine for radical cure of vivax malaria. METHODS: We did a randomised, double-blind, placebo-controlled, non-inferiority trial in eight health-care clinics (two each in Afghanistan, Ethiopia, Indonesia, and Vietnam). Patients (aged ≥6 months) with normal glucose-6-phosphate dehydrogenase (G6PD) and presenting with uncomplicated vivax malaria were enrolled. Patients were given standard blood schizontocidal treatment and randomly assigned (2:2:1) to receive 7 days of supervised primaquine (1·0 mg/kg per day), 14 days of supervised primaquine (0·5 mg/kg per day), or placebo. The primary endpoint was the incidence rate of symptomatic P vivax parasitaemia during the 12-month follow-up period, assessed in the intention-to-treat population. A margin of 0·07 recurrences per person-year was used to establish non-inferiority of the 7-day regimen compared with the 14-day regimen. This trial is registered at ClinicalTrials.gov (NCT01814683). FINDINGS: Between July 20, 2014, and Nov 25, 2017, 2336 patients were enrolled. The incidence rate of symptomatic recurrent P vivax malaria was 0·18 (95% CI 0·15 to 0·21) recurrences per person-year for 935 patients in the 7-day primaquine group and 0·16 (0·13 to 0·18) for 937 patients in the 14-day primaquine group, a difference of 0·02 (-0·02 to 0·05, p=0·3405). The incidence rate for 464 patients in the placebo group was 0·96 (95% CI 0·83 to 1·08) recurrences per person-year. Potentially drug-related serious adverse events within 42 days of starting treatment were reported in nine (1·0%) of 935 patients in the 7-day group, one (0·1%) of 937 in the 14-day group and none of 464 in the control arm. Four of the serious adverse events were significant haemolysis (three in the 7-day group and one in the 14-day group). INTERPRETATION: In patients with normal G6PD, 7-day primaquine was well tolerated and non-inferior to 14-day primaquine. The short-course regimen might improve adherence and therefore the effectiveness of primaquine for radical cure of P vivax malaria. FUNDING: UK Department for International Development, UK Medical Research Council, UK National Institute for Health Research, and the Wellcome Trust through the Joint Global Health Trials Scheme (MR/K007424/1) and the Bill & Melinda Gates Foundation (OPP1054404).
Subject(s)
Antimalarials/administration & dosage , Malaria, Vivax/drug therapy , Primaquine/administration & dosage , Adolescent , Adult , Antimalarials/adverse effects , Antimalarials/therapeutic use , Child , Child, Preschool , Double-Blind Method , Drug Administration Schedule , Equivalence Trials as Topic , Female , Follow-Up Studies , Humans , Malaria, Vivax/parasitology , Male , Medication Adherence/statistics & numerical data , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium vivax/isolation & purification , Primaquine/adverse effects , Primaquine/therapeutic use , Recurrence , Secondary Prevention/methods , Young AdultABSTRACT
New Guineans represent one of the oldest locally continuous populations outside Africa, harboring among the greatest linguistic and genetic diversity on the planet. Archeological and genetic evidence suggest that their ancestors reached Sahul (present day New Guinea and Australia) by at least 55,000 years ago (kya). However, little is known about this early settlement phase or subsequent dispersal and population structuring over the subsequent period of time. Here we report 379 complete Papuan mitochondrial genomes from across Papua New Guinea, which allow us to reconstruct the phylogenetic and phylogeographic history of northern Sahul. Our results support the arrival of two groups of settlers in Sahul within the same broad time window (50-65 kya), each carrying a different set of maternal lineages and settling Northern and Southern Sahul separately. Strong geographic structure in northern Sahul remains visible today, indicating limited dispersal over time despite major climatic, cultural, and historical changes. However, following a period of isolation lasting nearly 20 ky after initial settlement, environmental changes postdating the Last Glacial Maximum stimulated diversification of mtDNA lineages and greater interactions within and beyond Northern Sahul, to Southern Sahul, Wallacea and beyond. Later, in the Holocene, populations from New Guinea, in contrast to those of Australia, participated in early interactions with incoming Asian populations from Island Southeast Asia and continuing into Oceania.
