Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 631(8022): 843-849, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39020180

ABSTRACT

Ubiquitination pathways have crucial roles in protein homeostasis, signalling and innate immunity1-3. In these pathways, an enzymatic cascade of E1, E2 and E3 proteins conjugates ubiquitin or a ubiquitin-like protein (Ubl) to target-protein lysine residues4. Bacteria encode ancient relatives of E1 and Ubl proteins involved in sulfur metabolism5,6, but these proteins do not mediate Ubl-target conjugation, leaving open the question of whether bacteria can perform ubiquitination-like protein conjugation. Here we demonstrate that a bacterial operon associated with phage defence islands encodes a complete ubiquitination pathway. Two structures of a bacterial E1-E2-Ubl complex reveal striking architectural parallels with canonical eukaryotic ubiquitination machinery. The bacterial E1 possesses an amino-terminal inactive adenylation domain and a carboxy-terminal active adenylation domain with a mobile α-helical insertion containing the catalytic cysteine (CYS domain). One structure reveals a pre-reaction state with the bacterial Ubl C terminus positioned for adenylation, and a second structure mimics an E1-to-E2 transthioesterification state with the E1 CYS domain adjacent to the bound E2. We show that a deubiquitinase in the same pathway preprocesses the bacterial Ubl, exposing its C-terminal glycine for adenylation. Finally, we show that the bacterial E1 and E2 collaborate to conjugate Ubl to target-protein lysine residues. Together, these data reveal that bacteria possess bona fide ubiquitination systems with strong mechanistic and architectural parallels to canonical eukaryotic ubiquitination pathways, suggesting that these pathways arose first in bacteria.


Subject(s)
Bacterial Proteins , Bacteriophages , Escherichia , Ubiquitin-Activating Enzymes , Ubiquitin-Conjugating Enzymes , Ubiquitination , Ubiquitins , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacteriophages/chemistry , Bacteriophages/immunology , Bacteriophages/metabolism , Catalytic Domain , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/metabolism , Escherichia/chemistry , Escherichia/enzymology , Escherichia/immunology , Escherichia/virology , Evolution, Molecular , Lysine/chemistry , Lysine/metabolism , Models, Molecular , Operon/genetics , Protein Domains , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitins/metabolism , Ubiquitins/chemistry , Eukaryota/enzymology , Eukaryota/metabolism
2.
EMBO J ; 41(17): e110698, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35844135

ABSTRACT

The Arf GTPase family is involved in a wide range of cellular regulation including membrane trafficking and organelle-structure assembly. Here, we have generated a proximity interaction network for the Arf family using the miniTurboID approach combined with TMT-based quantitative mass spectrometry. Our interactome confirmed known interactions and identified many novel interactors that provide leads for defining Arf pathway cell biological functions. We explored the unexpected finding that phospholipase D1 (PLD1) preferentially interacts with two closely related but poorly studied Arf family GTPases, ARL11 and ARL14, showing that PLD1 is activated by ARL11/14 and may recruit these GTPases to membrane vesicles, and that PLD1 and ARL11 collaborate to promote macrophage phagocytosis. Moreover, ARL5A and ARL5B were found to interact with and recruit phosphatidylinositol 4-kinase beta (PI4KB) at trans-Golgi, thus promoting PI4KB's function in PI4P synthesis and protein secretion.


Subject(s)
1-Phosphatidylinositol 4-Kinase , Phospholipase D , GTP Phosphohydrolases/metabolism , Golgi Apparatus/metabolism , Phospholipase D/chemistry , Phospholipase D/genetics , Phospholipase D/metabolism
3.
Nat Chem Biol ; 19(11): 1406-1414, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37770699

ABSTRACT

The flavoenzyme nicotine oxidoreductase (NicA2) is a promising injectable treatment to aid in the cessation of smoking, a behavior responsible for one in ten deaths worldwide. NicA2 acts by degrading nicotine in the bloodstream before it reaches the brain. Clinical use of NicA2 is limited by its poor catalytic activity in the absence of its natural electron acceptor CycN. Without CycN, NicA2 is instead oxidized slowly by dioxygen (O2), necessitating unfeasibly large doses in a therapeutic setting. Here, we report a genetic selection strategy that directly links CycN-independent activity of NicA2 to growth of Pseudomonas putida S16. This selection enabled us to evolve NicA2 variants with substantial improvement in their rate of oxidation by O2. The encoded mutations cluster around a putative O2 tunnel, increasing flexibility and accessibility to O2 in this region. These mutations further confer desirable clinical properties. A variant form of NicA2 is tenfold more effective than the wild type at degrading nicotine in the bloodstream of rats.


