Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Faraday Discuss ; 251(0): 550-572, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-38807494

ABSTRACT

Sulfur atoms serve as key players in diverse chemical processes, from astrochemistry at very low temperature to combustion at high temperature. Building upon our prior findings, showing cyclization to thiophenes following the reaction of ground-state sulfur atoms with dienes, we here extend this investigation to include many additional reaction products, guided by detailed theoretical predictions. The outcomes highlight the complex formation of products during intersystem crossing (ISC) to the singlet surfaces. Here, we employed crossed-beam velocity map imaging and high-level ab initio methods to explore the reaction of S(3P) with 1,3-butadiene and isoprene under single-collision conditions and in low-temperature flows. For the butadiene reaction, our experimental results show the formation of thiophene via H2 loss, a 2H-thiophenyl radical through H loss, and thioketene through ethene loss at a slightly higher collision energy compared to previous observations. Complementary Chirped-Pulse Fourier-Transform mmWave spectroscopy (CP-FTmmW) measurements in a uniform flow confirmed the formation of thioketene in the reaction at 20 K. For the isoprene reaction, we observed analogous products along with the 2H-thiophenyl radical arising from methyl loss and C3H4S (loss of ethene or H2 + acetylene). CP-FTmmW detected the formation of thioformaldehyde via loss of 1,3-butadiene, again in the 20 K flow. Coupled-cluster calculations on the pathways found by the automated kinetic workflow code KinBot support these findings and indicate ISC to the singlet surface, leading to the generation of various long-lived intermediates, including 5-membered heterocycles.

2.
J Phys Chem A ; 128(29): 5906-5924, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38990162

ABSTRACT

Bimolecular rate coefficients were determined for the reaction CN(v = 1) + NO and O2 using continuous wave cavity ringdown spectroscopy in a uniform supersonic flow (UF-CRDS). The well-matched time scales for ringdown and reaction under pseudo-first-order conditions allow for the use of the SKaR method (simultaneous kinetics and ringdown) in which the full kinetic trace is obtained on each ringdown. The reactions offer an interesting contrast in that the CN(v = 1) + NO system is nonreactive and proceeds by complex-mediated vibrational relaxation, while the CN(v = 1) + O2 reaction is primarily reactive. The measured rate coefficients at 70 K are (2.49 ± 0.08) × 10-11 and (10.49 ± 0.22) × 10-11 cm3 molecule-1 s-1 for the reaction with O2 and NO, respectively. The rate for reaction with O2 is a factor 2 lower than previously reported for v = 0 in the same temperature range, a surprising result, while that for NO is consistent with extrapolation of previous high-temperature measurements to 70 K. The latter is also discussed in light of theoretical calculations and measurements of the rate constants for the association reaction in the high-pressure limit. The measurements are complicated by the presence of a metastable population of high-J CN formed by photolysis of the precursor BrCN, and a kinetic model is developed to treat the competing relaxation and reaction. It is particularly problematic for reactions at low temperatures where the rotational relaxation and reaction have similar rates, precluding a reliable determination of the rate coefficients at 30 K. Also presented are important modifications to the data acquisition and control for the instrument that have yielded considerably enhanced stability and throughput.

