Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
Add more filters

Publication year range
1.
Bioorg Chem ; 144: 107109, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38219480

ABSTRACT

Herein, (-)-galiellalactone 1 congeners responsible for the nuclear factor erythroid 2-related factor 2 (Nrf2)-activating neuroprotective effects were elucidated. Additionally, novel congener-based Nrf2 activators were identified using a drug repositioning strategy. (-)-Galiellalactone, which comprises a tricyclic lactone skeleton, significantly activates antioxidant response element (ARE)-mediated transcription in neuroblastoma SH-SY5Y cells. Interestingly, two cyclohexene-truncated [3.3] bicyclic lactone analogs, which possess an exocyclic α-methylene-γ-butyrolactone moiety, exhibited higher Nrf2/ARE transcriptional activities than the parent (-)-galiellalactone. We confirmed that the cyclohexene moiety embedding the [3.3] bicyclic lactone congener does not play the essential role of (-)-galiellalactone for Nrf2/ARE activation. Nrf2/ARE activation by novel analogs resulted in the upregulation of downstream antioxidative and phase II detoxifying enzymes, heme oxygenase-1, and NAD(P)H quinone oxidoreductase 1, which are closely related to the cytoprotective effects on neurodegenerative diseases. (-)-Galiellalactone and its [3.3] bicyclic variants 3l and 3p increased the expression of antioxidant genes and exhibited neuroprotective effects against 6-hydroxydopamine-mediated neurotoxicity in the neuroblastoma SH-SY5Y cell line.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Humans , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Signal Transduction , Neuroblastoma/drug therapy , Antioxidants/pharmacology , Antioxidants/metabolism , Lactones/pharmacology , Lactones/chemistry , Cyclohexenes/pharmacology , Oxidative Stress , Cell Line, Tumor
2.
Mar Drugs ; 21(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37233475

ABSTRACT

This study aimed to elucidate the structural congeners of natural izenamides A, B, and C (1-3) responsible for cathepsin D (CTSD) inhibition. Structurally modified izenamides were synthesized and biologically evaluated, and their biologically important core structures were identified. We confirmed that the natural statine (Sta) unit (3S,4S)-γ-amino-ß-hydroxy acid is a requisite core structure of izenamides for inhibition of CTSD, which is closely related to the pathophysiological roles in numerous human diseases. Interestingly, the statine-incorporated izenamide C variant (7) and 18-epi-izenamide B variant (8) exhibited more potent CTSD-inhibitory activities than natural izenamides.


Subject(s)
Cathepsin D , Protease Inhibitors , Humans , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry
3.
Bioorg Chem ; 122: 105716, 2022 05.
Article in English | MEDLINE | ID: mdl-35303621

ABSTRACT

The discovery of small molecules that regulate specific neuronal phenotypes is important for the development of new therapeutic candidates for neurological diseases. Estrogen-related receptor γ (ERRγ), an orphan nuclear receptor widely expressed in the central nervous system (CNS), is closely related to the regulation of neuronal metabolism and differentiation. We previously reported that upregulation of ERRγ could enhance dopaminergic neuronal phenotypes in the neuroblastoma cell line, SH-SY5Y. In this study, we designed and synthesized a series of new ERRγ agonists using the X-ray crystal structure of the GSK4716-bound ERRγ complex and known synthetic ligands. Our new ERRγ agonists exhibited increased transcriptional activities of ERRγ. In addition, our molecular docking results supported the experimental findings for ERRγ agonistic activity of the potent analogue, 5d. Importantly, 5d not only enhanced the expression of dopaminergic neuronal-specific molecules, TH and DAT but also activated the relevant signaling events, such as the CREB-mediated signaling pathway. The results of the present study may provide useful clues for the development of novel ERRγ agonists for neurological diseases related to the dopaminergic nervous system.