Subject(s)
Ethnicity/genetics , Human Migration/history , Adult , Asia, Southeastern , Australia , Ethnicity/history , Female , Genome, Mitochondrial , Geological Phenomena , Haplotypes/genetics , History, Ancient , Humans , Likelihood Functions , Male , New Guinea , Papua New Guinea , Phylogeny , Phylogeography , TasmaniaABSTRACT
Languages are transmitted through channels created by kinship systems. Given sufficient time, these kinship channels can change the genetic and linguistic structure of populations. In traditional societies of eastern Indonesia, finely resolved cophylogenies of languages and genes reveal persistent movements between stable speech communities facilitated by kinship rules. When multiple languages are present in a region and postmarital residence rules encourage sustained directional movement between speech communities, then languages should be channeled along uniparental lines. We find strong evidence for this pattern in 982 individuals from 25 villages on two adjacent islands, where different kinship rules have been followed. Core groups of close relatives have stayed together for generations, while remaining in contact with, and marrying into, surrounding groups. Over time, these kinship systems shaped their gene and language phylogenies: Consistently following a postmarital residence rule turned social communities into speech communities.
Subject(s)
Language , DNA, Mitochondrial/genetics , Family , Female , Genetic Variation , Human Migration , Humans , Indonesia , Islands , Linguistics , Male , Phylogeny , Sequence Analysis, DNAABSTRACT
Although situated â¼400 km from the east coast of Africa, Madagascar exhibits cultural, linguistic, and genetic traits from both Southeast Asia and Eastern Africa. The settlement history remains contentious; we therefore used a grid-based approach to sample at high resolution the genomic diversity (including maternal lineages, paternal lineages, and genome-wide data) across 257 villages and 2,704 Malagasy individuals. We find a common Bantu and Austronesian descent for all Malagasy individuals with a limited paternal contribution from Europe and the Middle East. Admixture and demographic growth happened recently, suggesting a rapid settlement of Madagascar during the last millennium. However, the distribution of African and Asian ancestry across the island reveals that the admixture was sex biased and happened heterogeneously across Madagascar, suggesting independent colonization of Madagascar from Africa and Asia rather than settlement by an already admixed population. In addition, there are geographic influences on the present genomic diversity, independent of the admixture, showing that a few centuries is sufficient to produce detectable genetic structure in human populations.
Subject(s)
Asian People/genetics , Black People/genetics , Ethnicity/genetics , Genetic Variation , Genome, Human , Genome-Wide Association Study , Aged , Female , Humans , Madagascar/ethnology , Male , Middle AgedABSTRACT
BACKGROUND: Traces of interbreeding of Neanderthals and Denisovans with modern humans in the form of archaic DNA have been detected in the genomes of present-day human populations outside sub-Saharan Africa. Up to now, only nuclear archaic DNA has been detected in modern humans; we therefore attempted to identify archaic mitochondrial DNA (mtDNA) residing in modern human nuclear genomes as nuclear inserts of mitochondrial DNA (NUMTs). RESULTS: We analysed 221 high-coverage genomes from Oceania and Indonesia using an approach which identifies reads that map both to the nuclear and mitochondrial DNA. We then classified reads according to the source of the mtDNA, and found one NUMT of Denisovan mtDNA origin, present in 15 analysed genomes; analysis of the flanking region suggests that this insertion is more likely to have happened in a Denisovan individual and introgressed into modern humans with the Denisovan nuclear DNA, rather than in a descendant of a Denisovan female and a modern human male. CONCLUSIONS: Here we present our pipeline for detecting introgressed NUMTs in next generation sequencing data that can be used on genomes sequenced in the future. Further discovery of such archaic NUMTs in modern humans can be used to detect interbreeding between archaic and modern humans and can reveal new insights into the nature of such interbreeding events.
Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genomics/methods , Animals , Evolution, Molecular , Hominidae/genetics , Neanderthals/genetics , PhylogenyABSTRACT
Indonesia, an island nation as large as continental Europe, hosts a sizeable proportion of global human diversity, yet remains surprisingly undercharacterized genetically. Here, we substantially expand on existing studies by reporting genome-scale data for nearly 500 individuals from 25 populations in Island Southeast Asia, New Guinea, and Oceania, notably including previously unsampled islands across the Indonesian archipelago. We use high-resolution analyses of haplotype diversity to reveal fine detail of regional admixture patterns, with a particular focus on the Holocene. We find that recent population history within Indonesia is complex, and that populations from the Philippines made important genetic contributions in the early phases of the Austronesian expansion. Different, but interrelated processes, acted in the east and west. The Austronesian migration took several centuries to spread across the eastern part of the archipelago, where genetic admixture postdates the archeological signal. As with the Neolithic expansion further east in Oceania and in Europe, genetic mixing with local inhabitants in eastern Indonesia lagged behind the arrival of farming populations. In contrast, western Indonesia has a more complicated admixture history shaped by interactions with mainland Asian and Austronesian newcomers, which for some populations occurred more than once. Another layer of complexity in the west was introduced by genetic contact with South Asia and strong demographic events in isolated local groups.