3.
Faraday Discuss ; 245(0): 245-260, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37317673

ABSTRACT

We present an experimental and theoretical investigation of the reaction of vibrationally excited CN (v = 1) with isomers of butadiene at low temperature. The experiments were conducted using the newly built apparatus, UF-CRDS, which couples near-infrared cw-cavity ring-down spectroscopy with a pulsed Laval flow. The well-matched hydrodynamic time and long ring-down time decays allow measurement of the kinetics of the reactions within a single trace of a ring-down decay, termed Simultaneous Kinetics and Ring-down (SKaR). The pulsed experiments were carried out using a Laval nozzle designed for the 70 K uniform flow with nitrogen as the carrier gas. The measured bimolecular rates for the reactions of CN (v = 1) with 1,3-butadiene and 1,2-butadiene are (3.96 ± 0.28) × 10-10 and (3.06 ± 0.35) × 10-10 cm3 per molecule per s, respectively. The reaction rate measured for CN (v = 1) with the 1,3-butadiene isomer is in good agreement with the rate previously reported for the reaction with ground state CN (v = 0) under similar conditions. We report the rate of the reaction of CN (v = 1) with the 1,2-butadiene isomer here for the first time. The experimental results were interpreted with the aid of variable reaction-coordinate transition-state theory calculations to determine rates and branching of the addition channels based on a high-level multireference treatment of the potential energy surface. H-abstraction reaction rates were also theoretically determined. For the 1,2-butadiene system, theoretical estimates are then combined with literature values for the energy-dependent product yields from the initial adducts to predict overall temperature-dependent product branching. H loss giving 2-cyano-1,3-butadiene + H is the main product channel, exclusive of abstraction, at all energies, but methyl loss forming 1-cyano-prop-3-yne is 15% at low temperature growing to 35% at 500 K. Abstraction forming HCN and various radicals is important at 500 K and above. The astrochemical implications of these results are discussed.

4.
Phys Chem Chem Phys ; 25(34): 22595-22606, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37602475

ABSTRACT

In this Perspective, we review our recent work on rotationally inelastic collisions of highly vibrationally excited NO molecules prepared in single rotational and parity levels at v = 10 using stimulated emission pumping (SEP). This state preparation is employed in a recently developed crossed molecular beam apparatus where two nearly copropagating molecular beams achieve an intersection angle of 4° at the interaction region. This near-copropagating beam geometry of the molecular beams permits very wide tuning of the collision energy, from far above room temperature down to 2 K where we test the theoretical treatment of the attractive part of the potentials and the difference potential for the first time. We have obtained differential cross sections for state-to-state collisions of NO (v = 10) with Ar and Ne in both spin-orbit manifolds using velocity map imaging. Overall good agreement of the experimental results was seen with quantum mechanical close-coupling calculations done on both coupled-cluster and multi-reference configuration interaction potential energy surfaces. Probing cold collisions of NO carrying ∼2 eV of vibrational excitation allows us to test state-of-the-art theory in this extreme nonequilibrium regime.

5.
Phys Chem Chem Phys ; 25(27): 17828-17839, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37377093

ABSTRACT

State-to-state rotational energy transfer in collisions of ground ro-vibrational state 13CO molecules with N2 molecules has been studied using the crossed molecular beam method under kinematically equivalent conditions used for 13CO + CO rotationally inelastic scattering described in a previously published report (Sun et al., Science, 2020, 369, 307-309). The collisionally excited 13CO molecule products are detected by the same (1 + 1' + 1'') VUV (Vacuum Ultra-Violet) resonance enhanced multiphoton ionization scheme coupled with velocity map ion imaging. We present differential cross sections and scattering angle resolved rotational angular momentum alignment moments extracted from experimentally measured 13CO + N2 scattering images and compare them with theoretical predictions from quasi-classical trajectories (QCT) on a newly calculated 13CO-N2 potential energy surface (PES). Good agreement between experiment and theory is found, which confirms the accuracy of the 13CO-N2 potential energy surface for the 1460 cm-1 collision energy studied by experiment. Experimental results for 13CO + N2 are compared with those for 13CO + CO collisions. The angle-resolved product rotational angular momentum alignment moments for the two scattering systems are very similar, which indicates that the collision induced alignment dynamics observed for both systems are dominated by a hard-shell nature. However, compared to the 13CO + CO measurements, the primary rainbow maximum in the DCSs for 13CO + N2 is peaked consistently at more backward scattering angles and the secondary maximum becomes much less obvious, implying that the 13CO-N2 PES is less anisotropic. In addition, a forward scattering component with high rotational excitation seen for 13CO + CO does not appear for 13CO-N2 in the experiment and is not predicted by QCT theory. Some of these differences in collision dynamics behaviour can be predicted by a comparison between the properties of the PESs for the two systems. More specific behaviour is also predicted from analysis of the dependence on the relative collision geometry of 13CO + N2 trajectories compared to 13CO + CO trajectories, which shows the special 'do-si-do' pathway invoked for 13CO + CO is not effective for 13CO + N2 collisions.