Subject(s)
Nicotine , Pseudomonas putida , Rats , Animals , Oxygen , Oxidoreductases/metabolism , Oxidation-Reduction
4.
Wilderness Environ Med ; 35(1): 70-73, 2024 03.
Article in English | MEDLINE | ID: mdl-38379476

ABSTRACT

Hand warmer packets are common products used to provide a portable, nonflammable heat source via the exothermic oxidation of iron. We present the first reported case of pediatric hand warmer packet ingestion in a three-year-old male who developed an elevated serum iron concentration (peak 335 ug/dL) and gastrointestinal injury after ingesting the contents of a HOTHANDS hand warmer packet. He was treated with endoscopic gastric foreign body removal and lavage, as well as proton-pump inhibitors and whole bowel irrigation. Hand warmer packs contain reduced elemental iron powder, which has been shown to have a more favorable safety profile when compared to iron salts. The mechanism of toxicity for reduced iron is unknown, though it is thought to be due to conversion to more toxic iron ions in an acidic environment. While the current adult literature suggests that ingestion of a single hand warmer packet is without significant risk, our case demonstrates that even a partial ingestion carries a significant risk of both iron toxicity and direct gastrointestinal caustic injury in a young child. This case demonstrates the need for multidisciplinary care and consideration of urgent endoscopic foreign body removal and gastric lavage followed by whole bowel irrigation to mitigate the potential of severe iron toxicity.


Subject(s)
Abdominal Injuries , Foreign Bodies , Thoracic Injuries , Child, Preschool , Humans , Male , Eating , Foreign Bodies/therapy , Hand , Iron , Upper Extremity
5.
Clin Chem ; 69(7): 724-733, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37228223

ABSTRACT

BACKGROUND: Cannabis is increasingly used both medically and recreationally. With widespread use, there is growing concern about how to identify cannabis-impaired drivers. METHODS: A placebo-controlled randomized double-blinded protocol was conducted to study the effects of cannabis on driving performance. One hundred ninety-one participants were randomized to smoke ad libitum a cannabis cigarette containing placebo or delta-9-tetrahydrocannabinol (THC) (5.9% or 13.4%). Blood, oral fluid (OF), and breath samples were collected along with longitudinal driving performance on a simulator (standard deviation of lateral position [SDLP] and car following [coherence]) over a 5-hour period. Law enforcement officers performed field sobriety tests (FSTs) to determine if participants were impaired. RESULTS: There was no relationship between THC concentrations measured in blood, OF, or breath and SDLP or coherence at any of the timepoints studied (P > 0.05). FSTs were significant (P < 0.05) for classifying participants into the THC group vs the placebo group up to 188 minutes after smoking. Seventy-one minutes after smoking, FSTs classified 81% of the participants who received active drug as being impaired. However, 49% of participants who smoked placebo (controls) were also deemed impaired at this same timepoint. Combining a 2 ng/mL THC cutoff in OF with positive findings on FSTs reduced the number of controls classified as impaired to zero, 86 minutes after smoking the placebo. CONCLUSIONS: Requiring a positive toxicology result in addition to the FST observations substantially improved the classification accuracy regarding possible driving under the influence of THC by decreasing the percentage of controls classified as impaired.