Subject(s)
Asian People/genetics , Genetic Variation/genetics , Genome, Human/genetics , Asia/ethnology , Asia, Southeastern/ethnology , DNA, Mitochondrial/genetics , Evolution, Molecular , Asia, Eastern , Genetics, Population/methods , Haplotypes , Human Migration , Humans , Indonesia/ethnology , Islands , Oceania/ethnologyABSTRACT
Transcription factor 7-like 2 (TCF7L2) protein plays an important role in glucose and lipid metabolisms. Single nucleotide polymorphisms (SNPs) in the TCF7L2 gene contribute to increased fasting plasma glucose (FPG) and body mass index (BMI), and altered lipid concentrations in various population. We investigated whether the TCF7L2 SNPs were associated with obesity, high FPG and altered lipid profile in the Balinese. A total of 608 Balinese from rural and urban Bali, Indonesia, were recruited. Triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC) and FPG were measured, and BMI was calculated. Ratios of TG/HDL-C, LDL-C/HDL-C, and TC/HDL-C were determined. Genotyping of SNPs rs7903146, rs10885406, and rs12255372 were done in all samples. Genetic association analyses under a dominant model showed that the rs7903146 (OR 5.50, 95% CI 2.34-12.91, p = 8.5 × 10-5), rs12255372 (OR 4.15, 95% CI 1.66-10.33, p = 0.003) and rs10885406 (OR 2.43, 95% CI 1.39-4.25, p = 0.003) were significantly associated with high TC/HDL-C ratio. The rs10885406 also presented a significant association with high TG (OR 2.21, 95% CI 1.29-3.81, p = 0.004) and low HDL-C (OR 3.02, 95% CI 1.58-5.80, p = 0.001) concentrations, as well as high TG/HDL-C ratio (OR 1.95, 95% CI 1.16-3.27, p = 0.013). None of the SNPs exhibited significant association with obesity or high FPG. SNPs in the TCF7L2 gene are associated with altered lipid profile in the Balinese.
Subject(s)
Blood Glucose/analysis , Lipids/blood , Polymorphism, Single Nucleotide , Transcription Factor 7-Like 2 Protein/genetics , Adult , Body Mass Index , Cholesterol/blood , Cholesterol, HDL/blood , Cross-Sectional Studies , Female , Genetic Association Studies , Humans , Indonesia , Lipid Metabolism , Male , Middle Aged , Rural Population , Triglycerides/blood , Urban PopulationABSTRACT
At least since the Neolithic, humans have largely lived in networks of small, traditional communities. Often socially isolated, these groups evolved distinct languages and cultures over microgeographic scales of just tens of kilometers. Population genetic theory tells us that genetic drift should act quickly in such isolated groups, thus raising the question: do networks of small human communities maintain levels of genetic diversity over microgeographic scales? This question can no longer be asked in most parts of the world, which have been heavily impacted by historical events that make traditional society structures the exception. However, such studies remain possible in parts of Island Southeast Asia and Oceania, where traditional ways of life are still practiced. We captured genome-wide genetic data, together with linguistic records, for a case-study system-eight villages distributed across Sumba, a small, remote island in eastern Indonesia. More than 4,000 years after these communities were established during the Neolithic period, most speak different languages and can be distinguished genetically. Yet their nuclear diversity is not reduced, instead being comparable to other, even much larger, regional groups. Modeling reveals a separation of time scales: while languages and culture can evolve quickly, creating social barriers, sporadic migration averaged over many generations is sufficient to keep villages linked genetically. This loosely-connected network structure, once the global norm and still extant on Sumba today, provides a living proxy to explore fine-scale genome dynamics in the sort of small traditional communities within which the most recent episodes of human evolution occurred.
Subject(s)
Ethnicity/genetics , Genetic Variation , Native Hawaiian or Other Pacific Islander/genetics , Asia, Southeastern , Biological Evolution , Genetic Association Studies , Genetics, Population , Genomics , Geography , Humans , Indonesia , Language , Linguistics , Polymorphism, Single Nucleotide , Population DynamicsABSTRACT
Malagasy genetic diversity results from an exceptional protoglobalization process that took place over a thousand years ago across the Indian Ocean. Previous efforts to locate the Asian origin of Malagasy highlighted Borneo broadly as a potential source, but so far no firm source populations were identified. Here, we have generated genome-wide data from two Southeast Borneo populations, the Banjar and the Ngaju, together with published data from populations across the Indian Ocean region. We find strong support for an origin of the Asian ancestry of Malagasy among the Banjar. This group emerged from the long-standing presence of a Malay Empire trading post in Southeast Borneo, which favored admixture between the Malay and an autochthonous Borneo group, the Ma'anyan. Reconciling genetic, historical, and linguistic data, we show that the Banjar, in Malay-led voyages, were the most probable Asian source among the analyzed groups in the founding of the Malagasy gene pool.