6.
J Phys Chem A ; 127(24): 5202-5208, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37303110

ABSTRACT

We present a crossed-beam imaging study of the reactions of OH radicals with 1- and 2-propanol at a collision energy of 8 kcal mol-1 using 157 nm probe of the radical product. Our detection is selective for the α-H and ß-H abstraction in the 1-propanol case and for the α-H abstraction only in the 2-propanol case. The results show direct dynamics. A sharply peaked backscattered angular distribution is seen for the 2-propanol system and broader backward-sideways scattering for 1-propanol consistent with the different abstraction sites. The translational energy distributions peak at ∼35% of the collision energy, far from the heavy-light-heavy kinematic propensity. As this is ∼10% of the available energy, substantial vibrational excitation in the water product is inferred. The results are discussed in relation to analogous OH + butane and O(3P) + propanol reactions.

7.
J Chem Phys ; 159(21)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38054511

ABSTRACT

Chirped-Pulse Fourier-Transform millimeter wave (CP-FTmmW) spectroscopy is a powerful method that enables detection of quantum state specific reactants and products in mixtures. We have successfully coupled this technique with a pulsed uniform Laval flow system to study photodissociation and reactions at low temperature, which we refer to as CPUF ("Chirped-Pulse/Uniform flow"). Detection by CPUF requires monitoring the free induction decay (FID) of the rotational coherence. However, the high collision frequency in high-density uniform supersonic flows can interfere with the FID and attenuate the signal. One way to overcome this is to sample the flow, but this can cause interference from shocks in the sampling region. This led us to develop an extended Laval nozzle that creates a uniform flow within the nozzle itself, after which the gas undergoes a shock-free secondary expansion to cold, low pressure conditions ideal for CP-FTmmW detection. Impact pressure measurements, commonly used to characterize Laval flows, cannot be used to monitor the flow within the nozzle. Therefore, we implemented a REMPI (resonance-enhanced multiphoton ionization) detection scheme that allows the interrogation of the conditions of the flow directly inside the extended nozzle, confirming the fluid dynamics simulations of the flow environment. We describe the development of the new 20 K extended flow, along with its characterization using REMPI and computational fluid dynamics. Finally, we demonstrate its application to the first low temperature measurement of the reaction kinetics of HCO with O2 and obtain a rate coefficient at 20 K of 6.66 ± 0.47 × 10-11 cm3 molec-1 s-1.

8.
Faraday Discuss ; 238(0): 249-265, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-35792611

ABSTRACT

The unimolecular dissociation of formaldehyde is studied via excitation to the à band at several excitation energies from just below the ground state radical dissociation threshold to 5000 cm-1 above it. CO product rotational distributions, photofragment excitation spectroscopy and state-correlated slice imaging results are combined with quasi-classical trajectory calculations to reveal manifestations of quantum effects in this complex dissociation process involving interactions among radical, molecular, and roaming pathways. Evidence of nodal structure at the tight transition state to molecular products is investigated and correlations between the CO rotational and H2 vibrational distributions are used to suggest the transition state modes that are responsible. A large modulation of the roaming yield previously identified and associated with roaming resonances at the onset of the H + HCO(v1,v2,v3 = 0,0,0) product channel suggests a similar origin for enhanced roaming and a roaming yield that is strongly dependent on parent rotation on the 2641 band just 15 cm-1 above the H + HCO(0,2,1) threshold. Similar resonances are predicted on other bands that share near coincident energies with HCO product vibrational thresholds.

9.
J Phys Chem A ; 126(32): 5354-5362, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35938878

ABSTRACT

Chirped-pulse rotational spectroscopy in a quasi-uniform flow has been used to investigate the reaction dynamics of a multichannel radical-radical reaction of relevance to planetary atmospheres and combustion. In this work, the NO + propargyl (C3H3) reaction was found to yield six product channels containing eight detected species. These products and their branching fractions (%), are as follows: HCN (50), HCNO (18), CH2CN (12), CH3CN (7.4), HC3N (6.2), HNC (2.3), CH2CO (1.3), HCO (1.8). The results are discussed in light of previous unimolecular photodissociation studies of isoxazole and prior potential energy surface calculations of the NO + C3H3 system. The results also show that the product branching is strongly influenced by the excess energy of the reactant radicals. The implications of the title reaction to the planetary atmospheres, particularly to Titan, are discussed.

10.
J Phys Chem A ; 126(21): 3338-3346, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35605132

ABSTRACT

Inelastic scattering processes have proven a powerful means of investigating molecular interactions, and much current effort is focused on the cold and ultracold regime where quantum phenomena are clearly manifested. Studies of collisions of the open shell nitric oxide (NO) molecule have been central in this effort since the pioneering work of Houston and co-workers in the early 1990s. State-to-state scattering of vibrationally excited molecules in the cold regime introduces challenges that test the suitability of current theoretical methods for ab initio determination of intermolecular potentials, and concomitant electronically nonadiabatic processes raise the bar further. Here we report measurements of differential cross sections for state-to-state spin-orbit changing collisions of NO (v = 10, Ω″ = 1.5, and j″ = 1.5) with neon from 2.3 to 3.5 cm-1 collision energy using our recently developed near-copropagating beam technique. The experimental results are compared with those obtained from quantum scattering calculations on a high-level set of coupled cluster potential energy surfaces and are shown to be in good agreement. The theoretical results suggest that distinct backscattering in the 2.3 cm-1 case arises from overlapping resonances.

11.
J Phys Chem A ; 126(34): 5768-5775, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35993843

ABSTRACT

The photodissociation dynamics of astrophysically relevant propyl derivatives (C3H7X; X = CN, OH, HCO) at 157 nm exploiting an ultracompact velocity map imaging (UVMIS) setup has been reported. The successful operation of UVMIS allowed the exploration of the 157 nm photodissociation of six (iso)propyl systems─n/i-propyl cyanide (C3H7CN), n/i-propyl alcohol (C3H7OH), and (iso)butanal (C3H7CHO)─to explore the C3H7 loss channel. The distinct center-of-mass translational energy distributions for the i-C3H7X (X= CN, OH, HCO) could be explained through preferential excitation of the low frequency C-H bending modes of the formyl moiety compared to the higher frequency stretching of the cyano and hydroxy moieties. Although the ionization energy of the n-C3H7 radical exceeds the energy of a 157 nm photon, C3H7+ was observed in the n-C3H7X (X = CN, OH, HCO) systems as a result of photoionization of vibrationally "hot" n-C3H7 fragments, photoionization of i-C3H7 after a hydrogen shift in vibrationally "hot" n-C3H7 radicals, and/or two-photon ionization. Our experiments reveal that at least the isopropyl radical (i-C3H7) and possibly the normal propyl radical (n-C3H7) should be present in the interstellar medium and hence searched for by radio telescopes.

12.
J Chem Phys ; 156(1): 014202, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34998338

ABSTRACT

Chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy is a powerful near-universal detection method finding application in many areas. We have previously coupled it with supersonic flows (CPUF) to obtain product branching in reaction and photodissociation. Because chirped-pulse microwave detection requires monitoring the free induction decay on the timescale of microseconds, it cannot be employed with good sensitivity at the high densities achieved in some uniform supersonic flows. For application to low-temperature kinetics studies, a truly uniform flow is required to obtain reliable rate measurements and enjoy all the advantages that CP-FTMW has to offer. To this end, we present a new setup that combines sampling of uniform supersonic flows using an airfoil-shaped sampling device with chirped-pulse mmW detection. Density and temperature variations in the airfoil-sampled uniform flow were revealed using time-dependent rotational spectroscopy of pyridine and vinyl cyanide photoproducts, highlighting the use of UV photodissociation as a sensitive diagnostic tool for uniform flows. The performance of the new airfoil-equipped CPUF rotational spectrometer was validated using kinetics measurements of the CN + C2H6 reaction at 50 K with detection of the HCN product. Issues relating to product detection by rotational spectroscopy and airfoil sampling are discussed. We show that airfoil sampling enables direct measurements of low temperature reaction kinetics on a microsecond timescale, while rotational spectroscopic detection enables highly specific simultaneous detection of reactants and products.

13.
Annu Rev Phys Chem ; 71: 77-100, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32070215

ABSTRACT

Roaming reactions were first clearly identified in photodissociation of formaldehyde 15 years ago, and roaming dynamics are now recognized as a universal aspect of chemical reactivity. These reactions typically involve frustrated near-dissociation of a quasibound system to radical fragments, followed by reorientation at long range and intramolecular abstraction. The consequences can be unexpected formation of molecular products, depletion of the radical pool in chemical systems, and formation of products with unusual internal state distributions. In this review, I examine some current aspects of roaming reactions with an emphasis on experimental results, focusing on possible quantum effects in roaming and roaming dynamics in bimolecular systems. These considerations lead to a more inclusive definition of roaming reactions as those for which key dynamics take place at long range.

14.
J Phys Chem A ; 125(25): 5481-5489, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34138560

ABSTRACT

The Coulomb explosion dynamics following strong field ionization of chlorocarbonylsulfenyl chloride was studied using multimass coincidence detection and covariance imaging analysis, supported by density functional theory calculations. These results show evidence of multiple dissociation channels from various charge states. Double ionization to low-lying electronic states leads to a dominant C-S cleavage channel, while higher states can alternatively correlate to the loss of Cl+. Triple ionization leads to a double dissociation channel, the observation of which is confirmed via three-body covariance analysis, while further ionization leads primarily to atomic or diatomic fragments whose relative momenta depend strongly on the starting structure of the molecule.

15.
Phys Chem Chem Phys ; 22(20): 11126-11138, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32227044

ABSTRACT

The marriage between high level quantum calculations and experimental advances in laser technology, quantum state control, and detection techniques have opened the door to the study of molecular collision dynamics at a new level of detail. However, one current challenge lies in adapting these powerful strategies to address questions beyond the scope of the small ground state systems that have largely been the focus of reaction dynamics investigations to-date. For molecules with intermediate or large size (more than 6 atoms), lack of spectroscopic information and spectral congestion limit quantum state preparation, control and detection for experiment, and the large number of degrees of freedom of the system makes accurate quantum dynamics calculations prohibitively expensive. Nevertheless, studies of the chemical dynamics of such systems can reveal novel aspects of reactivity not anticipated based upon the behavior of smaller model systems. This Perspective will highlight applications of soft vacuum ultraviolet photoionization at 157 nm as a universal probe in combination with crossed beams and DC slice velocity map ion imaging to study bimolecular reaction dynamics of molecules of intermediate or large size, illuminated with support of high-level ab initio calculations. Here, we report on the chemical dynamics of atomic oxygen or chlorine reactions with organic compounds: propanol isomers, alkylamines (N(CH3)3 and NH(CH3)2), and isobutene ((CH3)2CCH2) studied using this approach. The polyatomic radical products from the hydrogen abstraction process have been detected by 157 nm photoionization and their slice ion images embody translational energy and angular information that directly reflect the underlying collision dynamics. Various reaction mechanisms (such as direct abstraction and addition-elimination) along with the involvement of roaming dynamics and novel intersystem crossing pathways are presented. These demonstrate the power of this technique to reveal fundamentally new aspects of reaction dynamics that arise in larger reaction systems.

