ABSTRACT
BACKGROUND: The high mortality of systemic anthrax is likely a consequence of the severe central nervous system inflammation that occurs in anthrax meningitis. Effective treatment of such infections requires, at a minimum, adequate cerebrospinal fluid (CSF) antimicrobial concentrations. METHODS: We reviewed English medical literature and regulatory documents to extract information on serum and CSF exposures for antimicrobials with in vitro activity against Bacillus anthracis. Using CSF pharmacokinetic exposures and in vitro B. anthracis susceptibility data, we used population pharmacokinetic modeling and Monte Carlo simulations to determine whether a specific antimicrobial dosage would likely achieve effective CSF antimicrobial activity in patients with normal to inflamed meninges (ie, an intact to markedly disrupted blood-brain barrier). RESULTS: The probability of microbiologic success at achievable antimicrobial dosages was high (≥95%) for ciprofloxacin, levofloxacin (500â mg every 12 hours), meropenem, imipenem/cilastatin, penicillin G, ampicillin, ampicillin/sulbactam, doxycycline, and minocycline; acceptable (90%-95%) for piperacillin/tazobactam and levofloxacin (750â mg every 24â hours); and low (<90%) for vancomycin, amikacin, clindamycin, and linezolid. CONCLUSIONS: Prompt empiric antimicrobial therapy of patients with suspected or confirmed anthrax meningitis may reduce the high morbidity and mortality. Our data support using several ß-lactam-, fluoroquinolone-, and tetracycline-class antimicrobials as first-line and alternative agents for treatment of patients with anthrax meningitis; all should achieve effective microbiologic exposures. Our data suggest antimicrobials that should not be relied on to treat suspected or documented anthrax meningitis. Furthermore, the protein synthesis inhibitors clindamycin and linezolid can decrease toxin production and may be useful components of combination therapy.
Subject(s)
Anthrax , Anti-Infective Agents , Bacillus anthracis , Central Nervous System , Meningitis, Bacterial , Anthrax/diagnosis , Anthrax/drug therapy , Meningitis, Bacterial/diagnosis , Meningitis, Bacterial/drug therapy , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/cerebrospinal fluid , Anti-Infective Agents/pharmacology , Humans , Bacillus anthracis/drug effects , Bacillus anthracis/pathogenicity , Central Nervous System/drug effects , Monte Carlo MethodABSTRACT
This report updates previous CDC guidelines and recommendations on preferred prevention and treatment regimens regarding naturally occurring anthrax. Also provided are a wide range of alternative regimens to first-line antimicrobial drugs for use if patients have contraindications or intolerances or after a wide-area aerosol release of: Bacillus anthracis spores if resources become limited or a multidrug-resistant B. anthracis strain is used (Hendricks KA, Wright ME, Shadomy SV, et al.; Workgroup on Anthrax Clinical Guidelines. Centers for Disease Control and Prevention expert panel meetings on prevention and treatment of anthrax in adults. Emerg Infect Dis 2014;20:e130687; Meaney-Delman D, Rasmussen SA, Beigi RH, et al. Prophylaxis and treatment of anthrax in pregnant women. Obstet Gynecol 2013;122:885-900; Bradley JS, Peacock G, Krug SE, et al. Pediatric anthrax clinical management. Pediatrics 2014;133:e1411-36). Specifically, this report updates antimicrobial drug and antitoxin use for both postexposure prophylaxis (PEP) and treatment from these previous guidelines best practices and is based on systematic reviews of the literature regarding 1) in vitro antimicrobial drug activity against B. anthracis; 2) in vivo antimicrobial drug efficacy for PEP and treatment; 3) in vivo and human antitoxin efficacy for PEP, treatment, or both; and 4) human survival after antimicrobial drug PEP and treatment of localized anthrax, systemic anthrax, and anthrax meningitis. Changes from previous CDC guidelines and recommendations include an expanded list of alternative antimicrobial drugs to use when first-line antimicrobial drugs are contraindicated or not tolerated or after a bioterrorism event when first-line antimicrobial drugs are depleted or ineffective against a genetically engineered resistant: B. anthracis strain. In addition, these updated guidelines include new recommendations regarding special considerations for the diagnosis and treatment of anthrax meningitis, including comorbid, social, and clinical predictors of anthrax meningitis. The previously published CDC guidelines and recommendations described potentially beneficial critical care measures and clinical assessment tools and procedures for persons with anthrax, which have not changed and are not addressed in this update. In addition, no changes were made to the Advisory Committee on Immunization Practices recommendations for use of anthrax vaccine (Bower WA, Schiffer J, Atmar RL, et al. Use of anthrax vaccine in the United States: recommendations of the Advisory Committee on Immunization Practices, 2019. MMWR Recomm Rep 2019;68[No. RR-4]:1-14). The updated guidelines in this report can be used by health care providers to prevent and treat anthrax and guide emergency preparedness officials and planners as they develop and update plans for a wide-area aerosol release of B. anthracis.