Subject(s)
Automobile Driving , Cannabis , Driving Under the Influence , Hallucinogens , Marijuana Smoking , Humans , Dronabinol , Cannabinoid Receptor Agonists
6.
Chemistry ; 29(20): e202203958, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36617500

ABSTRACT

Here, we present remarkable epoxyketone-based proteasome inhibitors with low nanomolar in vitro potency for blood-stage Plasmodium falciparum and low cytotoxicity for human cells. Our best compound has more than 2,000-fold greater selectivity for erythrocytic-stage P. falciparum over HepG2 and H460 cells, which is largely driven by the accommodation of the parasite proteasome for a D-amino acid in the P3 position and the preference for a difluorobenzyl group in the P1 position. We isolated the proteasome from P. falciparum cell extracts and determined that the best compound is 171-fold more potent at inhibiting the ß5 subunit of P. falciparum proteasome when compared to the same subunit of the human constitutive proteasome. These compounds also significantly reduce parasitemia in a P. berghei mouse infection model and prolong survival of animals by an average of 6 days. The current epoxyketone inhibitors are ideal starting compounds for orally bioavailable anti-malarial drugs.


Subject(s)
Antimalarials , Plasmodium , Mice , Animals , Humans , Proteasome Inhibitors/chemistry , Proteasome Endopeptidase Complex/chemistry , Plasmodium falciparum , Antimalarials/pharmacology
7.
Ther Drug Monit ; 45(5): 689-696, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37199428

ABSTRACT

BACKGROUND: Despite its federally restricted status, cannabis is widely used medicinally and recreationally. The pharmacokinetics (PK) and central nervous system (CNS) effects of tetrahydrocannabinol (THC), the major psychoactive cannabinoid, are not well understood. The objective of this study was to develop a population PK model of inhaled THC, including sources of variability, and to conduct an exploratory analysis of potential exposure-response relationships. METHODS: Regular adult cannabis users smoked a single cannabis cigarette containing 5.9% THC (Chemovar A) or 13.4% THC (Chemovar B) ad libitum. THC concentrations in whole blood were measured and used to develop a population PK model to identify potential factors contributing to interindividual variability in THC PK and to describe THC disposition. Relationships between model-predicted exposure and heart rate, change in composite driving score on a driving simulator, and perceived highness were evaluated. RESULTS: From the 102 participants, a total of 770 blood THC concentrations were obtained. A two-compartment structural model adequately fit the data. Chemovar and baseline THC (THC BL ) were found to be significant covariates for bioavailability, with Chemovar A having better THC absorption. The model predicted that heavy users-those with the highest THC BL -would have significantly higher absorption than those with lighter previous use. There was a statistically significant relationship between exposure and heart rate, and exposure and perceived highness. CONCLUSIONS: THC PK is highly variable and related to baseline THC concentrations and different chemovars. The developed population PK model showed that heavier users had higher THC bioavailability. To better understand the factors affecting THC PK and dose-response relationships, future studies should incorporate a wide range of doses, multiple routes of administration, and different formulations relevant to typical community use.


Subject(s)
Cannabinoids , Cannabis , Marijuana Smoking , Adult , Humans , Dronabinol/pharmacokinetics , Cannabis/chemistry , Cannabinoids/pharmacokinetics , Biological Availability
8.
J Immunol ; 207(1): 344-351, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34183368

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike pseudotyped virus (PSV) assays are widely used to measure neutralization titers of sera and of isolated neutralizing Abs (nAbs). PSV neutralization assays are safer than live virus neutralization assays and do not require access to biosafety level 3 laboratories. However, many PSV assays are nevertheless somewhat challenging and require at least 2 d to carry out. In this study, we report a rapid (<30 min), sensitive, cell-free, off-the-shelf, and accurate assay for receptor binding domain nAb detection. Our proximity-based luciferase assay takes advantage of the fact that the most potent SARS-CoV-2 nAbs function by blocking the binding between SARS-CoV-2 and angiotensin-converting enzyme 2. The method was validated using isolated nAbs and sera from spike-immunized animals and patients with coronavirus disease 2019. The method was particularly useful in patients with HIV taking antiretroviral therapies that interfere with the conventional PSV assay. The method provides a cost-effective and point-of-care alternative to evaluate the potency and breadth of the predominant SARS-CoV-2 nAbs elicited by infection or vaccines.