16.
J Phys Chem A ; 124(9): 1712-1719, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31941276

ABSTRACT

Ethylene, C2H4, the simplest π-bonded molecule, is of enormous fundamental and commercial importance. Its lowest triplet state, in which the CH2 moieties occupy perpendicular planes, is well known from theory, but there has been no definitive experimental observation of this species. Here, velocity map imaging of the sulfur atoms in ethylene sulfide (c-C2H4S) photodissociation at 217 nm is used to reveal the internal state distribution of co-product ethylene. While both S (1D) and S (3P) translational energy distributions display three distinct regions that find their origins in singlet and triplet excited states of c-C2H4S, respectively, the S (3P) distribution is dominated by a fourth, low-recoil region. In this region, the distribution is fully isotropic at a recoil of 9 ± 1 kcal/mol, corresponding to the opening of the triplet ethylene channel. Multireference calculations suggest that this photodissociation pathway is mediated by a hot, transient biradical CH2CH2S that strongly favors CH2-hindered rotations in the predissociated complex. This photochemical ring-opening mechanism is invoked to account for the vibrational features observed in this low-recoil region, which are attributed to triplet ethylene relaxing to the torsional saddle point on the ground-state singlet surface. This study thereby gives for the first time the experimental confirmation of an adiabatic singlet-triplet splitting of 66 ± 1 kcal/mol and a torsional barrier height of 64 ± 1 kcal/mol in ethylene.

17.
J Chem Phys ; 153(1): 014302, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32640816

ABSTRACT

Multidimensional reactions present various channels that can exhibit very different dynamics and give products of varying subsequent reactivity. Here, we present a combination of experiment and theory to reveal the dynamics of hydrogen abstraction by OH radical at primary and secondary sites in n-butane at a collision energy of 8 kcal/mol. Crossed molecular beam slice imaging experiments unequivocally probe the secondary abstraction channel showing backward angular distributions with mild energy release to product translation, which are accurately captured by trajectory calculations using a specific-reaction-parameter Hamiltonian. Experiments containing both reaction channels indicate a less marked backward character in the angular distribution, whose origin is shown by trajectory calculations to appear as an evolution toward more sideways scattering from the secondary to primary channel. While the two channels have markedly different angular distributions, their energy release is largely comparable, showing ample energy release into the water product. The synergistic combination of crossed-beam imaging and trajectories opens the door to detailed reaction-dynamics studies of chemical reactions with ever-increasing complexity.

18.
J Chem Phys ; 152(18): 184201, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32414267

ABSTRACT

We have developed an apparatus capable of performing intrabeam and near-copropagating beam scattering experiments at collision energies from room temperature to below 1 K where interesting quantum phenomena can be observed. A detailed description of the major components of the apparatus, single and dual molecular beam valves, high speed chopper, and the discharge source, is presented. With the intrabeam scattering setup, a novel dual-slit chopper permits collision energies down to millikelvins with a collision energy spread of 20%. With the near-copropagating beam configuration, state-to-state differential cross sections for rotationally inelastic collisions of highly vibrationally excited NO molecules with Ar have been measured at broadly tunable energies documenting the versatility of the instrument. Future applications in stereodynamics and cold state-to-state collisions of vibrationally excited polyatomic molecules are briefly discussed.

19.
Phys Rev Lett ; 122(8): 083403, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30932584

ABSTRACT

We present a direct determination of photofragment alignment produced by circularly polarized light in photolysis of a planar polyatomic molecule. This alignment arises via a new mechanism involving coherent excitation of two mutually perpendicular in-plane transition dipole moment components. The alignment is described by a new anisotropy parameter γ_{2}^{'} that was isolated by a unique laser polarization geometry. The determination of the parameter γ_{2}^{'} was realized in ozone photolysis at 266 nm where dc slice images of O(^{1}D_{2}) atomic fragments were acquired. A model developed for interpretation of the photolysis mechanism shows that it can exist only in case of failure of the Born-Oppenheimer approximation when electronic and vibrational (vibronic) interactions have to be taken into account. This finding suggests that determination of the alignment parameter γ_{2}^{'} can be used as a key for direct insight into vibronic interactions in photolysis of polyatomic molecules. The results obtained for ozone photolysis via the Hartley band showed significant γ_{2}^{'} alignment but little recoil speed dependence, consistent with the notion that, as opposed to the situation for derivative coupling, under our experimental conditions, the vibronic contributions to the nonadiabatic dynamics are not dependent on recoil speed.

SELECTION OF CITATIONS
SEARCH DETAIL