Subject(s)
Anthrax Vaccines , Anthrax , Anti-Infective Agents , Antitoxins , Bacillus anthracis , Meningitis , Adult , Humans , Female , Child , Pregnancy , United States/epidemiology , Anthrax/diagnosis , Anthrax/drug therapy , Anthrax/prevention & control , Anthrax Vaccines/therapeutic use , Anthrax Vaccines/adverse effects , Anti-Infective Agents/therapeutic use , Antitoxins/pharmacology , Antitoxins/therapeutic use , Centers for Disease Control and Prevention, U.S. , Aerosols/pharmacology , Aerosols/therapeutic use , Meningitis/chemically induced , Meningitis/drug therapyABSTRACT
Bacillus anthracis, the causative agent of anthrax, is a high-consequence bacterial pathogen that occurs naturally in many parts of the world and is considered an agent of biowarfare or bioterrorism. Understanding antimicrobial susceptibility profiles of B. anthracis isolates is foundational to treating naturally occurring outbreaks and to public health preparedness in the event of an intentional release. In this systematic review, we searched the peer-reviewed literature for all publications detailing antimicrobial susceptibility testing of B. anthracis. Within the set of discovered articles, we collated a subset of publications detailing susceptibility testing that followed standardized protocols for Food and Drug Administration-approved, commercially available antimicrobials. We analyzed the findings from the discovered articles, including the reported minimal inhibitory concentrations. Across the literature, most B. anthracis isolates were reported as susceptible to current first-line antimicrobials recommended for postexposure prophylaxis and treatment. The data presented for potential alternative antimicrobials will be of use if significant resistance to first-line antimicrobials arises, the strain is bioengineered, or first-line antimicrobials are not tolerated or available.
Subject(s)
Anthrax , Anti-Infective Agents , Bacillus anthracis , Anthrax/epidemiology , Anti-Infective Agents/therapeutic use , Bioterrorism , Humans , Microbial Sensitivity TestsABSTRACT
Human anthrax cases necessitate rapid response. We completed Bacillus anthracis nanopore whole-genome sequencing in our high-containment laboratory from a human anthrax isolate hours after receipt. The de novo assembled genome showed no evidence of known antimicrobial resistance genes or introduced plasmid(s). Same-day genomic characterization enhances public health emergency response.
Subject(s)
Anthrax/prevention & control , Bacillus anthracis/isolation & purification , Bacillus anthracis/genetics , Bioterrorism , Civil Defense , Genome, Bacterial , Humans , Public Health , Real-Time Polymerase Chain Reaction , United States , Whole Genome SequencingABSTRACT
BACKGROUND: In Gram-negative species, ß-lactam antibiotics target penicillin binding proteins (PBPs) resulting in morphological alterations of bacterial cells. Observations of antibiotic-induced cell morphology changes can rapidly and accurately differentiate drug susceptible from resistant bacterial strains; however, resistant cells do not always remain unchanged. Burkholderia pseudomallei is a Gram-negative, biothreat pathogen and the causative agent of melioidosis, an often fatal infectious disease for humans. RESULTS: Here, we identified ß-lactam targets in B. pseudomallei by in silico analysis. Ten genes encoding putative PBPs, including PBP-1, PBP-2, PBP-3 and PBP-6, were detected in the genomes of susceptible and resistant strains. Real-time, live-cell imaging of B. pseudomallei strains demonstrated dynamic morphological changes in broth containing clinically relevant ß-lactam antibiotics. At sub-inhibitory concentrations of ceftazidime (CAZ), amoxicillin-clavulanic acid (AMC), and imipenem (IPM), filamentation, varying in length and proportion, was an initial response of the multidrug-resistant strain Bp1651 in exponential phase. However, a dominant morphotype reemerged during stationary phase that resembled cells unexposed to antibiotics. Similar morphology dynamics were observed for AMC-resistant strains, MSHR1655 and 724644, when exposed to sub-inhibitory concentrations of AMC. For all B. pseudomallei strains evaluated, increased exposure time and exposure to increased concentrations of AMC at and above minimal inhibitory concentrations (MICs) in broth resulted in cell morphology shifts from filaments to spheroplasts and/or cell lysis. B. pseudomallei morphology changes were more consistent in IPM. Spheroplast formation followed by cell lysis was observed for all strains in broth containing IPM at concentrations greater than or equal to MICs, however, the time to cell lysis was variable. B. pseudomallei cell lengths were strain-, drug- and drug concentration-dependent. CONCLUSIONS: Both resistant and susceptible B. pseudomallei strains exhibited filamentation during early exposure to AMC and CAZ at concentrations used to interpret susceptibility (based on CLSI guidelines). While developing a rapid ß-lactam antimicrobial susceptibility test based on cell-shape alone requires more extensive analyses, optical microscopy detected B. pseudomallei growth attributes that lend insight into antibiotic response and antibacterial mechanisms of action.
