Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 51(5): 2298-2318, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36807739

ABSTRACT

An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease.


Subject(s)
Diabetes Mellitus , Minichromosome Maintenance Complex Component 2 , Neoplasms , Receptor for Advanced Glycation End Products , Animals , Humans , Mice , Cell Cycle Proteins/metabolism , DNA Replication/genetics , Minichromosome Maintenance Complex Component 2/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Proteins/metabolism , Receptor for Advanced Glycation End Products/metabolism
2.
Radiology ; 302(1): 153-161, 2022 01.
Article in English | MEDLINE | ID: mdl-34665029

ABSTRACT

Background Diffusion-weighted imaging (DWI) provides specific in vivo information about tissue microstructure, which is increasingly recognized for various applications outside the central nervous system. However, standard sequence parameters are commonly adopted from optimized central nervous system protocols, thus potentially neglecting differences in tissue-specific diffusional behavior. Purpose To characterize the optimal tissue-specific diffusion imaging weighting scheme over the b domain in peripheral nerves under physiologic and pathologic conditions. Materials and Methods In this prospective cross-sectional study, 3-T MR neurography of the sciatic nerve was performed in healthy volunteers (n = 16) and participants with type 2 diabetes (n = 12). For DWI, 16 b values in the range of 0-1500 sec/mm2 were acquired in axial and radial diffusion directions of the nerve. With a region of interest-based approach, diffusion-weighted signal behavior as a function of b was estimated using standard monoexponential, biexponential, and kurtosis fitting. Goodness of fit was assessed to determine the optimal b value for two-point DWI/diffusion tensor imaging (DTI). Results Non-Gaussian diffusional behavior was observed beyond b values of 600 sec/mm2 in the axial and 800 sec/mm2 in the radial diffusion direction in both participants with diabetes and healthy volunteers. Accordingly, the biexponential and kurtosis models achieved a better curve fit compared with the standard monoexponential model (Akaike information criterion >99.9% in all models), but the kurtosis model was preferred in the majority of cases. Significant differences between healthy volunteers and participants with diabetes were found in the kurtosis-derived parameters Dk and K. The results suggest an upper bound b value of approximately 700 sec/mm2 for optimal standard DWI/DTI in peripheral nerve applications. Conclusion In MR neurography, an ideal standard diffusion-weighted imaging/diffusion tensor imaging protocol with b = 700 sec/mm2 is suggested. This is substantially lower than in the central nervous system due to early-occurring non-Gaussian diffusion behavior and emphasizes the need for tissue-specific b value optimization. Including higher b values, kurtosis-derived parameters may represent promising novel imaging markers of peripheral nerve disease. ©RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Jang and Du in this issue.


Subject(s)
Diabetes Mellitus, Type 2/physiopathology , Diffusion Magnetic Resonance Imaging/methods , Peripheral Nerves/diagnostic imaging , Peripheral Nerves/physiopathology , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Reproducibility of Results
3.
Eur J Neurol ; 29(10): 3081-3091, 2022 10.
Article in English | MEDLINE | ID: mdl-35700123

ABSTRACT

BACKGROUND AND PURPOSE: Diabetic sensorimotor peripheral neuropathy is usually considered to affect predominantly the lower limbs (LL-N), whereas the impact of upper limb neuropathy (UL-N) on hand functional performance and quality of life (QoL) has not been evaluated systematically. This study aims to investigate the prevalence and characteristics of UL-N and its functional and psychosocial consequences in type 2 diabetes. METHODS: Individuals with type 2 diabetes (n = 141) and an age- and sex-matched control group (n = 73) underwent comprehensive assessment of neuropathy, hand functional performance, and psychosocial status. RESULTS: The prevalence of UL-N was 30.5% in patients with diabetes and that of LL-N was 49.6%, with 25.5% exhibiting both. Patients with diabetes showed similar sensory phenotype regarding both large and small fiber functions in hands and feet. Patients with UL-N showed reduced manual dexterity, but normal hand grip force. Additionally, there was a correlation between reduced dexterity and sensory deficits. Patients with UL-N had reduced estimates of psychosocial health including health-related QoL compared to control subjects and patients without UL-N. UL-N correlated with the severity of LL-N, but not with duration of diabetes, glycemia, age, or sex. CONCLUSIONS: This study points to a substantial prevalence of UL-N in type 2 diabetes. The sensory phenotype of patients with UL-N was similar to LL-N and was characterized by loss of sensory function. Our study demonstrated an association of UL-N with impaired manual dexterity and reduced health-related QoL. Thus, upper limb sensorimotor functions should be assessed early in patients with diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetic Neuropathies/epidemiology , Hand , Hand Strength , Humans , Physical Functional Performance , Quality of Life , Upper Extremity
4.
Horm Metab Res ; 51(1): 69-75, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30396219