Subject(s)
Antibodies, Neutralizing/analysis , Neutralization Tests , SARS-CoV-2/isolation & purification , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Cohort Studies , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
9.
PLoS Genet ; 15(11): e1008477, 2019 11.
Article in English | MEDLINE | ID: mdl-31747400

ABSTRACT

The kinetochore is the central molecular machine that drives chromosome segregation in all eukaryotes. Genetic studies have suggested that protein sumoylation plays a role in regulating the inner kinetochore; however, the mechanism remains elusive. Here, we show that Saccharomyces cerevisiae Ulp2, an evolutionarily conserved SUMO specific protease, contains a previously uncharacterized kinetochore-targeting motif that recruits Ulp2 to the kinetochore via the Ctf3CENP-I-Mcm16CENP-H-Mcm22CENP-K complex (CMM). Once recruited, Ulp2 selectively targets multiple subunits of the kinetochore, specifically the Constitutive Centromere-Associated Network (CCAN), via its SUMO-interacting motif (SIM). Mutations that impair the kinetochore recruitment of Ulp2 or its binding to SUMO result in an elevated rate of chromosome loss, while mutations that affect both result in a synergistic increase of chromosome loss rate, hyper-sensitivity to DNA replication stress, along with a dramatic accumulation of hyper-sumoylated CCAN. Notably, sumoylation of CCAN occurs at the kinetochore and is perturbed by DNA replication stress. These results indicate that Ulp2 utilizes its dual substrate recognition to prevent hyper-sumoylation of CCAN, ensuring accurate chromosome segregation during cell division.


Subject(s)
Centromere/genetics , Chromosome Segregation/genetics , Endopeptidases/genetics , Saccharomyces cerevisiae Proteins/genetics , Sumoylation/genetics , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Replication/genetics , DNA-Binding Proteins/genetics , Kinetochores/metabolism , Saccharomyces cerevisiae/genetics
10.
Clin Chem ; 67(2): 404-414, 2021 01 30.
Article in English | MEDLINE | ID: mdl-33084854

ABSTRACT

BACKGROUND: It is unknown whether a positive serology result correlates with protective immunity against SARS-CoV-2. There are also concerns regarding the low positive predictive value of SARS-CoV-2 serology tests, especially when testing populations with low disease prevalence. METHODS: A neutralization assay was validated in a set of PCR-confirmed positive specimens and in a negative cohort. In addition, 9530 specimens were screened using the Diazyme SARS-CoV-2 IgG serology assay and all positive results (N = 164 individuals) were reanalyzed using the neutralization assay, the Roche total immunoglobin assay, and the Abbott IgG assay. The relationship between the magnitude of a positive SARS-CoV-2 serology result and neutralizing activity was determined. Neutralizing antibody titers (50% inhibitory dilution, ID50) were also longitudinally monitored in patients confirmed to have SARS-CoV-2 by PCR. RESULTS: The SARS-CoV-2 neutralization assay had a positive percentage agreement (PPA) of 96.6% with a SARS-CoV-2 PCR test and a negative percentage agreement (NPA) of 98.0% across 100 negative control individuals. ID50 neutralization titers positively correlated with all 3 clinical serology platforms. Longitudinal monitoring of hospitalized PCR-confirmed patients with COVID-19 demonstrated they made high neutralization titers against SARS-CoV-2. PPA between the Diazyme IgG assay alone and the neutralization assay was 50.6%, while combining the Diazyme IgG assay with either the Roche or Abbott platforms increased the PPA to 79.2 and 78.4%, respectively. CONCLUSIONS: These 3 clinical serology assays positively correlate with SARS-CoV-2 neutralization activity observed in patients with COVID-19. All patients confirmed SARS-CoV-2 positive by PCR develop neutralizing antibodies.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Serological Testing/statistics & numerical data , Cohort Studies , Female , Humans , Male , Middle Aged , Polymerase Chain Reaction , Regression Analysis , Retrospective Studies , Severe acute respiratory syndrome-related coronavirus/immunology
11.
J Biol Chem ; 293(31): 12105-12119, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29903909