Subject(s)
Anti-Bacterial Agents/pharmacology , Burkholderia pseudomallei/physiology , beta-Lactams/pharmacology , Amoxicillin-Potassium Clavulanate Combination/pharmacology , Burkholderia pseudomallei/drug effects , Ceftazidime/pharmacology , Computer Simulation , Dose-Response Relationship, Drug , Imipenem/pharmacology , Microbial Sensitivity Tests , Microscopy , Time FactorsABSTRACT
BACKGROUND: For Yersinia pestis, Burkholderia pseudomallei, and Burkholderia mallei, conventional broth microdilution (BMD) is considered the gold standard for antimicrobial susceptibility testing (AST) and, depending on the species, requires an incubation period of 16-20 h, or 24-48 h according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. After a diagnosis of plague, melioidosis or glanders during an outbreak or after an exposure event, the timely distribution of appropriate antibiotics for treatment or post-exposure prophylaxis of affected populations could reduce mortality rates. RESULTS: Herein, we developed and evaluated a rapid, automated susceptibility test for these Gram-negative bacterial pathogens based on time-lapse imaging of cells incubating in BMD microtitre drug panels using an optical screening instrument (oCelloScope). In real-time, the instrument screened each inoculated well containing broth with various concentrations of antibiotics published by CLSI for primary testing: ciprofloxacin (CIP), doxycycline (DOX) and gentamicin (GEN) for Y. pestis; imipenem (IPM), ceftazidime (CAZ) and DOX for B. mallei; and IPM, DOX, CAZ, amoxicillin-clavulanic acid (AMC) and trimethoprim-sulfamethoxazole (SXT) for B. pseudomallei. Based on automated growth kinetic data, the time required to accurately determine susceptibility decreased by ≥70% for Y. pestis and ≥ 50% for B. mallei and B. pseudomallei compared to the times required for conventional BMD testing. Susceptibility to GEN, IPM and DOX could be determined in as early as three to six hours. In the presence of CAZ, susceptibility based on instrument-derived growth values could not be determined for the majority of B. pseudomallei and B. mallei strains tested. Time-lapse video imaging of these cultures revealed that the formation of filaments in the presence of this cephalosporin at inhibitory concentrations was detected as growth. Other ß-lactam-induced cell morphology changes, such as the formation of spheroplasts and rapid cell lysis, were also observed and appear to be strain- and antibiotic concentration-dependent. CONCLUSIONS: A rapid, functional AST was developed and real-time video footage captured ß-lactam-induced morphologies of wild-type B. mallei and B. pseudomallei strains in broth. Optical screening reduced the time to results required for AST of three Gram-negative biothreat pathogens using clinically relevant, first-line antibiotics compared to conventional BMD.