ABSTRACT

Radioiodine refractoriness in differentiated thyroid cancer remains an unsolved therapeutic problem. Response to retinoids might depend on specific genetic markers. In this retrospective analysis, associations between BRAF V600E and clinical outcomes after redifferentiation with retinoic acid (RA) and radioiodine therapy (RIT) were investigated. Thirteen patients with radioiodine-refractory (RAI-R) papillary thyroid cancer (PTC) were treated with 13-cis-RA followed by iodine-131 treatment at the Department of Endocrinology, Heidelberg University Hospital, Heidelberg, Germany. DNA sequencing was performed in formalin-fixed paraffin-embedded tissue. Clinical outcome parameters were tumor size, thyroglobulin, and radioiodine uptake in correlation to mutational status. Differences of each parameter were compared before and after RA/RIT. Initial response showed no difference in patients with BRAF V600E compared to patients with wild type. However, after a median follow-up of 2 and a half years, 2 out of 3 patients with BRAF V600E showed response compared to 5 out of 9 with wild type under consideration of all 3 parameters. In this small cohort, more RAI-R PTC patients with BRAF V600E receiving redifferentiation therapy showed response. Verification in a larger study population analyzing mutational status in patients with RAI-R PTC might be helpful to identify patients where redifferentiation therapy might lead to an improved outcome.


Subject(s)
Iodine Radioisotopes/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/genetics , Tretinoin/therapeutic use , Adult , Aged , Cohort Studies , Female , Germany , Humans , Male , Middle Aged , Mutation, Missense , Proto-Oncogene Proteins B-raf/metabolism , Retrospective Studies , Thyroid Cancer, Papillary/metabolism
5.
BMC Endocr Disord ; 16(1): 56, 2016 Oct 13.
Article in English | MEDLINE | ID: mdl-27737658

ABSTRACT

BACKGROUND: The aim of this study was to investigate the effect of a lifestyle intervention in obesity on the soluble form of the activated leukocyte cell adhesion molecule (sALCAM) and its association with metabolic parameters. METHODS: Twenty-nine obese subjects selected from the OPTIFAST®52 program. This program consisted into 2 crucial phases: an initial 12-week active weight reduction phase, followed by a 40-week weight maintenance phase. At baseline, after 12 weeks and at the end of the program, fasting glucose and insulin, total cholesterol, LDL-C, HDL-C, triglycerides, adiponectin, leptin, high sensitivity CRP, sALCAM, homeostasis model assessment-estimated insulin resistance (HOMA-IR) and leptin-to-adiponectin-ratio were determined. Oral glucose tolerance test (OGTT) was performed when indicated. RESULTS: At baseline, the serum concentration of sALCAM was increased and correlated positively with HOMA-IR and negatively with age. At the end of the program, sALCAM concentrations decreased significantly. Multivariate analysis showed that sALCAM significantly correlated with age, glucose concentration after 2 h OGTT and the HOMA-IR. A higher decrease of HOMA-IR during the study was observed in subjects with higher concentration of sALCAM at baseline. CONCLUSIONS: sALCAM might be a novel biomarker in obesity that correlates and predicts insulin sensitivity improvement and that can be affected by lifestyle intervention.


Subject(s)
Antigens, CD/blood , Cell Adhesion Molecules, Neuronal/blood , Fetal Proteins/blood , Obesity/metabolism , Risk Reduction Behavior , Adiponectin/blood , Adult , Age Factors , Biomarkers/blood , Blood Glucose , Body Weight Maintenance , C-Reactive Protein/metabolism , Cholesterol/blood , Female , Glucose Tolerance Test , Homeostasis , Humans , Insulin/blood , Insulin Resistance , Leptin/blood , Male , Multivariate Analysis , Obesity/blood , Triglycerides/blood , Weight Loss
6.
J Immunol ; 191(1): 369-77, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23729438

ABSTRACT

Promiscuity of pattern recognition receptors, such as receptor for advanced glycation end products (RAGE), allows for a complex regulatory network controlling inflammation. Scavenging of RAGE ligands by soluble RAGE treatment is effective in reducing delayed-type hypersensitivity (DTH), even in RAGE(-/-) mice by 50% (p < 0.001). This has led to the hypothesis that molecules scavenged by soluble RAGE bind to receptors other than RAGE. This study identifies CD166/ALCAM (ALCAM) as a close structural and functional homolog of RAGE, and it shows that binding of S100B to CD166/ALCAM induces dose- and time-dependent expression of members of the NF-κB family in wild type (WT) and RAGE(-/-) mouse endothelial cells. Blocking CD166/ALCAM expression using small interfering RNA completely inhibited S100B-induced NF-κB activation in RAGE(-/-), but not in WT cells. The in vivo significance of these observations was demonstrated by attenuation of DTH in WT and RAGE(-/-) animals pretreated with CD166/ALCAM small interfering RNA by 50% and 40%, respectively (p < 0.001). Experiments in ALCAM(-/-) animals displayed an only slight reduction of 16% in DTH, explained by compensatory reciprocal upregulation of RAGE in animals devoid of CD166/ALCAM, and vice versa. Consistently, ALCAM(-/-) mice, but not WT mice treated with RAGE small interfering RNA show a 35% reduction in DTH, and ALCAM(-/-) RAGE(-/-) double-knockout mice show a 27% reduction in DTH reaction. Thus, S100B is a proinflammatory cytokine bridging RAGE and CD166/ALCAM downstream effector mechanisms, both being compensatory upregulated after genetic deletion of its counterpart.