Subject(s)
Dopaminergic Neurons , Receptors, Estrogen , Dopaminergic Neurons/metabolism , Molecular Docking Simulation , Phenotype , Receptors, Estrogen/metabolism , Up-Regulation
4.
Mol Pharmacol ; 100(1): 63-72, 2021 07.
Article in English | MEDLINE | ID: mdl-34016717

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is a plausible therapeutic target in the treatment of retinoblastoma, the most common intraocular malignant tumor in children. STAT3, a transcription factor of several genes related to tumorigenesis, is activated in retinoblastoma tumors as well as other cancers. In this study, we investigated the structure-activity relationship of a library of STAT3 inhibitors, including a novel series of derivatives of the previously reported compound with a Michael acceptor (compound 1). We chose two novel STAT3 inhibitors, compounds 11 and 15, from the library based on their inhibitory effects on the phosphorylation and transcription activity of STAT3. These STAT3 inhibitors effectively suppressed the phosphorylation of STAT3 and inhibited the expression of STAT3-related genes CCND1, CDKN1A, BCL2, BCL2L1, BIRC5, MYC, MMP1, MMP9, and VEGFA Intraocularly administered STAT3 inhibitors decreased the degree of tumor formation in the vitreous cavity of BALB/c nude mice of an orthotopic transplantation model. It is noteworthy that compounds 11 and 15 did not induce in vitro and in vivo toxicity on retinal constituent cells and retinal tissues, respectively, despite their potent antitumor effects. We suggest that these novel STAT3 inhibitors be used in the treatment of retinoblastoma. SIGNIFICANCE STATEMENT: The current study suggests the novel STAT3 inhibitors with Michael acceptors possess antitumor activity on retinoblastoma, the most common intraocular cancer in children. Based on detailed structure-activity relationship studies, we found a 4-fluoro and 3-trifluoro analog (compound 11) and a monochloro analog (compound 15) of the parental compound (compound 1) inhibited STAT3 phosphorylation, leading to suppressed retinoblastoma in vitro and in vivo.


Subject(s)
Retinal Neoplasms/drug therapy , Retinoblastoma/drug therapy , STAT3 Transcription Factor/metabolism , Small Molecule Libraries/administration & dosage , Animals , Cell Line, Tumor , Down-Regulation , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation/drug effects , Retinal Neoplasms/metabolism , Retinoblastoma/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Signal Transduction/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
5.
J Pharmacol Exp Ther ; 379(3): 358-371, 2021 12.
Article in English | MEDLINE | ID: mdl-34503993

ABSTRACT

Although protein-protein interactions (PPIs) have emerged as an attractive therapeutic target space, the identification of chemicals that effectively inhibit PPIs remains challenging. Here, we identified through library screening a chemical probe (compound 1) that can inhibit the tumor-promoting interaction between the oncogenic factor exon 2-depleted splice variant of aminoacyl-transfer RNA synthetase-interacting multifunctional protein 2 (AIMP2-DX2) and heat shock protein 70 (HSP70). We found that compound 1 binds to the N-terminal subdomain of glutathione S-transferase (GST-N) of AIMP2-DX2, causing a direct steric clash with HSP70 and an intramolecular interaction between the N-terminal flexible region and the GST-N of AIMP2-DX2, which induces masking of the HSP70 binding region during molecular dynamics and mutation studies. Compound 1 thus interferes with the AIMP2-DX2 and HSP70 interaction and suppresses the growth of cancer cells that express high levels of AIMP2-DX2 in vitro and in preliminary in vivo experiment. This work provides an example showing that allosteric conformational changes induced by chemicals can be a way to control pathologic PPIs. SIGNIFICANCE STATEMENT: Compound 1 is a promising protein-protein interaction inhibitor between AIMP2-DX2 and HSP70 for cancer therapy by the mechanism with allosteric modulation as well as competitive binding. It seems to induce allosteric conformational change of AIMP2-DX2 proteins and direct binding clash between AIMP2-DX2 and HSP70. The compound reduced the level of AIMP2-DX2 in ubiquitin-dependent manner via suppression of binding between AIMP2-DX2 and HSP70 and suppressed the growth of cancer cells highly expressing AIMP2-DX2 in vitro and in preliminary in vivo experiment.


Subject(s)
Antineoplastic Agents/pharmacology , Exons/physiology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP70 Heat-Shock Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , A549 Cells , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , CHO Cells , Cell Survival , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Exons/drug effects , Female , HEK293 Cells , HSP70 Heat-Shock Proteins/chemistry , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Nuclear Proteins/chemistry , Protein Binding/physiology , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Structure, Tertiary , Xenograft Model Antitumor Assays/methods
6.
Pharmacol Res ; 165: 105423, 2021 03.
Article in English | MEDLINE | ID: mdl-33434621

ABSTRACT

Brain derived neurotrophic factor (BDNF) promotes maturation of dopaminergic (DAergic) neurons in the midbrain and positively regulates their maintenance and outgrowth. Therefore, understanding the mechanisms regulating the BDNF signaling pathway in DAergic neurons may help discover potential therapeutic strategies for neuropsychological disorders associated with dysregulation of DAergic neurotransmission. Because estrogen-related receptor gamma (ERRγ) is highly expressed in both the fetal nervous system and adult brains during DAergic neuronal differentiation, and it is involved in regulating the DAergic neuronal phenotype, we asked in this study whether ERRγ ligand regulates BDNF signaling and subsequent DAergic neuronal phenotype. Based on the X-ray crystal structures of the ligand binding domain of ERRγ, we designed and synthesized the ERRγ agonist, (E)-4-hydroxy-N'-(4-(phenylethynyl)benzylidene)benzohydrazide (HPB2) (Kd value, 8.35 µmol/L). HPB2 increased BDNF mRNA and protein levels, and enhanced the expression of the BDNF receptor tropomyosin receptor kinase B (TrkB) in human neuroblastoma SH-SY5Y, differentiated Lund human mesencephalic (LUHMES) cells, and primary ventral mesencephalic (VM) neurons. HPB2-induced upregulation of BDNF was attenuated by GSK5182, an antagonist of ERRγ, and siRNA-mediated ERRγ silencing. HPB2-induced activation of extracellular-signal-regulated kinase (ERK) and phosphorylation of cAMP-response element binding protein (CREB) was responsible for BDNF upregulation in SH-SY5Y cells. HPB2 enhanced the DAergic neuronal phenotype, namely upregulation of tyrosine hydroxylase (TH) and DA transporter (DAT) with neurite outgrowth, both in SH-SY5Y and primary VM neurons, which was interfered by the inhibition of BDNF-TrkB signaling, ERRγ knockdown, or blockade of ERK activation. HPB2 also upregulated BDNF and TH in the striatum and induced neurite elongation in the substantia nigra of mice brain. In conclusion, ERRγ activation regulated BDNF expression and the subsequent DAergic neuronal phenotype in neuronal cells. Our results might provide new insights into the mechanism underlying the regulation of BDNF expression, leading to novel therapeutic strategies for neuropsychological disorders associated with DAergic dysregulation.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Dopaminergic Neurons/metabolism , Estradiol Congeners/pharmacology , Membrane Glycoproteins/biosynthesis , Receptor, trkB/biosynthesis , Receptors, Estrogen/metabolism , Up-Regulation/physiology , Animals , Brain-Derived Neurotrophic Factor/chemistry , Cell Line, Tumor , Dopaminergic Neurons/drug effects , Estradiol Congeners/chemistry , Female , Humans , Ligands , Male , Membrane Glycoproteins/chemistry , Mice , Mice, Inbred C57BL , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Phenotype , Pregnancy , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Receptor, trkB/chemistry , Receptors, Estrogen/chemistry , Up-Regulation/drug effects
7.
Int J Mol Sci ; 22(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34445513