Subject(s)
Anti-Bacterial Agents/pharmacology , Burkholderia mallei/drug effects , Burkholderia pseudomallei/drug effects , Microbial Sensitivity Tests/methods , Time-Lapse Imaging/methods , Yersinia pestis/drug effects , beta-Lactams/pharmacology , Burkholderia mallei/cytology , Burkholderia mallei/growth & development , Burkholderia mallei/physiology , Burkholderia pseudomallei/growth & development , Burkholderia pseudomallei/physiology , Ciprofloxacin/pharmacology , Doxycycline/pharmacology , Glanders/microbiology , Humans , Imipenem/pharmacology , Melioidosis/microbiology , Plague/microbiology , Yersinia pestis/cytology , Yersinia pestis/growth & development , Yersinia pestis/physiologyABSTRACT
Burkholderia pseudomallei Bp1651 is resistant to several classes of antibiotics that are usually effective for treatment of melioidosis, including tetracyclines, sulfonamides, and ß-lactams such as penicillins (amoxicillin-clavulanic acid), cephalosporins (ceftazidime), and carbapenems (imipenem and meropenem). We sequenced, assembled, and annotated the Bp1651 genome and analyzed the sequence using comparative genomic analyses with susceptible strains, keyword searches of the annotation, publicly available antimicrobial resistance prediction tools, and published reports. More than 100 genes in the Bp1651 sequence were identified as potentially contributing to antimicrobial resistance. Most notably, we identified three previously uncharacterized point mutations in penA, which codes for a class A ß-lactamase and was previously implicated in resistance to ß-lactam antibiotics. The mutations result in amino acid changes T147A, D240G, and V261I. When individually introduced into select agent-excluded B. pseudomallei strain Bp82, D240G was found to contribute to ceftazidime resistance and T147A contributed to amoxicillin-clavulanic acid and imipenem resistance. This study provides the first evidence that mutations in penA may alter susceptibility to carbapenems in B. pseudomallei Another mutation of interest was a point mutation affecting the dihydrofolate reductase gene folA, which likely explains the trimethoprim resistance of this strain. Bp1651 was susceptible to aminoglycosides likely because of a frameshift in the amrB gene, the transporter subunit of the AmrAB-OprA efflux pump. These findings expand the role of penA to include resistance to carbapenems and may assist in the development of molecular diagnostics that predict antimicrobial resistance and provide guidance for treatment of melioidosis.
Subject(s)
Anti-Bacterial Agents/pharmacology , Burkholderia pseudomallei/drug effects , Burkholderia pseudomallei/genetics , Drug Resistance, Multiple, Bacterial/genetics , Imipenem/pharmacology , beta-Lactamases/genetics , Amoxicillin-Potassium Clavulanate Combination/pharmacology , Burkholderia pseudomallei/classification , Ceftazidime/pharmacology , Genome, Bacterial/genetics , Humans , Melioidosis/drug therapy , Melioidosis/microbiology , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Sequence Analysis, DNA , Tetrahydrofolate Dehydrogenase/genetics , Trimethoprim/pharmacologyABSTRACT
During high-impact events involving Bacillus anthracis, such as the Amerithrax incident of 2001 or the anthrax outbreaks in Russia and Sweden in 2016, critical decisions to reduce morbidity and mortality include rapid selection and distribution of effective antimicrobial agents for treatment and postexposure prophylaxis. Detection of antimicrobial resistance currently relies on a conventional broth microdilution method that requires a 16- to 20-h incubation time for B. anthracis Advances in high-resolution optical screening offer a new technology to more rapidly evaluate antimicrobial susceptibility and to simultaneously assess the growth characteristics of an isolate. Herein, we describe a new method developed and evaluated as a rapid antimicrobial susceptibility test for B. anthracis This method is based on automated digital time-lapse microscopy to observe the growth and morphological effects of relevant antibiotics with an optical screening instrument, the oCelloScope. B. anthracis strains were monitored over time in the presence or absence of penicillin, ciprofloxacin, or doxycycline. Susceptibility to each antibiotic was determined in ≤4 h, 75 to 80% less than the time required for conventional methods. Time-lapse video imaging compiled from the optical screening images revealed unexpected differences in growth characteristics among strains of B. anthracis, which is considered to be a clonal organism. This technology provides a new approach for rapidly detecting phenotypic antimicrobial resistance and for documenting growth attributes that may be beneficial in the further characterization of individual strains.
Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus anthracis/classification , Bacillus anthracis/drug effects , Genotype , Microbial Sensitivity Tests/methods , Microscopy/methods , Time-Lapse Imaging/methods , Automation, Laboratory/methods , Bacillus anthracis/genetics , Bacillus anthracis/growth & development , Ciprofloxacin/pharmacology , Doxycycline/pharmacology , Penicillins/pharmacology , Time FactorsABSTRACT
Clinical outcomes of melioidosis patients improve when the infecting agent, Burkholderia pseudomallei, is rapidly detected and identified by laboratory testing. Detection of B. pseudomallei DNA or recovery of the pathogen by culture from urine can support a diagnosis of melioidosis and guide patient care. Two new methods, designated filter-capture DNA isolation (FCDI) and filter cellular recovery (FCR), were developed to increase the sensitivity of detection and recovery of viable B. pseudomallei cells from small volumes (0.45 ml) of urine. DNA from eight strains of B. pseudomallei that were spiked into synthetic urine at low concentrations (1 × 102 CFU/ml) was detected in FCDI cell lysates using real-time PCR with greater consistency than with preparations from a QIAamp DNA Blood minikit. The FCR method showed greater B. pseudomallei detection sensitivity than conventional urine culture methods and resulted in typical colony growth at 24 h from as few as 1 × 102 CFU/ml. In addition, the FCR method does not rely on precipitation of a urine pellet by centrifugation and requires a smaller volume of urine. The FCDI and FCR methods described here could improve time-to-results and decrease the number of negative B. pseudomallei reports that are currently observed from urine culture as a consequence of samples containing low or variable bacterial cell concentrations.
Subject(s)
Burkholderia pseudomallei/isolation & purification , Melioidosis/diagnosis , Melioidosis/urine , Urinalysis/methods , Burkholderia pseudomallei/genetics , DNA, Bacterial/genetics , Humans , Melioidosis/microbiology , Real-Time Polymerase Chain Reaction/methods , Sensitivity and SpecificityABSTRACT
Rapid methods to determine antimicrobial susceptibility would assist in the timely distribution of effective treatment or postexposure prophylaxis in the aftermath of the release of bacterial biothreat agents such as Bacillus anthracis, Yersinia pestis, or Burkholderia pseudomallei Conventional susceptibility tests require 16 to 48 h of incubation, depending on the bacterial species. We evaluated a method that is based on laser light scattering technology that measures cell density in real time. We determined that it has the ability to rapidly differentiate between growth (resistant) and no growth (susceptible) of several bacterial threat agents in the presence of clinically relevant antimicrobials. Results were available in <4 h for B. anthracis and <6 h for Y. pestis and B. pseudomallei One exception was B. pseudomallei in the presence of ceftazidime, which required >10 h of incubation. Use of laser scattering technology decreased the time required to determine antimicrobial susceptibility by 50% to 75% for B. anthracis, Y. pestis, and B. pseudomallei compared to conventional methods.
Subject(s)
Bacillus anthracis/drug effects , Burkholderia pseudomallei/drug effects , Lasers , Microbial Sensitivity Tests/methods , Nephelometry and Turbidimetry/methods , Yersinia pestis/drug effects , Time FactorsABSTRACT
Melioidosis is a severe disease that can be difficult to diagnose because of its diverse clinical manifestations and a lack of adequate diagnostic capabilities for suspected cases. There is broad interest in improving detection and diagnosis of this disease not only in melioidosis-endemic regions but also outside these regions because melioidosis may be underreported and poses a potential bioterrorism challenge for public health authorities. Therefore, a workshop of academic, government, and private sector personnel from around the world was convened to discuss the current state of melioidosis diagnostics, diagnostic needs, and future directions.