Subject(s)
Activated-Leukocyte Cell Adhesion Molecule/physiology , Antigens, CD/physiology , Glycoproteins/physiology , Hypersensitivity, Delayed/immunology , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/physiology , Nerve Growth Factors/physiology , Peptides/physiology , S100 Proteins/physiology , AC133 Antigen , Activated-Leukocyte Cell Adhesion Molecule/chemistry , Animals , Antigens, CD/chemistry , Cells, Cultured , Dose-Response Relationship, Immunologic , Endothelium, Vascular/immunology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Glycoproteins/antagonists & inhibitors , Glycoproteins/chemistry , Humans , Hypersensitivity, Delayed/metabolism , Hypersensitivity, Delayed/prevention & control , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Growth Factors/biosynthesis , Nerve Growth Factors/chemistry , Peptides/antagonists & inhibitors , Peptides/chemistry , S100 Calcium Binding Protein beta Subunit , S100 Proteins/biosynthesis , S100 Proteins/chemistry , Structure-Activity Relationship , Up-Regulation/immunology
7.
Diabetes ; 73(1): 135-146, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37862374

ABSTRACT

We aimed to investigate the characteristics and longitudinal course of sensory phenotypes identified through quantitative sensory testing (QST) in the frame of diabetic sensorimotor polyneuropathy (DSPN). A total of 316 individuals with diabetes were examined (type 2 diabetes 78.8%), 250 of whom were undergoing follow-up visits at 1, 2, and/or 4 (2.88 ± 1.27) years. Allocation into four sensory phenotypes (healthy, thermal hyperalgesia [TH], mechanical hyperalgesia [MH], and sensory loss [SL]) at every time point was based on QST profiles of the right foot. Cross-sectional analysis demonstrated a gradual worsening of clinical and electrophysiological sensory findings and increased DSPN prevalence across the groups, culminating in SL. Motor nerve impairment was observed solely in the SL group. Longitudinal analysis revealed a distinct pattern in the developmental course of the phenotype (from healthy to TH, MH, and finally SL). Those with baseline MH exhibited the highest risk of transition to SL. Reversion to healthy status was uncommon and mostly observed in the TH group. Among those without DSPN initially, presence or future occurrence of SL was associated with a three- to fivefold higher likelihood of DSPN development. Our comprehensive longitudinal study of phenotyped patients with diabetes elucidates the natural course of DSPN. QST-based sensory examination together with other tools for phenotyping may be useful in determining the natural course of diabetic neuropathy to identify patients at high risk of DSPN and guide preventive and therapeutic interventions. ARTICLE HIGHLIGHTS: The course of diabetic sensorimotor polyneuropathy (DSPN) development, from healthy status to overt DSPN, is poorly understood. We studied the characteristics and longitudinal appearance of lower-extremity sensory phenotypes (healthy, thermal hyperalgesia [TH], mechanical hyperalgesia [MH], and sensory loss [SL]) identified through quantitative sensory testing in individuals with diabetes. There was an increasing severity and patterned order of longitudinal appearance across healthy, TH, MH, and SL phenotypes. SL was most strongly associated with formal DSPN. Our findings provide insight into the natural history of DSPN. Sensory phenotyping can be implemented to identify high-risk individuals and those most likely to benefit from therapeutic interventions.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Polyneuropathies , Humans , Diabetes Mellitus, Type 2/complications , Hyperalgesia/complications , Longitudinal Studies , Cross-Sectional Studies , Polyneuropathies/etiology , Phenotype
8.
Eur Radiol Exp ; 8(1): 37, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561526