ABSTRACT

Ulp1 and Ulp2, in the yeast Saccharomyces cerevisiae, are the founding members of deSUMOylating enzymes. These enzymes remove small ubiquitin-like modifier (SUMO) from proteins and are conserved in all eukaryotes. Previous studies have shown that Ulp1 deSUMOylates the bulk of intracellular SUMOylated proteins, whereas Ulp2 is a highly specific enzyme. However, the mechanism for Ulp2's substrate specificity has been insufficiently understood. Here we show that the C-terminal regulatory domain of Ulp2 contains three distinct, yet conserved, motifs that control its in vivo substrate specificity and cell growth. Among them, a SUMO-interacting motif (SIM) was found to coordinate with the domain of Ulp2 that binds to the nucleolar protein Csm1 to ensure maximal deSUMOylation of Ulp2's nucleolar substrates. We found that whereas the Csm1-binding domain of Ulp2 recruits this enzyme to the nucleolus, Ulp2's C-terminal SIM promotes its SUMO protease activity and plays a key role in mediating the in vivo specificity of Ulp2. Thus, the substrate specificity of Ulp2 is controlled by both its subcellular localization and the SUMOylation status of its substrates. These findings illustrate the highly coordinated and dynamic nature of the SUMO pathways in maintaining homeostasis of intracellular SUMOylation.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Endopeptidases/chemistry , Nuclear Proteins/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin/metabolism , Amino Acid Sequence , Binding Sites , Cell Cycle Proteins/genetics , Cell Nucleus/genetics , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Gene Expression Regulation, Fungal , Kinetics , Nuclear Proteins/genetics , Protein Binding , Protein Interaction Domains and Motifs , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Substrate Specificity , Sumoylation , Ubiquitin/genetics , Ubiquitination
12.
J Biol Chem ; 290(17): 10751-63, 2015 Apr 24.
Article in English | MEDLINE | ID: mdl-25762720

ABSTRACT

Saccharomyces cerevisiae Sae2 and its ortholog CtIP in higher eukaryotes have a conserved role in the initial processing of DNA lesions and influencing their subsequent repair pathways. Sae2 is phosphorylated by the ATR/ATM family kinases Mec1 and Tel1 in response to DNA damage. Among the Mec1/Tel1 consensus phosphorylation sites of Sae2, we found that mutations of Thr-90 and Thr-279 of Sae2 into alanine caused a persistent Rad53 activation in response to a transient DNA damage, similar to the loss of Sae2. To gain insight into the function of this phosphorylation of Sae2, we performed a quantitative proteomics analysis to identify its associated proteins. We found that phosphorylation of Thr-90 of Sae2 mediates its interaction with Rad53, Dun1, Xrs2, Dma1, and Dma2, whereas Rad53 and Dun1 additionally interact with phosphorylated Thr-279 of Sae2. Mutations of the ligand-binding residues of Forkhead-associated (FHA) domains of Rad53, Dun1, Xrs2, Dma1, and Dma2 abolished their interactions with Sae2, revealing the involvement of FHA-specific interactions. Mutations of Thr-90 and Thr-279 of Sae2 caused a synergistic defect when combined with sgs1Δ and exo1Δ and elevated gross chromosomal rearrangements. Likewise, mutations of RAD53 and DUN1 caused a synthetic growth defect with sgs1Δ and elevated gross chromosomal rearrangements. These findings suggest that threonine-specific phosphorylation of Sae2 by Mec1 and Tel1 contributes to DNA repair and genome maintenance via its interactions with Rad53 and Dun1.


Subject(s)
Endonucleases/chemistry , Endonucleases/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Sequence , Catalytic Domain/genetics , Cell Cycle Proteins/metabolism , Checkpoint Kinase 2/metabolism , DNA Repair , Endonucleases/genetics , Exodeoxyribonucleases/metabolism , Genes, Fungal , Intracellular Signaling Peptides and Proteins/metabolism , Methyl Methanesulfonate/toxicity , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutagens/toxicity , Phosphorylation , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/metabolism , RecQ Helicases/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid , Threonine/chemistry
13.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464173

ABSTRACT

Cell cycle progression is governed by complexes of the cyclin-dependent kinases (CDKs) and their regulatory subunits cyclin and Cks1. CDKs phosphorylate hundreds of substrates, often at multiple sites. Multisite phosphorylation depends on Cks1, which binds initial priming phosphorylation sites to promote secondary phosphorylation at other sites. Here, we describe a similar role for a recently discovered phosphate-binding pocket (PP) on B-type cyclins. Mutation of the PP in Clb2, the major mitotic cyclin of budding yeast, alters bud morphology and delays the onset of anaphase. Using phosphoproteomics in vivo and kinase reactions in vitro, we find that mutation of the PP reduces phosphorylation of several CDK substrates, including the Bud6 subunit of the polarisome and the Cdc16 and Cdc27 subunits of the anaphase-promoting complex/cyclosome. We conclude that the cyclin PP, like Cks1, controls the timing of multisite phosphorylation on CDK substrates, thereby helping to establish the robust timing of cell-cycle events.