Subject(s)
Melioidosis/diagnosis , Humans , Practice Guidelines as TopicABSTRACT
The high-consequence pathogen Bacillus anthracis causes human anthrax and often results in lethal infections without the rapid administration of effective antimicrobial treatment. Antimicrobial resistance profiling is therefore critical to inform post-exposure prophylaxis and treatment decisions, especially during emergencies such as outbreaks or where intentional release is suspected. Whole-genome sequencing using a rapid long-read sequencer can uncover antimicrobial resistance patterns if genetic markers of resistance are known. To identify genomic markers associated with antimicrobial resistance, we isolated B. anthracis derived from the avirulent Sterne strain with elevated minimal inhibitory concentrations to clarithromycin. Mutants were characterized both phenotypically through broth microdilution susceptibility testing and observations during culturing, as well as genotypically with whole-genome sequencing. We identified two different in-frame insertions in the L22 ribosomal protein-encoding gene rplV, which were subsequently confirmed to be involved in clarithromycin resistance through the reversion of the mutant gene to the parent (drug-susceptible) sequence. Detection of the rplV insertions was possible with rapid long-read sequencing, with a time-to-answer within 3 h. The mutations associated with clarithromycin resistance described here will be used in conjunction with known genetic markers of resistance for other antimicrobials to strengthen the prediction of antimicrobial resistance in B. anthracis.IMPORTANCEThe disease anthrax, caused by the pathogen Bacillus anthracis, is extremely deadly if not treated quickly and appropriately. Clarithromycin is an antibiotic recommended for the treatment and post-exposure prophylaxis of anthrax by the Centers for Disease Control and Prevention; however, little is known about the ability of B. anthracis to develop resistance to clarithromycin or the mechanism of that resistance. The characterization of clarithromycin-resistant isolates presented here provides valuable information for researchers and clinicians in the event of a release of the resistant strain. Additionally, knowledge of the genetic basis of resistance provides a foundation for susceptibility prediction through rapid genome sequencing to inform timely treatment decisions.
Subject(s)
Anthrax , Anti-Bacterial Agents , Bacillus anthracis , Clarithromycin , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Whole Genome Sequencing , Bacillus anthracis/genetics , Bacillus anthracis/drug effects , Clarithromycin/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Anthrax/microbiology , Humans , Mutation , Bacterial Proteins/genetics , Ribosomal Proteins/genetics , Genome, Bacterial/geneticsABSTRACT
Objectives: The study aim was to investigate multidrug-resistant (MDR) plasmids from a collection of 10 carbapenemase-producing Klebsiella pneumoniae clinical isolates identified within the same healthcare institution in Pakistan. Full characterization of the MDR plasmids including structure, typing characteristics, and AMR content as well as determination of their plasmid-based antimicrobial susceptibility profiles were carried out. Methods: Plasmids were isolated from 10 clinical isolates of Klebsiella pneumoniae, and from a corresponding set of Escherichia coli transconjugants, then sequenced using Nanopore/Illumina technology to generate plasmid hybrid assemblies. Full characterization of MDR plasmids, including determination of next generation sequencing (NGS)-based AMR profiles, plasmid incompatibility groups, and types, was carried out. The structure of MDR plasmids was analyzed using the Galileo AMR platform. For E. coli transconjugants, the NGS-based AMR profiles were compared to NGS-predicted AMR phenotypes and conventional broth microdilution (BMD) antimicrobial susceptibility testing (AST) results. Results: All carbapenemase-producing K. pneumoniae isolates (carrying either blaNDM-1, or/and blaOXA-48) carried multiple AMR plasmids encoding 34 antimicrobial resistance genes (ARGs) conferring resistance to antimicrobials from 6 different classes. The plasmid incompatibility groups and types identified were: IncC (types 1 and 3), IncFIA (type 26) IncFIB, IncFII (types K1, K2, K7, and K9), IncHI1B, and IncL. None of the blaNDM-1 and blaESBL-plasmids identified in this study were previously described. Most blaNDM-1-plasmids shared identical AMR regions suggesting potential genetic material/plasmid exchange between K. pneumoniae isolates of this collection. The majority of NGS-based AMR profiles from the E. coli transconjugants correlated well with both NGS-based predicted and conventional AST results. Conclusion: This study highlights the complexity and diversity of the plasmid-based genetic background of carbapenemase-producing clinical isolates from Pakistan. This study emphasizes the need for characterization of MDR plasmids to determine their complete molecular background and monitor AMR through plasmid transmission between multi-resistant bacterial pathogens.