ABSTRACT

BACKGROUND: In contrast to the brain, fibers within peripheral nerves have distinct monodirectional structure questioning the necessity of complex multidirectional gradient vector schemes for DTI. This proof-of-concept study investigated the diagnostic utility of reduced gradient vector schemes in peripheral nerve DTI. METHODS: Three-Tesla magnetic resonance neurography of the tibial nerve using 20-vector DTI (DTI20) was performed in 10 healthy volunteers, 12 patients with type 2 diabetes, and 12 age-matched healthy controls. From the full DTI20 dataset, three reduced datasets including only two or three vectors along the x- and/or y- and z-axes were built to calculate major parameters. The influence of nerve angulation and intraneural connective tissue was assessed. The area under the receiver operating characteristics curve (ROC-AUC) was used for analysis. RESULTS: Simplified datasets achieved excellent diagnostic accuracy equal to DTI20 (ROC-AUC 0.847-0.868, p ≤ 0.005), but compared to DTI20, the reduced models yielded mostly lower absolute values of DTI scalars: median fractional anisotropy (FA) ≤ 0.12; apparent diffusion coefficient (ADC) ≤ 0.25; axial diffusivity ≤ 0.96, radial diffusivity ≤ 0.07). The precision of FA and ADC with the three-vector model was closest to DTI20. Intraneural connective tissue was negatively correlated with FA and ADC (r ≥ -0.49, p < 0.001). Small deviations of nerve angulation had little effect on FA accuracy. CONCLUSIONS: In peripheral nerves, bulk tissue DTI metrics can be approximated with only three predefined gradient vectors along the scanner's main axes, yielding similar diagnostic accuracy as a 20-vector DTI, resulting in substantial scan time reduction. RELEVANCE STATEMENT: DTI bulk tissue parameters of peripheral nerves can be calculated with only three predefined gradient vectors at similar diagnostic performance as a standard DTI but providing a substantial scan time reduction. KEY POINTS: • In peripheral nerves, DTI parameters can be approximated using only three gradient vectors. • The simplified model achieves a similar diagnostic performance as a standard DTI. • The simplified model allows for a significant acceleration of image acquisition. • This can help to introduce multi-b-value DTI techniques into clinical practice.


Subject(s)
Diabetes Mellitus, Type 2 , Diffusion Tensor Imaging , Humans , Diffusion Tensor Imaging/methods , Anisotropy , Peripheral Nerves/diagnostic imaging , Diffusion Magnetic Resonance Imaging
9.
Diab Vasc Dis Res ; 21(1): 14791641231223701, 2024.
Article in English | MEDLINE | ID: mdl-38305220

ABSTRACT

PURPOSE: Low values of bioimpedance-derived phase angle (PA) have been associated with various adverse outcomes. We investigated the association of PA with cardiovascular markers in individuals with and without diabetes mellitus (DM). METHODS: PA was measured in 452 adults (without DM n = 153, T1DM n = 67, T2DM n = 232). Carotid intima-media thickness (IMT), renal resistive index (RRI), ankle-brachial index (ABI) and carotid-femoral Pulse Wave Velocity (cfPWV) were estimated. Furthermore, the levels of high-sensitive Troponin-T [hsTnT], N-terminal brain natriuretic peptide [NT-pro-BNP]) were measured. RESULTS: PA values were lower in DM independently of age, gender, and BMI (estimated marginal means 6.21, 5.83, 5.95 for controls, T1DM, T2DM p < .05), a finding which persisted after propensity score matching. PA correlated negatively with IMT (r = -0.181), RRI (r = -0.374), cfPWV (r = -0.358), hsTnT (r = -0.238) and NT-pro-BNP (r = -0.318) (all p < .001). In multivariable analysis, the associations with RRI, cfPWV, hsTnT and NT-pro-BNP remained unchanged. PA values 6.0-6.5° for males and 5.2-5.8° for females were predictive of commonly used cutoffs. The combination of ΑCC/AHA ASCVD Score with PA outperformed either factor in predicting cfPWV, RRI for males and hsTnT, BNP for both genders. CONCLUSIONS: PA exhibits independent correlations with various parameters pertinent to cardiovascular risk and may be useful for cardiovascular assessment.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Adult , Humans , Male , Female , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Carotid Intima-Media Thickness , Pulse Wave Analysis , Risk Factors , Heart Disease Risk Factors , Natriuretic Peptide, Brain , Peptide Fragments , Biomarkers
10.
Article in English | MEDLINE | ID: mdl-38215056

ABSTRACT

CONTEXT: Due to the heterogenous clinical symptoms and deficits, the diagnosis of diabetic polyneuropathy (DPN) is still difficult in clinical routine leading to increased morbidity and mortality. OBJECTIVE: We studied the correlation of phase angle (PhA) of bioelectrical impedance analysis (BIA) with clinical, laboratory and physical markers of DPN to evaluate PhA as possible diagnostic method for DPN. MATERIALS AND METHODS: In this cross-sectional observational study as part of the Heidelberg Study on Diabetes and Complications we examined 104 healthy individuals and 205 patients with type 2 diabetes mellitus (T2D), amongst which 63 had DPN. The PhA was calculated from multi-frequency BIA. Nerve conduction studies (NCS), quantitative sensory testing (QST) and diffusion-weighted magnetic resonance neurography (MRN) to determine fractional anisotropy (FA) reflecting peripheral nerve integrity were performed. RESULTS: T2D patients with DPN had lower PhA values (5.71 ± 0.10) compared to T2D patients without DPN (6.07 ± 0.08, p = 0.007, + 6.1%) and healthy controls (6.18 ± 0.08, p < 0.001, + 7.9%). Confounder-adjusted analyses showed correlations of the PhA with conduction velocities and amplitudes of the peroneal (ß=0.28; ß=0.31, p < 0.001) and tibial nerves (ß=0.28; ß=0.32, p < 0.001), Z-scores of QST (thermal detection ß=0.30, p < 0.05) and the FA (ß=0.60, p < 0.001). ROC analysis showed similar performance of PhA in comparison to mentioned diagnostic methods. CONCLUSION: The study shows that PhA is in comparison to other test systems used, at least an equally good and much easier to handle, investigator independent marker for detection of DPN.