ABSTRACT

The activation of signal transducer and activator of transcription 3 (STAT3), as well as up-regulation of cytokines and growth factors to promote STAT3 activation, have been found in the epidermis of psoriatic lesions. Recently, a series of synthetic compounds possessing the Michael acceptor have been reported as STAT3 inhibitors by covalently binding to cysteine of STAT3. We synthesized a Michael acceptor analog, SKSI-0412, and confirmed the binding affinity between STAT3 and SKSI-0412. We hypothesized that the SKSI-0412 can inhibit interleukin (IL)-17A-induced inflammation in keratinocytes. The introduction of IL-17A increased the phosphorylation of STAT3 in keratinocytes, whereas the inactivation of STAT3 by SKSI-0412 reduced IL-17A-induced STAT3 phosphorylation and IκBζ expression. In addition, human ß defensin-2 and S100A7, which are regulated by IκBζ, were significantly decreased with SKSI-0412 administration. We also confirmed that SKSI-0412 regulates cell proliferation, which is the major phenotype of psoriasis. Based on these results, we suggest targeting STAT3 with SKSI-0412 as a novel therapeutic strategy to regulate IL-17A-induced psoriatic inflammation in keratinocytes.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Interleukin-17/adverse effects , Keratinocytes/cytology , STAT3 Transcription Factor/metabolism , Small Molecule Libraries/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Down-Regulation , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Phosphorylation/drug effects , Primary Cell Culture , STAT3 Transcription Factor/chemistry , Signal Transduction/drug effects , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
8.
Molecules ; 26(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562719

ABSTRACT

Ionic liquids (ILs) have sparked much interest as alternative solvents for plant materials as they provide distinctive properties. Therefore, in this study, the capacity of ILs to extract oxypeucedanin hydrate and byakangelicin from the roots of Angelica dahurica (A. dahurica) was investigated. The back-extraction method was examined to recover target components from the IL solution as well. Herein, [Bmim]Tf2N demonstrated outstanding performance for extracting oxypeucedanin hydrate and byakangelicin. Moreover, factors including solvent/solid ratio, extraction temperature and time were investigated and optimized using a statistical approach. Under optimum extraction conditions (solvent/solid ratio 8:1, temperature 60 °C and time 180 min), the yields of oxypeucedanin hydrate and byakangelicin were 98.06% and 99.52%, respectively. In addition, 0.01 N HCl showed the most significant ability to back-extract target components from the [Bmim]Tf2N solution. The total content of both oxypeucedanin hydrate (36.99%) and byakangelicin (45.12%) in the final product exceeded 80%. Based on the data, the proposed approach demonstrated satisfactory extraction ability, recovery and enrichment of target compounds in record time. Therefore, the developed approach is assumed essential to considerably reduce drawbacks encountered during the separation of oxypeucedanin hydrate and byakangelicin from the roots of A. dahurica.


Subject(s)
Angelica/chemistry , Chemical Fractionation/methods , Furocoumarins/isolation & purification , Ionic Liquids/chemistry , Furocoumarins/chemistry , Solvents/chemistry , Time Factors
9.
Molecules ; 26(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34770966

ABSTRACT

Ionic liquids (ILs) have attracted significant interest because of their desirable properties. These characteristics have improved their application to overcome the shortcomings of conventional separation techniques for phytochemicals. In this study, several ILs were investigated for their capacity to extract isoimperatorin, a bioactive furanocoumarin, from the roots of Ostericum koreanum. Herein, 1-Butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) was selected as a promising IL for separating isoimperatorin. A central composite design was applied to optimize the extraction conditions. Under the optimal conditions, the yield of isoimperatorin reached 97.17 ± 1.84%. Additionally, the recovery of isoimperatorin from the [Bmim][BF4] solution was successfully achieved (87.73 ± 2.37%) by crystallization using water as an antisolvent. The purity of the isoimperatorin was greatly enhanced, from 0.26 ± 0.28% in the raw material to 26.94 ± 1.26% in the product, in a one-step crystallization process. Namely, an enhancement of approximately 103-folds was reached. The developed approach overcomes the shortcomings of conventional separation methods applied for gaining isoimperatorin by significantly reducing the laboriousness of the process and the consumption of volatile organic solvents. Moreover, the simplicity and effectiveness of the method are assumed to be valuable for producing isoimperatorin-enriched products and for promoting its purification. This work also confirms the efficiency of ILs as a promising material for the separation of phytochemicals.


Subject(s)
Apiaceae/chemistry , Furocoumarins/isolation & purification , Ionic Liquids/chemistry , Furocoumarins/chemistry , Molecular Structure , Plant Roots/chemistry
10.
J Org Chem ; 85(21): 13779-13792, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33049140

ABSTRACT

A collective synthetic route for tricyclic guaiane sesquiterpenes and total syntheses of (+)-dysodensiol F, (+)-10ß,14-dihydroxy-allo-aromadendrane, and (-)-dendroside C aglycon starting from a versatile hydroazulene intermediate were accomplished. The key features of these syntheses involve late-stage carbene-mediated diastereoselective cyclopropanation, construction of an unusual cis-fused-hydroazulene skeleton via intramolecular Dieckmann condensation, and highly stereoselective tandem conjugate addition/intramolecular allylic alkylation to afford a 5/7/3 tricyclic skeleton of guaiane natural products. The synthesis of (-)-dendroside C aglycon and the first total synthesis of (+)-dysodensiol F and (+)-10ß,14-dihydroxy-allo-aromadendrane are described in detail. Activation of the Nrf2/ARE signaling pathway by (-)-dendroside C aglycon is also disclosed via our synthesis.

11.
Molecules ; 25(8)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340245

ABSTRACT

A concise and scalable synthetic route for optically pure (4S) and (4R)-5-(3',4'-dihydroxyphenyl)-γ-valerolactones (DHPVs), catechin metabolites, has been developed via the efficient construction of a γ-valerolactone moiety from hexenol. Noticeably, the different skin wrinkle-reducing activities of each metabolite were revealed via our unique syntheses of DHPVs in an enantiomerically pure form.


Subject(s)
Catechin/chemical synthesis , Catechin/pharmacology , Lactones/chemical synthesis , Lactones/pharmacology , Skin/drug effects , Humans , Molecular Structure , Oxidation-Reduction , Skin Aging/drug effects
12.
Molecules ; 25(9)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397326

ABSTRACT

Despite numerous reports on the beneficial effects of catechin or epicatechin contained in tea and cacao extract on human health, a conclusive and precise molecular mechanism has not been elucidated. Metabolism of chemical compounds in gut microbiota recently gained significant attention, and extensive studies have been devoted in this field. In conjunction with these results, our group focused on the anti-inflammatory effects of both enantiomers of DHPV (5-(3',4'-dihydroxyphenyl)-γ-valerolactone), produced in the intestine by microbiota metabolism, on IEC-6 cells. Divergent and efficient enantioselective synthesis of (S)- and (R)-DHPV was efficiently achieved by cross-metathesis and Sharpless asymmetric dihydroxylation as a key reaction for four steps in 16% and 14% overall yields, respectively. The anti-inflammatory effects of two enantiomers were tested on IEC-6 cells, and we found that (S)-DHPV was more active than (R)-DHPV. This result implicates that the metabolite produced in the gut has beneficial effects on IEC-6 cells of rat intestines, and the chirality of the metabolite is important for its anti-inflammatory activity. This also provided information for the future discovery of novel small molecular therapeutics for the treatment of inflammatory bowel disease.