14.
J Appl Lab Med ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39163145

ABSTRACT

BACKGROUND: Benzodiazepines are commonly prescribed medications frequently linked to instances of abuse and overdose. Historically, FDA-cleared benzodiazepine urine immunoassays cross-react poorly with glucuronidated benzodiazepine metabolites, leading to false negatives. Clinical laboratories have addressed this deficiency by creating laboratory-developed tests (LDTs) that incorporate a beta-glucuronidase hydrolysis step to increase the clinical sensitivity of these assays. METHODS: Performance characteristics of 2 FDA-cleared benzodiazepine urine immunoassays (Benzodiazepines Plus, no glucuronidase and Benzodiazepines II, with glucuronidase; Roche Diagnostics) and a previously described benzodiazepine immunoassay LDT (with glucuronidase) were evaluated using 258 clinical urine specimens. The positive immunoassay cutoff was set at 200 ng/mL of nordiazepam and results were compared to an LC-MS/MS benzodiazepine LDT. Clinical sensitivity, specificity, precision, and immunoassay cross-reactivity were determined for all 3 immunoassays. RESULTS: The Benzodiazepines II and LDT immunoassays exhibited greater clinical sensitivity (100% and 95.2%) compared to the Benzodiazepines Plus assay (66.7%). Clinical specificity of 100% was observed for all 3 assays. Immunoassay response of the Benzodiazepines II assay was greater across the range of concentrations tested (100-1000 ng/mL) relative to the other immunoassays and was the most sensitive immunoassay for the detection of lorazepam glucuronide. CONCLUSIONS: The Benzodiazepines II immunoassay demonstrated the greatest clinical and analytical sensitivity compared to the Benzodiazepines Plus and LDT immunoassays. The incorporation of beta-glucuronidase was crucial, as the Benzodiazepines II and LDT immunoassays demonstrated superior clinical sensitivity when compared to the Benzodiazepines Plus immunoassay that does not incorporate a beta-glucuronidase hydrolysis step.

15.
bioRxiv ; 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39091769

ABSTRACT

Large multi-protein machines are central to multiple biological processes. However, stoichiometric determination of protein complex subunits in their native states presents a significant challenge. This study addresses the limitations of current tools in accuracy and precision by introducing concatemer-assisted stoichiometry analysis (CASA). CASA leverages stable isotope-labeled concatemers and liquid chromatography parallel reaction monitoring mass spectrometry (LC-PRM-MS) to achieve robust quantification of proteins with sub-femtomole sensitivity. As a proof-of-concept, CASA was applied to study budding yeast kinetochores. Stoichiometries were determined for ex vivo reconstituted kinetochore components, including the canonical H3 nucleosomes, centromeric (Cse4CENP-A) nucleosomes, centromere proximal factors (Cbf1 and CBF3 complex), inner kinetochore proteins (Mif2CENP-C, Ctf19CCAN complex), and outer kinetochore proteins (KMN network). Absolute quantification by CASA revealed Cse4CENP-A as a cell-cycle controlled limiting factor for kinetochore assembly. These findings demonstrate that CASA is applicable for stoichiometry analysis of multi-protein assemblies.

16.
J Appl Lab Med ; 9(5): 905-912, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38831664

ABSTRACT

BACKGROUND: Given the opioid epidemic, fentanyl screening in urine has become increasingly important. Immunoassays remain the most common screening methodology due to the high throughput and ease of integration into automated chemistry systems. The fentanyl ARK II from Ark Diagnostics is a widely used immunoassay, while a novel fentanyl assay called FEN2 by Lin-Zhi has become available on the Roche platform. Here, we evaluate and compare their performance. METHODS: Four hundred and thirty-four urine samples were analyzed for fentanyl across the Lin-Zhi FEN2 and ARK II assays on the Cobas c502 platform. Samples were analyzed immediately upon request for drug of abuse screening or frozen for subsequent analysis. For confirmation testing, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with a limit of detection of 1 ng/mL for fentanyl/norfentanyl was used. Any sample with either fentanyl or norfentanyl above the LC-MS/MS cutoff was deemed positive. RESULTS: The ARK II had 11 false negatives and 7 false positives, while the Lin-Zhi FEN2 had 12 false negatives and 2 false positives. This resulted in ARK II having a sensitivity and specificity of 90.4% and 97.8% respectively, while Lin-Zhi FEN2 had a sensitivity and specificity of 89.5% and 99.4%. CONCLUSIONS: Both the ARK II and Lin-Zhi FEN2 immunoassays detected fentanyl well. Overall, the Lin-Zhi assay had slightly better specificity than ARK II, in our data set. While some discrepant results were observed between the 2 immunoassay systems, most occurred near the immunoassay detection cutoffs.


Subject(s)
Fentanyl , Substance Abuse Detection , Tandem Mass Spectrometry , Fentanyl/urine , Fentanyl/analysis , Humans , Immunoassay/methods , Immunoassay/standards , Tandem Mass Spectrometry/methods , Substance Abuse Detection/methods , Chromatography, Liquid/methods , Analgesics, Opioid/urine , Analgesics, Opioid/analysis , United States , United States Food and Drug Administration , Sensitivity and Specificity
17.
J Am Assoc Lab Anim Sci ; 63(3): 303-309, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38490726

ABSTRACT

The New Zealand white rabbit (Oryctolagus cuniculus) is a frequently used surgical model. Pain management after surgery is a critical aspect of animal welfare. Recently, a long-acting buprenorphine formulation (Ethiqa XR; EXR) was approved for use in rats and mice but has not yet been investigated in rabbits. The current study aimed to determine whether a single subcutaneous dose of 0.15mg/kg of EXR could achieve and maintain therapeutic buprenorphine plasma concentrations (0.1ng/mL) for 72h in male and female rabbits. We also evaluated the safety profiles of EXR and the fentanyl patch (FP) by assessing fecal output after surgery, because opioids are known to decrease intestinal motility. Behavior and pain scores were compared for rabbits that received either EXR or the FP after undergoing an annulus puncture procedure to induce osteoarthritis. EXR at 0.15mg/kg SC provided a shorter time to onset and sustained analgesia for 72h in male and female rabbits, whereas the FP provided suboptimal analgesia after 48h. Both EXR and FP reduced fecal output after surgery. Output returned to baseline levels within 72h for the EXR group and remained slightly below baseline at 96h after surgery for the fentanyl group. Grimace pain scores revealed no significant difference between treatment groups. These results suggest that EXR is a safe and effective option for postoperative pain management in rabbits.


Subject(s)
Analgesics, Opioid , Buprenorphine , Fentanyl , Pain, Postoperative , Animals , Rabbits , Buprenorphine/administration & dosage , Buprenorphine/therapeutic use , Buprenorphine/pharmacokinetics , Fentanyl/administration & dosage , Fentanyl/pharmacokinetics , Female , Male , Pain, Postoperative/veterinary , Pain, Postoperative/drug therapy , Analgesics, Opioid/administration & dosage , Defecation/drug effects , Delayed-Action Preparations
18.
Chest ; 166(4): e101-e103, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39389689

ABSTRACT

Tranexamic acid is a commonly used hemostatic agent with broad clinical uses across multiple specialties. Systemic toxicity is due to gamma-aminobutyric acid type A and glycine receptor competitive antagonism and has been reported by multiple routes, but toxicity after pulmonary administration via nebulization and BAL has not yet been described. A 44-year-old man with a history of congenital pulmonary arteriovenous malformations underwent routine bronchoscopy for hemoptysis. He received preprocedure nebulized tranexamic acid 500 mg three times daily for 48 h. An additional 1,000 mg was given via BAL for intraprocedural hemostasis. One hour after the procedure, he developed altered mental status, myoclonus, and hyperthermia, which was ultimately controlled with propofol and vecuronium. As the use of pulmonary tranexamic acid increases, toxicity from this agent should be considered. Dose reductions and alternate treatment modalities should be considered in patients with advanced age, arteriovenous malformations, and renal insufficiency.


Subject(s)
Antifibrinolytic Agents , Bronchoscopy , Tranexamic Acid , Humans , Male , Adult , Tranexamic Acid/administration & dosage , Tranexamic Acid/adverse effects , Antifibrinolytic Agents/administration & dosage , Antifibrinolytic Agents/therapeutic use , Antifibrinolytic Agents/adverse effects , Nebulizers and Vaporizers , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/diagnosis , Hemoptysis/diagnosis , Administration, Inhalation , Arteriovenous Malformations/drug therapy
19.
J Mass Spectrom Adv Clin Lab ; 28: 105-113, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025609

ABSTRACT

Introduction: While laboratory-developed tests (LDTs) using liquid chromatography tandem mass spectrometry (LC-MS/MS) are widely employed to support the development of FDA-cleared drug immunoassays, their significance in the clinical implementation and evaluation of such assays is often overlooked. This paper reports on the important role of LC-MS/MS LDTs in demonstrating improved performance of the Roche FEN2 fentanyl immunoassay compared with the Thermo DRI fentanyl immunoassay. Methods: The FEN2 assay was implemented according to the manufacturer's instructions and its performance was compared to the existing DRI assay using LC-MS/MS as a reference. Clinical sensitivity and specificity were determined using 250 consecutive random patient specimens. Spiking experiments were conducted to determine cross-reactivity with 31 fentanyl analogs. Select DRI false-positive samples were analyzed by the FEN2 assay via time-of-flight mass spectrometry method (LC-QTOF). Results: The FEN2 assay showed improved clinical sensitivity compared to the DRI (98% vs 61%) in 250 consecutive patient samples due to its ability to detect norfentanyl. It also showed better clinical specificity by correctly classifying select DRI false-positive results. Upon implementation in clinical practice, the FEN2 resulted in a higher screening positivity rate than the DRI (17.3% vs 13.3%) and a greater LC-MS/MS confirmation rate of immunoassay-positive samples (96.8% vs 88.8%, respectively). Conclusion: The use of LC-MS/MS LDTs demonstrated that the FEN2 assay has greater clinical sensitivity and is less prone to false-positives than the DRI assay. These findings support the use of FEN2 in routine clinical practice and emphasize the role of mass spectrometry-based LDTs in clinical toxicology testing.

20.
J Mass Spectrom Adv Clin Lab ; 28: 91-98, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36937812

ABSTRACT

Background: The VALID Act is a legislative effort that, if enacted, would alter the regulatory requirements of laboratory developed tests (LDTs) used for clinical testing in the United States. Benzodiazepines, which are primarily excreted into urine as glucuronidated metabolites such as lorazepam, cross-react poorly with FDA-cleared immunoassays, leading to false-negatives. This shortfall can be addressed with LDTs created by adding glucuronidase to the immunoassay reagents producing "high sensitivity" assays that detect glucuronidated metabolites. Methods: Precision and stability of two high-sensitivity (HS) benzodiazepine immunoassays from Roche and Thermo Scientific were evaluated using manufacturer-supplied quality control (QC) material and glucuronidated QC material. The immunoassays were directly compared to an LC-MS/MS LDT benzodiazepine assay to determine clinical sensitivity/specificity using urine specimens (n = 82 for Thermo Scientific; n = 265 for Roche). The clinical impact of the HS LDT immunoassay was determined by analyzing clinical testing results 60 days before and after its implementation. Results: The precision and clinical sensitivity/specificity of the HS-Thermo Scientific and HS-Roche benzodiazepine assays were acceptable. The reagent stability of the HS-Thermo Scientific immunoassay was poor, whereas the HS-Roche immunoassay was stable. After implementation of the HS-Roche benzodiazepine immunoassay as an LDT, there was a 30-fold increase (p-value: < 0.00001) in the percentage of lorazepam confirmations. Conclusions: We demonstrate the development and validation of an immunoassay LDT with improved sensitivity for glucuronidated benzodiazepines. This LDT can detect glucuronidated benzodiazepines in clinical urine specimens and is stable for 60 days. Importantly, we were able to validate the immunoassay as an LDT by utilizing an LC-MS/MS LDT.

SELECTION OF CITATIONS
SEARCH DETAIL