11.
Diabetes Care ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905209

ABSTRACT

OBJECTIVE: Prolonged catabolic states in type 2 diabetes (T2D), exacerbated by excess substrate flux and hyperglycemia, can challenge metabolic flexibility and antioxidative capacity. We investigated cellular responses to glucose load after prolonged fasting in T2D. RESEARCH DESIGN AND METHODS: Glucose-tolerant individuals (CON, n = 10), T2D individuals with (T2D+, n = 10) and without diabetes complications (T2D-, n = 10) underwent oral glucose tolerance test before and after a 5-day fasting-mimicking diet. Peripheral blood mononuclear cells' (PBMC) resistance to ex vivo dicarbonyl methylglyoxal (MG) exposure after glucose load was assessed. Markers of dicarbonyl detoxification, oxidative stress, and mitochondrial biogenesis were analyzed by quantitative PCR, with mitochondrial complex protein expression assessed by western blotting. RESULTS: T2D+ exhibited decreased PBMC resistance against MG, while T2D- resistance remained unchanged, and CON improved postglucose load and fasting (-19.0% vs.-1.7% vs. 12.6%; all P = 0.017). T2D+ showed increased expression in dicarbonyl detoxification (mRNA glyoxalase-1, all P = 0.039), oxidative stress (mRNA glutathione-disulfide-reductase, all P = 0.006), and mitochondrial complex V protein (all P = 0.004) compared with T2D- and CON postglucose load and fasting. Citrate synthase activity remained unchanged, indicating no change in mitochondrial number. Mitochondrial biogenesis increased in T2D- compared with CON postglucose load and fasting (mRNA HspA9, P = 0.032). T2D-, compared with CON, exhibited increased oxidative stress postfasting, but not postglucose load, with increased mRNA expression in antioxidant defenses (mRNA forkhead box O4, P = 0.036, and glutathione-peroxidase-2, P = 0.034), and compared with T2D+ (glutathione-peroxidase-2, P = 0.04). CONCLUSIONS: These findings suggest increased susceptibility to glucose-induced oxidative stress in individuals with diabetes complications after prolonged fasting and might help in diet interventions for diabetes management.

12.
Nat Commun ; 15(1): 1391, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360943

ABSTRACT

In obesity, sustained adipose tissue (AT) inflammation constitutes a cellular memory that limits the effectiveness of weight loss interventions. Yet, the impact of fasting regimens on the regulation of AT immune infiltration is still elusive. Here we show that intermittent fasting (IF) exacerbates the lipid-associated macrophage (LAM) inflammatory phenotype of visceral AT in obese mice. Importantly, this increase in LAM abundance is strongly p53 dependent and partly mediated by p53-driven adipocyte apoptosis. Adipocyte-specific deletion of p53 prevents LAM accumulation during IF, increases the catabolic state of adipocytes, and enhances systemic metabolic flexibility and insulin sensitivity. Finally, in cohorts of obese/diabetic patients, we describe a p53 polymorphism that links to efficacy of a fasting-mimicking diet and that the expression of p53 and TREM2 in AT negatively correlates with maintaining weight loss after bariatric surgery. Overall, our results demonstrate that p53 signalling in adipocytes dictates LAM accumulation in AT under IF and modulates fasting effectiveness in mice and humans.


Subject(s)
Insulin Resistance , Intermittent Fasting , Tumor Suppressor Protein p53 , Animals , Humans , Mice , Adipocytes/metabolism , Adipose Tissue/metabolism , Inflammation/metabolism , Insulin Resistance/genetics , Obesity/genetics , Obesity/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Weight Loss
13.
Surg Obes Relat Dis ; 19(12): 1421-1434, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37666725

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) are strongly associated with obesity, metabolic syndrome, and insulin resistance (IR). OBJECTIVE: The aim of this study was to investigate the effects of metabolic surgery on pancreatic beta cell function and IR in patients with obesity and NAFLD. SETTING: University Hospital, Germany. METHODS: Liver biopsies were taken intraoperatively from 112 patients undergoing sleeve gastrectomy (n = 68) or Roux-en-Y gastric bypass (n = 44) and analyzed histologically for the presence of simple steatosis (NAFL) or NASH. Clinical and biochemical parameters were collected over up to 2 years. Beta cell function and IR were assessed using the homeostasis model assessment of beta-cell function (HOMA2-%B) and insulin resistance (HOMA2-IR) index. RESULTS: NASH was present in 53.6% (n = 60) of the patients and NAFL in 25.9% (n = 29). Liver enzymes, adiponectin/leptin ratio, triglycerides, and HbA1C were improved at 6 months, 1, and 2 years after surgery. HOMA2-IR was significantly lower in patients without NAFLD while HOMA2-IR did not differ between patients with NAFL and/or NASH. HOMA2-%B was highest in the NAFLD group and lowest in patients with NASH. While there was no change in HOMA2-%B and HOMA2-IR in the No-NAFLD group, HOMA2-%B decreased and IR improved in the NAFL and NASH groups. CONCLUSION: Insufficient compensatory beta-cell function may contribute to the progression from NAFL alongside with IR to NASH. Our findings suggest that bariatric surgery decreases IR while at the same time reducing compensatory insulin oversecretion. These results are associated with beneficial changes in adipose tissue function after bariatric surgery.