Subject(s)
Anti-Inflammatory Agents , Inflammatory Bowel Diseases/drug therapy , Intestinal Mucosa/metabolism , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cell Line , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/pathology , Lactones/chemical synthesis , Lactones/chemistry , Lactones/pharmacology , Rats
13.
Molecules ; 25(3)2020 Jan 25.
Article in English | MEDLINE | ID: mdl-31991809

ABSTRACT

SH-1242, a novel inhibitor of heat shock protein 90 (HSP90), is a synthetic analog of deguelin: It was previously reported that the treatment of SH-1242 led to a strong suppression of hypoxia-mediated retinal neovascularization and vascular leakage in diabetic retinas by inhibiting the hypoxia-induced upregulation of expression in hypoxia-inducible factor 1α (HIF-1ɑ) and vascular endothelial growth factor (VEGF). In this study, an analytical method for the quantification of SH-1242 in biological samples from rats and mice was developed/validated for application in pharmacokinetic studies. SH-1242 and deguelin, an internal standard of the assay, in plasma samples from the rodents were extracted with methanol containing 0.1% formic acid and analyzed at m/z transition values of 368.9→151.0 and 395.0→213.0, respectively. The method was validated in terms of accuracy, precision, dilution, matrix effects, recovery, and stability and shown to comply with validation guidelines when it was used in the concentration ranges of 1-1000 ng/mL for rat plasma and of 2-1000 ng/mL for mouse plasma. SH-1242 levels in plasma samples were readily determined using the developed method for up to 480 min after the intravenous administration of 0.1 mg/kg SH-1242 to rats and for up to 120 min to mice. These findings suggested that the current method was practical and reliable for pharmacokinetic studies on SH-1242 in preclinical animal species.


Subject(s)
Benzopyrans/pharmacokinetics , Chromatography, Liquid , Tandem Mass Spectrometry , Animals , Benzopyrans/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Drug Monitoring , Drug Stability , Mice , Molecular Structure , Rats , Reproducibility of Results , Sensitivity and Specificity , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/standards
14.
FASEB J ; 32(4): 2246-2257, 2018 04.
Article in English | MEDLINE | ID: mdl-29247123

ABSTRACT

Resolution of inflammation that occurs after microbial infection or tissue damage is an important physiologic process in maintaining or restoring host homeostasis. Taurine chloramine (TauCl) is formed by a reaction between taurine and hypochlorite in leukocytes, and it is especially abundant in activated neutrophils that encounter an oxidative burst. As neutrophils undergo apoptosis, TauCl is released to the extracellular matrix at the inflamed sites, thereby affecting coexisting macrophages in the inflammatory microenvironment. In this study, we investigated the role of TauCl in phagocytosis by macrophages during resolution of fungal infection-induced inflammation. We found that exogenous TauCl substantially increased the phagocytic efficiency of macrophages through up-regulation of dectin-1, a receptor for fungal ß-1,3-glucans, which is present on the membrane of macrophages. Our previous studies demonstrated the induction of heme oxygenase-1 (HO-1) expression in murine peritoneal macrophages treated with TauCl. In the present study, knocking out HO-1 or pharmacologic inhibition of HO-1 with zinc protoporphyrin IX attenuated the TauCl-induced expression of dectin-1 and subsequent phagocytosis. Furthermore, carbon monoxide (CO), a by-product of the HO-1-catalyzed reaction, induced expression of dectin-1 and potentiated phagocytic capability of the macrophages, which appeared to be mediated through up-regulation of peroxisome proliferator-activated receptor γ. Taken together, induction of HO-1 expression and subsequent CO production by TauCl are essential for phagocytosis of fungi by macrophages. Our results suggest that TauCl has important roles in host defense against fungal infection and has therapeutic potential in the management of inflammatory diseases.-Kim, S. H., Zhong, X., Kim, W., Kim, K., Suh, Y.-G., Kim, C., Joe, Y., Chung, H. T., Cha, Y.-N., Surh, Y.-J. Taurine chloramine potentiates phagocytic activity of peritoneal macrophages through up-regulation of dectin-1 mediated by heme oxygenase-1-derived carbon monoxide.


