Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Opt Lett ; 44(7): 1540-1543, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933085

ABSTRACT

We show the design and fabrication of high diffraction efficiency, optically recorded gradient-index Fresnel lenses in a two-stage photopolymer. A design analysis reveals that lens f/# is limited by the material refractive index contrast, motivating use of recent high-contrast polymers. The number of pixels required for the optical exposure is typically well beyond available spatial light-modulator resolutions, motivating the use of a photolithographic mask. We use a dithered binary chrome mask with 9000×9000 pixels of 2.5 µm diameter to write lenses up to 23 mm in diameter. Lenses down to f/44 with 76% diffraction efficiency and f/79 with 83% diffraction efficiency are demonstrated.

2.
Opt Express ; 26(2): 1851-1869, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29401908

ABSTRACT

Precise direct-write lithography of 3D waveguides or diffractive structures within the volume of a photosensitive material is hindered by the lack of metrology that can yield predictive models for the micron-scale refractive index profile in response to a range of exposure conditions. We apply the transport of intensity equation in conjunction with confocal reflection microscopy to capture the complete spatial frequency spectrum of isolated 10 µm-scale gradient-refractive index structures written by single-photon direct-write laser lithography. The model material, a high-performance two-component photopolymer, is found to be linear, integrating, and described by a single master dose response function. The sharp saturation of this function is used to demonstrate nearly binary, flat-topped waveguide profiles in response to a Gaussian focus.

3.
Opt Lett ; 43(8): 1866-1869, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29652385

ABSTRACT

We demonstrate that multiple exposures of a two-component holographic photopolymer can quadruple the refractive index contrast of the material beyond the single-exposure saturation limit. Quantitative phase microscopy of isolated structures written by laser direct-write lithography is used to characterize the process. This technique reveals that multiple exposures are made possible by diffusion of the chemical components consumed during writing into the previously exposed regions. The ultimate index contrast is shown to be limited by the solubility of fresh components into the multiply exposed region.

4.
Opt Express ; 20(6): 6575-83, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418540

ABSTRACT

We demonstrate single-mode uniform and parabolically tapered three-dimensional waveguides fabricated via direct-write lithography in diffusion-based photopolymers. Modulation of the writing power is shown to compensate Beer-Lambert absorption in the single-photon initiator and to provide precise control of modal tapers. A laminated sample preparation is introduced to enable full 3D characterization of these modal tapers without the need for sample polishing which is difficult for this class of polymer. The accuracy and repeatability of this modal characterization is shown to allow precise measurement of propagation loss from single samples. These testing procedures are used to demonstrate single-mode waveguides with 0.147 dB/cm excess propagation loss and symmetrical tapers up to 1:2.5 using 1.5 microwatts of continuous write power.


Subject(s)
Models, Theoretical , Polymers/chemistry , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Absorption , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
5.
ACS Appl Mater Interfaces ; 12(39): 44103-44109, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32844645

ABSTRACT

A high-performance holographic recording medium was developed based on a unique combination of photoinitiated thiol-ene click chemistry and functional, linear polymers used as binders. Allyl reactive sites were incorporated along the backbone of the linear polymer binder to enable facile film casting and to facilitate cross-linking by photopolymerization of the thiol-ene monomers that also serve as the writing monomers in this distinctive approach to holographic materials. The allyl content and the ratio of the linear polymer to the writing monomers were varied to maximize and control the refractive index contrast. A blade-coating-based film preparation method was developed to form films from the mixture of linear polymer and the thiol-ene monomers. This approach results in a holographic material with a peak to mean index contrast (Δn) that reaches 0.04. The refractive index contrast was stable for at least two weeks. Haze in holograms with a high writing monomer loading was significantly reduced when a higher allyl content was incorporated into the binder, resulting in the lowest haze around 0.2%. Finally, the media exhibit high resolution as demonstrated by the ability to record reflection holograms with 140 nm pitch and diffraction efficiency in excess of 90%.

6.
ACS Appl Mater Interfaces ; 10(1): 1217-1224, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29235344

ABSTRACT

Holographic photopolymers capable of high refractive index modulation (Δn) on the order of 10-2 are integral for the fabrication of functional holographic optical elements that are useful in a myriad of optical applications. In particular, to address the deficiency of suitable high refractive index writing monomers for use in two-stage holographic formulations, here we report a novel high refractive index writing monomer, 1,3-bis(phenylthio)-2-propyl acrylate (BPTPA), simultaneously possessing enhanced solubility in a low refractive index (n = 1.47) urethane matrix. When examined in comparison to a widely used high refractive index monomer, 2,4,6-tribromophenyl acrylate, BPTPA exhibited superior solubility in a stage 1 urethane matrix of approximately 50% with a 20% higher refractive index increase per unit amount of the writing monomer for stage 2 polymerizations. Formulations with 60 wt % loading of BPTPA exhibit a peak-to-mean holographic Δn ≈ 0.029 without obvious deficiencies in transparency, color, or scatter. To the best of our knowledge, this value is the highest reported in the peer-reviewed literature for a transmission hologram. The capabilities and versatility of BPTPA-based formulations are demonstrated at varying length scales via demonstrative refractive index gradient structure examples including direct laser write, projection mask lithography of a 1″ diameter Fresnel lens, and ∼100% diffraction efficiency volume transmission holograms with a 1 µm fringe spacing in 11 µm thick samples.

7.
Opt Express ; 15(21): 14202-12, 2007 Oct 17.
Article in English | MEDLINE | ID: mdl-19550694

ABSTRACT

Measurements of weak, embedded index structures are important for material characterization of photopolymers, glass and other optical materials as well as for characterization of fabricated structures such as waveguides. We demonstrate an optical diffraction tomography system capable of measuring deeply-buried, weak, fabricated index structures written in a homogeneous volume. High-fidelity cross sections of these weak index structures are constructed by replicating the structure to be measured to form a diffraction grating. The coherent addition of scattering from each of these objects increases the sensitivity of the imaging system. Measurements are made in the far field, without the use of lenses, eliminating phase aberration errors through thick volumes.

8.
Science ; 324(5929): 913-7, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19359546

ABSTRACT

Controlling and reducing the developed region initiated by photoexposure is one of the fundamental goals of optical lithography. Here, we demonstrate a two-color irradiation scheme whereby initiating species are generated by single-photon absorption at one wavelength while inhibiting species are generated by single-photon absorption at a second, independent wavelength. Co-irradiation at the second wavelength thus reduces the polymerization rate, delaying gelation of the material and facilitating enhanced spatial control over the polymerization. Appropriate overlapping of the two beams produces structures with both feature sizes and monomer conversions otherwise unobtainable with use of single- or two-photon absorption photopolymerization. Additionally, the generated inhibiting species rapidly recombine when irradiation with the second wavelength ceases, allowing for fast sequential exposures not limited by memory effects in the material and thus enabling fabrication of complex two- or three-dimensional structures.


Subject(s)
Color , Nanotechnology/methods , Optics and Photonics/methods , Photons , Polymethacrylic Acids/chemistry , Lasers , Photochemical Processes , Polyethylene Glycols/chemistry
9.
Appl Opt ; 46(3): 295-301, 2007 Jan 20.
Article in English | MEDLINE | ID: mdl-17228372

ABSTRACT

We demonstrate a three-dimensional direct-write lithography system capable of writing deeply buried, localized index structures into diffusion-mediated photopolymer. The system is similar to that used for femtosecond writing in glass, but has a number of advantages including greater flexibility in the writing media and the ability to use low power, inexpensive, continuous-wave lasers. This system writes index structures both parallel and perpendicular to the writing beam in different types of photopolymers, providing control over the feature size and shape. We demonstrate that this system can be used to create single-mode waveguides that are deeply embedded in the photopolymer medium.

SELECTION OF CITATIONS
SEARCH DETAIL