Subject(s)
Bariatric Surgery , Insulin Resistance , Insulin-Secreting Cells , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/surgery , Non-alcoholic Fatty Liver Disease/pathology , Insulin Resistance/physiology , Obesity/complications , Insulin/metabolism , Liver/pathology
14.
J Clin Endocrinol Metab ; 108(10): e979-e988, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37139855

ABSTRACT

AIM: To investigate the association of early peripheral sensory dysfunction (EPSD) identified through quantitative sensory testing (QST) with factors related to a dysmetabolic status in individuals with and without type 2 diabetes (T2DM) without peripheral neuropathy (PN), and the impact of those factors on PN development. METHODS: A total of 225 individuals (117 and 108 without and with T2DM, respectively) without PN based on clinical and electrophysiological criteria were analyzed. Comparative analysis was conducted between those identified as "healthy" and those with EPSD based on a standardized QST protocol. A total of 196 were followed-up over a mean of 2.64 years for PN occurrence. RESULTS: Among those without T2DM, apart from male sex, height, and higher fat and lower lean mass, only higher insulin resistance (IR; homeostatic model assessment for IR: odds ratio [OR], 1.70; P = .009; McAuley index OR, 0.62, P = .008), was independently associated with EPSD. In T2DM, metabolic syndrome (OR, 18.32; P < .001) and skin advanced glycation end-products (AGEs; OR, 5.66; P = .003) were independent predictors of EPSD. In longitudinal analysis, T2DM (hazard ratio [HR], 3.32 vs no diabetes mellitus; P < .001), EPSD (adjusted HR, 1.88 vs healthy; P = .049 adjusted for diabetes mellitus and sex), higher IR and AGEs predicted PN development. Among the 3 EPSD-associated sensory phenotypes, "sensory loss" was most strongly associated with PN development (adjusted HR, 4.35; P = .011). CONCLUSION: We demonstrate for the first time the utility of a standardized QST-based approach in identifying early sensory deficits in individuals with and without T2DM. These are associated with a dysmetabolic status signified by IR markers, metabolic syndrome, and higher AGEs, which in turn are shown to influence PN development.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Metabolic Syndrome , Peripheral Nervous System Diseases , Humans , Male , Diabetes Mellitus, Type 2/complications , Metabolic Syndrome/complications , Metabolic Syndrome/epidemiology , Peripheral Nervous System Diseases/epidemiology , Peripheral Nervous System Diseases/etiology , Glycation End Products, Advanced
15.
Front Endocrinol (Lausanne) ; 14: 1046690, 2023.
Article in English | MEDLINE | ID: mdl-37008917

ABSTRACT

Background: Diabetic sensorimotor polyneuropathy (DSPN) is one of the most prevalent and poorly understood diabetic microvascular complications. Recent studies have found that fractional anisotropy (FA), a marker for microstructural nerve integrity, is a sensitive parameter for the structural and functional nerve damage in DSPN. The aim of this study was to investigate the significance of proximal sciatic nerve's FA on different distal nerve fiber deficits of the upper and lower limbs and its correlation with the neuroaxonal biomarker, neurofilament light chain protein (NfL). Materials and methods: Sixty-nine patients with type 2 diabetes (T2DM) and 30 healthy controls underwent detailed clinical and electrophysiological assessments, complete quantitative sensory testing (QST), and diffusion-weighted magnetic resonance neurography of the sciatic nerve. NfL was measured in the serum of healthy controls and patients with T2DM. Multivariate models were used to adjust for confounders of microvascular damage. Results: Patients with DSPN showed a 17% lower sciatic microstructural integrity compared to healthy controls (p<0.001). FA correlated with tibial and peroneal motor nerve conduction velocity (NCV) (r=0.6; p<0.001 and r=0.6; p<0.001) and sural sensory NCV (r=0.50; p<0.001). Participants with reduced sciatic nerve´s FA showed a loss of function of mechanical and thermal sensation of upper (r=0.3; p<0.01 and r=0.3; p<0.01) and lower (r=0.5; p<0.001 and r=0.3; p=<0.01) limbs and reduced functional performance of upper limbs (Purdue Pegboard Test for dominant hand; r=0.4; p<0.001). Increased levels of NfL and urinary albumin-creatinine ratio (ACR) were associated with loss of sciatic nerve´s FA (r=-0.5; p<0.001 and r= -0.3, p= 0.001). Of note, there was no correlation between sciatic FA and neuropathic symptoms or pain. Conclusion: This is the first study showing that microstructural nerve integrity is associated with damage of different nerve fiber types and a neuroaxonal biomarker in DSPN. Furthermore, these findings show that proximal nerve damage is related to distal nerve function even before clinical symptoms occur. The microstructure of the proximal sciatic nerve and is also associated with functional nerve fiber deficits of the upper and lower limbs, suggesting that diabetic neuropathy involves structural changes of peripheral nerves of upper limbs too.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Diabetes Mellitus, Type 2/pathology , Anisotropy , Intermediate Filaments , Sciatic Nerve/diagnostic imaging , Sciatic Nerve/pathology , Diabetic Neuropathies/complications , Lower Extremity/diagnostic imaging , Biomarkers
16.
Front Endocrinol (Lausanne) ; 14: 1143799, 2023.
Article in English | MEDLINE | ID: mdl-37251671