Subject(s)
Enzyme Inhibitors/pharmacology , Lectins, C-Type/metabolism , Macrophages, Peritoneal/drug effects , Phagocytosis , Taurine/analogs & derivatives , Up-Regulation , Animals , Candida albicans/pathogenicity , Carbon Monoxide/metabolism , Cells, Cultured , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Lectins, C-Type/genetics , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/microbiology , Mice , Mice, Inbred C57BL , PPAR gamma , Taurine/pharmacology
15.
J Org Chem ; 84(17): 10953-10961, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31357857

ABSTRACT

The first total synthesis of anmindenol A is described in four steps. A notable feature of the synthetic route includes the efficient construction of the 3,10-dialkylsubstituted benzofulvene core via a stereoselective vinylogous Stork enamine aldol condensation. The strategy provided a blueprint for the practical preparation of derivatives with modifications in the C-10 alkyl substituents. The novel derivatives inhibited nitric oxide production in stimulated RAW 264.7 macrophage cells.


Subject(s)
Drug Design , Indenes/chemistry , Indenes/chemical synthesis , Sesquiterpenes/chemistry , Sesquiterpenes/chemical synthesis , Chemistry Techniques, Synthetic
16.
Bioorg Med Chem ; 27(7): 1370-1381, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30827868

ABSTRACT

On the basis of deguelin, a series of the B,C-ring truncated surrogates with N-substituted amide linkers were investigated as HSP90 inhibitors. The structure activity relationship of the template was studied by incorporating various substitutions on the nitrogen of the amide linker and examining their HIF-1α inhibition. Among them, compound 57 showed potent HIF-1α inhibition and cytotoxicity in triple-negative breast cancer lines in a dose-dependent manner. Compound 57 downregulated expression and phosphorylation of major client proteins of HSP90 including AKT, ERK and STAT3, indicating that its antitumor activity was derived from the inhibition of HSP90 function. The molecular modeling of 57 demonstrated that 57 bound well to the C-terminal ATP-binding pocket in the open conformation of the hHSP90 homodimer with hydrogen bonding and pi-cation interactions. Overall, compound 57 is a potential antitumor agent for triple-negative breast cancer as a HSP90 C-terminal inhibitor.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Rotenone/analogs & derivatives , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , HSP90 Heat-Shock Proteins/metabolism , Humans , Models, Molecular , Molecular Structure , Rotenone/chemical synthesis , Rotenone/chemistry , Rotenone/pharmacology , Structure-Activity Relationship
17.
Molecules ; 24(19)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561452

ABSTRACT

The identification and three step synthesis of 3-O-protocatechuoylceanothic acid, a novel and natural GPR120 agonist, is described. This ceanothane-type triterpenoid was identified from the components of Ziziphus jujuba roots and was found to be a new GPR120 agonist with a novel structure. We synthetically converted ceanothic acid, which does not have GPR120 agonist activity, into 3-O-protocatechuoylceanothic acid in three steps. In addition, we present the corrected NMR spectrum of 3-O-protocatechuoylceanothic acid based on our synthesis.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Triterpenes/chemical synthesis , Triterpenes/pharmacology , Animals , CHO Cells , Chemistry Techniques, Synthetic , Cricetulus , Humans , Ligands , Molecular Structure , Receptors, G-Protein-Coupled/agonists , Recombinant Proteins , Structure-Activity Relationship
18.
Molecules ; 24(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261662