ABSTRACT
Burkholderia pseudomallei causes melioidosis. Sequence typing this pathogen can reveal geographical origin and uncover epidemiological associations. Here, we describe B. pseudomallei genes encoding putative penicillin binding proteins (PBPs) and investigate their utility for determining phylogeography and differentiating closely related species. We performed in silico analysis to characterize 10 PBP homologs in B. pseudomallei 1026b. As PBP active site mutations can confer ß-lactam resistance in Gram-negative bacteria, PBP sequences in two resistant B. pseudomallei strains were examined for similar alterations. Sequence alignments revealed single amino acid polymorphisms (SAAPs) unique to the multidrug resistant strain Bp1651 in the transpeptidase domains of two PBPs, but not directly within the active sites. Using BLASTn analyses of complete assembled genomes in the NCBI database, we determined genes encoding PBPs were conserved among B. pseudomallei (n = 101) and Burkholderia mallei (n = 26) strains. Within these genes, single nucleotide polymorphisms (SNPs) useful for predicting geographic origin of B. pseudomallei were uncovered. SNPs unique to B. mallei were also identified. Based on 11 SNPs identified in two genes encoding predicted PBP-3s, a dual-locus sequence typing (DLST) scheme was developed. The robustness of this typing scheme was assessed using 1,523 RefSeq genomes from B. pseudomallei (n = 1,442) and B. mallei (n = 81) strains, resulting in 32 sequence types (STs). Compared to multi-locus sequence typing (MLST), the DLST scheme demonstrated less resolution to support the continental separation of Australian B. pseudomallei strains. However, several STs were unique to strains originating from a specific country or region. The phylogeography of Western Hemisphere B. pseudomallei strains was more highly resolved by DLST compared to internal transcribed spacer (ITS) typing, and all B. mallei strains formed a single ST. Conserved genes encoding PBPs in B. pseudomallei are useful for strain typing, can enhance predictions of geographic origin, and differentiate strains of closely related Burkholderia species.
Subject(s)
Burkholderia pseudomallei , Australia , Burkholderia pseudomallei/genetics , Multilocus Sequence Typing , Penicillin-Binding Proteins/genetics , Phylogeography , Polymorphism, Single NucleotideABSTRACT
For decades, Asian Americans have had to deal with stereotypes, misunderstandings of their status in society, and prejudice and discrimination. Because of their small population in the U.S. and prevailing model minority stereotypes, they have not received the attention or aid necessary for research and policy advocacy to counter the misunderstandings. It is argued that Asian Americans are diverse group on many dimensions but they share experiences involving stereotypes and racism. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Subject(s)
Asian/psychology , Racism , Stereotyping , Humans , Minority Groups/psychology , Racism/prevention & control , Racism/psychology , Social MarginalizationABSTRACT
Current antimicrobial treatment recommendations for melioidosis, the disease caused by Burkholderia pseudomallei, are largely based on studies of strains isolated from the Eastern Hemisphere (EH), where most human cases are identified and reported. In this study, we evaluated the antimicrobial susceptibility of 26 strains in the CDC (Centers for Diseases Control and Prevention) collection from the Western Hemisphere (WH) isolated from 1960 to 2015. Minimal inhibitory concentration (MIC) values were measured by standard broth microdilution for 16 antimicrobials following Clinical and Laboratory Standards Institute (CLSI) guidelines. Twenty-four of the 26 WH strains were susceptible to the six antimicrobials with CLSI-defined MIC susceptibility interpretive criteria for B. pseudomallei: amoxicillin/clavulanate, ceftazidime, imipenem, doxycycline, tetracycline, and trimethoprim/sulfamethoxazole. One WH strain demonstrated intermediate amoxicillin/clavulanate resistance and another strain had intermediate resistance to tetracycline. For all antimicrobials tested, the susceptibility profiles of WH isolates were comparable with previously reported MIC results of EH strains. The overall similarities suggest that the same antimicrobials are useful for melioidosis treatment in both the WH and EH. Using in silico analyses of WH genomes, we identified a novel amino acid substitution P258S in the beta-lactamase PenA, which may contribute to decreased susceptibility to amoxicillin/clavulanate in B. pseudomallei.
Subject(s)
Anti-Bacterial Agents/pharmacology , Burkholderia pseudomallei/drug effects , Drug Resistance, Multiple, Bacterial/drug effects , beta-Lactamases/genetics , Burkholderia pseudomallei/isolation & purification , Genes, Bacterial , Genomics , Humans , Microbial Sensitivity Tests , PhenotypeABSTRACT
An effective public health response to a deliberate release of Bacillus anthracis will require a rapid distribution of antimicrobial agents for postexposure prophylaxis and treatment. However, conventional antimicrobial susceptibility testing for B. anthracis requires a 16- to 20-h incubation period. To reduce this time, we have combined a modified broth microdilution (BMD) susceptibility testing method with real-time quantitative PCR (qPCR). The growth or inhibition of growth of B. anthracis cells incubated in 2-fold dilutions of ciprofloxacin (CIP) (0.015 to 16 microg/ml) or doxycycline (DOX) (0.06 to 64 microg/ml) was determined by comparing the fluorescence threshold cycle (C(T)) generated by target amplification from cells incubated with each drug concentration with the C(T) of the no-drug (positive growth) control. This DeltaC(T) readily differentiated susceptible and nonsusceptible strains. Among susceptible strains, the median DeltaC(T) values were > or = 7.51 cycles for CIP and > or = 7.08 cycles for DOX when drug concentrations were at or above the CLSI breakpoint for susceptibility. For CIP- and DOX-nonsusceptible strains, the DeltaC(T) was < 1.0 cycle at the breakpoint for susceptibility. When evaluated with 14 genetically and geographically diverse strains of B. anthracis, the rapid method provided the same susceptibility results as conventional methods but required less than 6 h, significantly decreasing the time required for the selection and distribution of appropriate medical countermeasures.
Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus anthracis/drug effects , Microbial Sensitivity Tests/methods , Bacillus anthracis/genetics , Ciprofloxacin/pharmacology , Polymerase Chain Reaction , Tetracycline/pharmacologyABSTRACT
Widespread release of Bacillus anthracis (anthrax) or Yersinia pestis (plague) would prompt a public health emergency. During an exposure event, high-quality whole genome sequencing (WGS) can identify genetic engineering, including the introduction of antimicrobial resistance (AMR) genes. Here, we developed rapid WGS laboratory and bioinformatics workflows using a long-read nanopore sequencer (MinION) for Y. pestis (6.5 h) and B. anthracis (8.5 h) and sequenced strains with different AMR profiles. Both salt-precipitation and silica-membrane extracted DNA were suitable for MinION WGS using both rapid and field library preparation methods. In replicate experiments, nanopore quality metrics were defined for genome assembly and mutation analysis. AMR markers were correctly detected and >99% coverage of chromosomes and plasmids was achieved using 100,000 raw sequencing reads. While chromosomes and large and small plasmids were accurately assembled, including novel multimeric forms of the Y. pestis virulence plasmid, pPCP1, MinION reads were error-prone, particularly in homopolymer regions. MinION sequencing holds promise as a practical, front-line strategy for on-site pathogen characterization to speed the public health response during a biothreat emergency.
Subject(s)
Bacteria/genetics , Nanopore Sequencing/methods , Anti-Bacterial Agents/pharmacology , Computational Biology/methods , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Genetic Engineering , Genome, Bacterial/drug effects , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Virulence/drug effects , Whole Genome Sequencing/methodsABSTRACT
Bacillus anthracis, the etiologic agent of anthrax, is characteristically susceptible to penicillin despite containing two chromosomal ß-lactamase genes. Few naturally occurring penicillin-resistant B. anthracis isolates have been reported. Here, we report the draft genome sequences for three penicillin-resistant B. anthracis strains, strain 32, UT308, and SK57.
ABSTRACT
Members of the Bacillus cereus group contain cell wall carbohydrates that vary in their glycosyl compositions. Recent multilocus sequence typing (MLST) refined the relatedness of B. cereus group members by separating them into clades and lineages. Based on MLST, we selected several B. anthracis, B. cereus, and B. thuringiensis strains and compared their cell wall carbohydrates. The cell walls of different B. anthracis strains (clade 1/Anthracis) were composed of glucose (Glc), galactose (Gal), N-acetyl mannosamine (ManNAc), and N-acetylglucosamine (GlcNAc). In contrast, the cell walls from clade 2 strains (B. cereus type strain ATCC 14579 and B. thuringiensis strains) lacked Gal and contained N-acetylgalactosamine (GalNAc). The B. cereus clade 1 strains had cell walls that were similar in composition to B. anthracis in that they all contained Gal. However, the cell walls from some clade 1 strains also contained GalNAc, which was not present in B. anthracis cell walls. Three recently identified clade 1 strains of B. cereus that caused severe pneumonia, i.e., strains 03BB102, 03BB87, and G9241, had cell wall compositions that closely resembled those of the B. anthracis strains. It was also observed that B. anthracis strains cell wall glycosyl compositions differed from one another in a plasmid-dependent manner. When plasmid pXO2 was absent, the ManNAc/Gal ratio decreased, while the Glc/Gal ratio increased. Also, deletion of atxA, a global regulatory gene, from a pXO2- strain resulted in cell walls with an even greater level of Glc.