ABSTRACT

Background and aim: Current strategies for preventing diabetic sensorimotor polyneuropathy (DSPN) are limited mainly to glucose control but rapid decrease of glycemia can lead to acute onset or worsening of DSPN. The aim of this study was to examine the effects of periodic fasting on somatosensory nerve function in patients with type 2 diabetes (T2D). Study design and methods: Somatosensory nerve function was assessed in thirty-one patients with T2D (HbA1c 7.8 ± 1.3% [61.4 ± 14.3 mmol/mol]) before and after a six-month fasting-mimicking diet (FMD; n=14) or a control Mediterranean diet (M-diet; n=17). Neuropathy disability score (NDS), neuropathy symptoms score (NSS), nerve conduction velocity and quantitative sensory testing (QST) were analyzed. 6 participants of the M-Diet group and 7 of the FMD group underwent diffusion-weighted high-resolution magnetic resonance neurography (MRN) of the right leg before and after the diet intervention. Results: Clinical neuropathy scores did not differ between study groups at baseline (64% in the M-Diet group and 47% in the FMD group had DSPN) and no change was found after intervention. The differences in sensory NCV and sensory nerve action potential (SNAP) of sural nerve were comparable between study groups. Motor NCV of tibial nerve decreased by 12% in the M-Diet group (P=0.04), but did not change in the FMD group (P=0.39). Compound motor action potential (CMAP) of tibial nerve did not change in M-Diet group (P=0.8) and increased in the FMD group by 18% (P=0.02). Motor NCV and CMAP of peroneal nerve remained unchanged in both groups. In QST M-diet-group showed a decrease by 45% in heat pain threshold (P=0.02), FMD group showed no change (P=0.50). Changes in thermal detection, mechanical detection and mechanical pain did not differ between groups. MRN analysis showed stable fascicular nerve lesions irrespective of the degree of structural pathology. Fractional anisotropy and T2-time did not change in both study groups, while a correlation with the clinical degree of DSPN could be confirmed for both. Conclusions: Our study shows that six-month periodic fasting was safe in preserving nerve function and had no detrimental effects on somatosensory nerve function in T2D patients. Clinical trial registration: https://drks.de/search/en/trial/DRKS00014287, identifier DRKS00014287.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Action Potentials , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/pathology , Diabetic Neuropathies/diagnosis , Fasting , Pain
17.
J Clin Endocrinol Metab ; 107(8): 2167-2181, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35661214

ABSTRACT

CONTEXT: Novel fasting interventions have gained scientific and public attention. Periodic fasting has emerged as a dietary modification promoting beneficial effects on metabolic syndrome. OBJECTIVE: Assess whether periodic fasting reduces albuminuria and activates nephropathy-driven pathways. DESIGN/PARTICIPANTS: Proof-of-concept study where individuals with type 2 diabetes (n = 40) and increased albumin-to-creatinine ratio (ACR) were randomly assigned to receive a monthly fasting-mimicking diet (FMD) or a Mediterranean diet for 6 months with 3-month follow-up. MAIN OUTCOMES MEASURES: Change in ACR was assessed by analysis of covariance adjusted for age, sex, weight loss, and baseline value. Prespecified subgroup analysis for patients with micro- vs macroalbuminuria at baseline was performed. Change in homeostatic model assessment for insulin resistance (HOMA-IR), circulating markers of dicarbonyl detoxification (methylglyoxal-derived hydroimidazolone 1, glyoxalase-1, and hydroxyacetone), DNA-damage/repair (phosphorylated histone H2AX), lipid oxidation (acylcarnitines), and senescence (soluble urokinase plasminogen activator receptor) were assessed as exploratory endpoints. RESULTS: FMD was well tolerated with 71% to 95% of the participants reporting no adverse effects. After 6 months, change in ACR was comparable between study groups [110.3 (99.2, 121.5) mg/g; P = 0.45]. FMD led to a reduction of ACR in patients with microalbuminuria levels at baseline [-30.3 (-35.7, -24.9) mg/g; P ≤ 0.05] but not in those with macroalbuminuria [434.0 (404.7, 463.4) mg/g; P = 0.23]. FMD reduced HOMA-IR [-3.8 (-5.6, -2.0); P ≤ 0.05] and soluble urokinase plasminogen activator receptor [-156.6 (-172.9, -140.4) pg/mL; P ≤ 0.05], while no change was observed in markers of dicarbonyl detoxification or DNA-damage/repair. Change in acylcarnitines was related to patient responsiveness to ACR improvement. At follow-up only HOMA-IR reduction [-1.9 (-3.7, -0.1), P ≤ 0.05]) was sustained. CONCLUSIONS: Improvement of microalbuminuria and of markers of insulin resistance, lipid oxidation, and senescence suggest the potential beneficial effects of periodic fasting in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Insulin Resistance , Albuminuria/etiology , Biomarkers , Creatinine , DNA/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/etiology , Fasting , Humans , Lipids , Receptors, Urokinase Plasminogen Activator
18.
Cell Metab ; 34(3): 473-486.e9, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35120589