ABSTRACT

Ionic liquids (ILs) have gained much attention as alternative solvents to volatile organic solvents due to their attractive properties. This study aimed to develop an efficient method for the selective separation of decursin (D) and decursinol angelate (DA) from Angelica gigas Nakai (A. gigas) using ILs and crystallization. The IL 1-butyl-3-methylimidazolium tetrafluoroborate ((BMIm)BF4) was the most efficient at extracting D and DA. Parameters including solid-to-liquid ratio, time, and temperature were optimized by response surface methodology (RSM). Under optimal extraction conditions (1 g/6.5 mL solid-to-liquid ratio, 60 °C temperature, and 120 min time), the extraction yields of D and DA were 43.32 mg/g (97.06%) and 17.87 mg/g (97.12%), respectively. Moreover, drowning out crystallization using deionized water (DW) as an anti-solvent offered an excellent ability to recover D and DA from the A. gigas-(BMIm)BF4 extraction solution. The rates of recovery and the total purity of D and DA were found to be greater than 97%. Therefore, a rapid and efficient method of combining ILs with crystallization was effectively achieved for the selective separation of D and DA. This approach is assumed to be beneficial in the pharmaceutical industry for the effective obtention of D- and DA-enriched products.


Subject(s)
Angelica/chemistry , Benzopyrans/isolation & purification , Imidazoles/chemistry , Benzopyrans/chemistry , Butyrates , Crystallization , Ionic Liquids/chemistry , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification
19.
Cell Immunol ; 327: 36-46, 2018 05.
Article in English | MEDLINE | ID: mdl-29477410

ABSTRACT

Phagocytosis of pathogens by macrophages is crucial for the successful resolution of inflammation induced by microbial infection. Taurine chloramine (TauCl), an endogenous anti-inflammatory and antioxidative substance, is produced by reaction between taurine and hypochlorous acid by myeloperoxidase activity in neutrophils under inflammatory conditions. In the present study, we investigated the effect of TauCl on resolution of acute inflammation caused by fungal infection using a zymosan A-induced murine peritonitis model. TauCl administration reduced the number of the total peritoneal leukocytes, while it increased the number of peritoneal monocytes. Furthermore, TauCl promoted clearance of pathogens remaining in the inflammatory environment by macrophages. When the macrophages isolated from thioglycollate-treated mice were treated with TauCl, their phagocytic capability was enhanced. In the murine macrophage-like RAW264.7 cells treated with TauCl, the proportion of macrophages clearing the zymosan A particles was also increased. TauCl administration resulted in elevated expression of heme oxygenase-1 (HO-1) in the peritoneal macrophages. Pharmacologic inhibition of HO-1 activity or knockdown of HO-1 in the murine macrophage RAW264.7 cells abolished the TauCl-induced phagocytosis, whereas the overexpression of HO-1 augmented the phagocytic ability of macrophages. Moreover, peritoneal macrophages isolated from HO-1 null mice failed to mediate TauCl-induced phagocytosis. Our results suggest that TauCl potentiates phagocytic activity of macrophages through upregulation of HO-1 expression.


Subject(s)
Heme Oxygenase-1/metabolism , Heme Oxygenase-1/physiology , Taurine/analogs & derivatives , Animals , Antioxidants , Inflammation , Macrophages/physiology , Macrophages, Peritoneal , Mice , Mice, Inbred C57BL , Mice, Knockout , Peritonitis/chemically induced , Peritonitis/physiopathology , Phagocytes , Phagocytosis/physiology , RAW 264.7 Cells , Taurine/metabolism , Taurine/pharmacology , Up-Regulation , Zymosan/pharmacology
20.
J Org Chem ; 83(4): 1997-2005, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29327583

ABSTRACT

The asymmetric total synthesis of the marine natural product (+)-(3E)-pinnatifidenyne was accomplished. The key features of the synthesis involve the construction of an eight-membered cyclic ether by the abnormally regioselective Pd(0)-catalyzed cyclization, the installation of a double bond in the oxocene skeleton by sequential in situ deconjugative isomerization, and the efficient introduction of the crucial chloride mediated by the substrate-controlled diastereoselective reduction.

SELECTION OF CITATIONS
SEARCH DETAIL