Subject(s)
Asian People/genetics , Black People/genetics , Ethnicity/genetics , Genetic Variation , Biological Evolution , Borneo , DNA, Mitochondrial/genetics , Evolution, Molecular , Gene Pool , Genetics, Population/methods , Genome, Human , Haplotypes , Humans , Madagascar , Malaysia , PhylogenyABSTRACT
Marriage rules, the community prescriptions that dictate who an individual can or cannot marry, are extremely diverse and universally present in traditional societies. A major focus of research in the early decades of modern anthropology, marriage rules impose social and economic forces that help structure societies and forge connections between them. However, in those early anthropological studies, the biological benefits or disadvantages of marriage rules could not be determined. We revisit this question by applying a novel simulation framework and genome-wide data to explore the effects of Asymmetric Prescriptive Alliance, an elaborate set of marriage rules that has been a focus of research for many anthropologists. Simulations show that strict adherence to these marriage rules reduces genetic diversity on the autosomes, X chromosome and mitochondrial DNA, but relaxed compliance produces genetic diversity similar to random mating. Genome-wide data from the Indonesian community of Rindi, one of the early study populations for Asymmetric Prescriptive Alliance, are more consistent with relaxed compliance than strict adherence. We therefore suggest that, in practice, marriage rules are treated with sufficient flexibility to allow social connectivity without significant degradation of biological diversity.
Subject(s)
Genetic Variation , Marriage , Culture , Female , Humans , Male , Models, GeneticABSTRACT
BACKGROUND: The Indonesian archipelago is endemic for malaria. Although Plasmodium falciparum and P. vivax are the most common causes for malaria cases, P. malariae and P. ovale are also present in certain regions. Zoonotic case of malaria had just became the attention of public health communities after the Serawak study in 2004. However, zoonotic case in Indonesia is still under reported; only one published report of knowlesi malaria in South Kalimantan in 2010. CASE PRESENTATION: A case of Plasmodium knowlesi infection in a worker from a charcoal mining company in Central Kalimantan, Indonesia was described. The worker suffered from fever following his visit to a lowland forest being cut and converted into a new mining location. CONCLUSION: This study confirmed a zoonotic infection using polymerase chain reaction amplification and Sanger sequencing of plasmodial DNA encoding the mitochondrial cytochrome c oxidase subunit I (mtCOI).
Subject(s)
Malaria/diagnosis , Plasmodium knowlesi/isolation & purification , Zoonoses/diagnosis , Animals , Borneo , Electron Transport Complex IV/analysis , Electron Transport Complex IV/genetics , Humans , Indonesia , Malaria/parasitology , Male , Middle Aged , Mitochondrial Proteins/analysis , Mitochondrial Proteins/genetics , Phylogeny , Plasmodium knowlesi/genetics , Polymerase Chain Reaction , Protozoan Proteins/analysis , Protozoan Proteins/genetics , Sequence Analysis, DNA , Zoonoses/parasitologyABSTRACT
BACKGROUND: Linguistic, cultural and genetic characteristics of the Malagasy suggest that both Africans and Island Southeast Asians were involved in the colonization of Madagascar. Populations from the Indonesian archipelago played an especially important role because linguistic evidence suggests that the Malagasy language branches from the Southeast Barito language family of southern Borneo, Indonesia, with the closest language spoken today by the Ma'anyan. To test for a genetic link between Malagasy and these linguistically related Indonesian populations, we studied the Ma'anyan and other Indonesian ethnic groups (including the sea nomad Bajo) that, from their historical and linguistic contexts, may be modern descendants of the populations that helped enact the settlement of Madagascar. RESULT: A combination of phylogeographic analysis of genetic distances, haplotype comparisons and inference of parental populations by linear optimization, using both maternal and paternal DNA lineages, suggests that Malagasy derive from multiple regional sources in Indonesia, with a focus on eastern Borneo, southern Sulawesi and the Lesser Sunda islands. CONCLUSION: Settlement may have been mediated by ancient sea nomad movements because the linguistically closest population, Ma'anyan, has only subtle genetic connections to Malagasy, whereas genetic links with other sea nomads are more strongly supported. Our data hint at a more complex scenario for the Indonesian settlement of Madagascar than has previously been recognized.