ABSTRACT

Fasting metabolism and immunity are tightly linked; however, it is largely unknown how immune cells contribute to metabolic homeostasis during fasting in healthy subjects. Here, we combined cell-type-resolved genomics and computational approaches to map crosstalk between hepatocytes and liver macrophages during fasting. We identified the glucocorticoid receptor (GR) as a key driver of fasting-induced reprogramming of the macrophage secretome including fasting-suppressed cytokines and showed that lack of macrophage GR impaired induction of ketogenesis during fasting as well as endotoxemia. Mechanistically, macrophage GR suppressed the expression of tumor necrosis factor (TNF) and promoted nuclear translocation of hepatocyte GR to activate a fat oxidation/ketogenesis-related gene program, cooperatively induced by GR and peroxisome proliferator-activated receptor alpha (PPARα) in hepatocytes. Together, our results demonstrate how resident liver macrophages directly influence ketogenesis in hepatocytes, thereby also outlining a strategy by which the immune system can set the metabolic tone during inflammatory disease and infection.


Subject(s)
Fasting , Receptors, Glucocorticoid , Animals , Fasting/metabolism , Hepatocytes/metabolism , Humans , Ketone Bodies/metabolism , Liver/metabolism , Macrophages/metabolism , Mice , Mice, Knockout , PPAR alpha/metabolism , Receptors, Glucocorticoid/metabolism
19.
Nat Commun ; 13(1): 5062, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030260

ABSTRACT

A major obstacle in diabetes is the metabolic or hyperglycemic memory, which lacks specific therapies. Here we show that glucose-mediated changes in gene expression largely persist in diabetic kidney disease (DKD) despite reversing hyperglycemia. The senescence-associated cyclin-dependent kinase inhibitor p21 (Cdkn1a) was the top hit among genes persistently induced by hyperglycemia and was associated with induction of the p53-p21 pathway. Persistent p21 induction was confirmed in various animal models, human samples and in vitro models. Tubular and urinary p21-levels were associated with DKD severity and remained elevated despite improved blood glucose levels in humans. Mechanistically, sustained tubular p21 expression in DKD is linked to demethylation of its promoter and reduced DNMT1 expression. Two disease resolving agents, protease activated protein C (3K3A-aPC) and parmodulin-2, reversed sustained tubular p21 expression, tubular senescence, and DKD. Thus, p21-dependent tubular senescence is a pathway contributing to the hyperglycemic memory, which can be therapeutically targeted.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , Diabetes Mellitus , Diabetic Nephropathies , Hyperglycemia , Animals , Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p21/genetics , Diabetes Mellitus/pathology , Diabetic Nephropathies/pathology , Humans , Hyperglycemia/pathology , Kidney
20.
Exp Clin Endocrinol Diabetes ; 127(5): 276-280, 2019 May.
Article in English | MEDLINE | ID: mdl-29890549

ABSTRACT

INTRODUCTION/BACKGROUND: Atherosclerosis is an inflammatory disorder in which several converging immune responses modulate and induce lipid accumulation in macrophages. Activated leukocyte cell adhesion molecule (ALCAM) has been described as a structural homologue of HDL-receptor and functions as a pattern recognition receptor (PRR), while its soluble form sALCAM is involved in ALCAM-dependent and -independent immune mechanisms. The aim of this study was to investigate the effect of aggressive removal of low density lipoprotein-cholesterol (LDL-C) and lipoprotein(a) (Lp [a]) by lipoprotein-apheresis (LA) on sALCAM and blood viscosity as well as to evaluate its association with lipoproteins and serum markers of inflammation.


Subject(s)
Antigens, CD/blood , Atherosclerosis/blood , Atherosclerosis/therapy , Blood Component Removal/methods , Cell Adhesion Molecules, Neuronal/blood , Cholesterol, LDL/blood , Fetal Proteins/blood , Hypercholesterolemia/blood , Hypercholesterolemia/therapy , Inflammation/blood , Lipoprotein(a)/blood , Receptors, Pattern Recognition/blood , Adult , Aged , Female , Humans , Hypercholesterolemia/genetics , Male , Middle Aged , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL