Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 14(7): 699-705, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23666294

ABSTRACT

Activating and inhibitory receptors on natural killer (NK) cells have a crucial role in innate immunity, although the basis of the engagement of activating NK cell receptors is unclear. The activating receptor Ly49H confers resistance to infection with murine cytomegalovirus by binding to the 'immunoevasin' m157. We found that m157 bound to the helical stalk of Ly49H, whereby two m157 monomers engaged the Ly49H dimer. The helical stalks of Ly49H lay centrally across the m157 platform, whereas its lectin domain was not required for recognition. Instead, m157 targeted an 'aromatic peg motif' present in stalks of both activating and inhibitory receptors of the Ly49 family, and substitution of this motif abrogated binding. Furthermore, ligation of m157 to Ly49H or Ly49C resulted in intracellular signaling. Accordingly, m157 has evolved to 'tackle the legs' of a family of NK cell receptors.


Subject(s)
Herpesviridae Infections/immunology , Histocompatibility Antigens Class I/immunology , Immunity, Innate/immunology , Killer Cells, Natural/immunology , Muromegalovirus/immunology , NK Cell Lectin-Like Receptor Subfamily A/immunology , Amino Acid Motifs/immunology , Amino Acid Sequence , Animals , Crystallography, X-Ray , Female , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Sequence Data , Signal Transduction/immunology , Specific Pathogen-Free Organisms , Surface Plasmon Resonance
2.
Nat Immunol ; 13(12): 1171-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23142773

ABSTRACT

The development and function of natural killer (NK) cells is regulated by the interaction of inhibitory receptors of the Ly49 family with distinct peptide-laden major histocompatibility complex (MHC) class I molecules, although whether the Ly49 family is able bind to other MHC class I-like molecules is unclear. Here we found that the prototypic inhibitory receptor Ly49A bound the highly conserved nonclassical MHC class I molecule H2-M3 with an affinity similar to its affinity for H-2D(d). The specific recognition of H2-M3 by Ly49A regulated the 'licensing' of NK cells and mediated 'missing-self' recognition of H2-M3-deficient bone marrow. Host peptide-H2-M3 was required for optimal NK cell activity against experimental metastases and carcinogenesis. Thus, nonclassical MHC class I molecules can act as cognate ligands for Ly49 molecules. Our results provide insight into the various mechanisms that lead to NK cell tolerance.


Subject(s)
Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Killer Cells, Natural/immunology , Lymphocyte Activation , NK Cell Lectin-Like Receptor Subfamily A/metabolism , Animals , Histocompatibility Antigens Class I/genetics , Immune Tolerance , Killer Cells, Natural/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
Am J Transplant ; 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37981213

ABSTRACT

Outcomes after lung transplantation (LTx) remain poor, despite advances in sequencing technology and development of algorithms defining immunologic compatibility. Presently, there is no consensus regarding the best approach to define human leukocyte antigen (HLA) compatibility in LTx. In this study, we compared 5 different HLA compatibility tools in a high-resolution HLA-typed, clinically characterized cohort, to determine which approach predicts outcomes after LTx. In this retrospective single-center study, 277 donor-recipient transplant pairs were HLA-typed using next generation sequencing. HLA compatibility was defined using HLAMatchmaker, HLA epitope mismatch algorithm (HLA-EMMA), predicted indirectly recognizable HLA epitopes (PIRCHE), electrostatic mismatch score (EMS), and amino acid mismatches (AAMMs). Associations with HLA mismatching and survival, chronic lung allograft dysfunction (CLAD), and anti-HLA donor-specific antibody (DSA) were calculated using adjusted Cox proportional modeling. Lower HLA class II mismatching was associated with improved survival as defined by HLAMatchmaker (P < .01), HLA-EMMA (P < .05), PIRCHE (P < .05), EMS (P < .001), and AAMM (P < .01). All approaches demonstrated that HLA-DRB1345 matching was associated with freedom from restrictive allograft syndrome and HLA-DQ matching with reduced DSA development. Reducing the level of HLA mismatching, in T cell or B cell epitopes, electrostatic differences, or amino acid, can improve outcomes after LTx and potentially guide immunosuppression strategies.

4.
Nat Immunol ; 12(7): 616-23, 2011 Jun 12.
Article in English | MEDLINE | ID: mdl-21666690

ABSTRACT

Type I natural killer T cells (NKT cells) are characterized by an invariant variable region 14-joining region 18 (V(α)14-J(α)18) T cell antigen receptor (TCR) α-chain and recognition of the glycolipid α-galactosylceramide (α-GalCer) restricted to the antigen-presenting molecule CD1d. Here we describe a population of α-GalCer-reactive NKT cells that expressed a canonical V(α)10-J(α)50 TCR α-chain, which showed a preference for α-glucosylceramide (α-GlcCer) and bacterial α-glucuronic acid-containing glycolipid antigens. Structurally, despite very limited TCRα sequence identity, the V(α)10 TCR-CD1d-α-GlcCer complex had a docking mode similar to that of type I TCR-CD1d-α-GalCer complexes, although differences at the antigen-binding interface accounted for the altered antigen specificity. Our findings provide new insight into the structural basis and evolution of glycolipid antigen recognition and have notable implications for the scope and immunological role of glycolipid-specific T cell responses.


Subject(s)
Galactosylceramides/immunology , Natural Killer T-Cells/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Adjuvants, Immunologic/pharmacology , Amino Acid Sequence , Animals , Antigens, Bacterial/immunology , Antigens, CD1d/immunology , Cell Line , Galactosylceramides/pharmacology , Glucuronates/immunology , Humans , Mice , Mice, Mutant Strains , Molecular Sequence Data , Receptors, Antigen, T-Cell, alpha-beta/genetics
5.
Muscle Nerve ; 68(2): 106-121, 2023 08.
Article in English | MEDLINE | ID: mdl-37323112

ABSTRACT

The Guidelines for Qualifications of Neurodiagnostic Personnel (QNP) document has been created through the collaboration of the American Clinical Neurophysiology Society (ACNS), the American Society of Neurophysiological Monitoring (ASNM), the American Association of Neuromuscular & Electrodiagnostic Medicine (AANEM), and ASET The Neurodiagnostic Society (ASET). The quality of patient care is optimized when neurophysiological procedures are performed and interpreted by appropriately trained and qualified practitioners at every level. These societies recognize that neurodiagnostics is a large field with practitioners who have entered the field through a variety of training paths. This document suggests job titles, associated job responsibilities, and the recommended levels of education, certification, experience, and ongoing education appropriate for each job. This is important because of the growth and development of standardized training programs, board certifications, and continuing education in recent years. This document matches training, education, and credentials to the various tasks required for performing and interpreting neurodiagnostic procedures. This document does not intend to restrict the practice of those already working in neurodiagnostics. It represents recommendations of these societies with the understanding that federal, state, and local regulations, as well as individual hospital bylaws, supersede these recommendations. Because neurodiagnostics is a growing and dynamic field, the authors fully intend this document to change over time.


Subject(s)
Neurophysiological Monitoring , Neurophysiology , United States , Humans , Societies, Medical
6.
Intern Med J ; 53(1): 140-144, 2023 01.
Article in English | MEDLINE | ID: mdl-36693637

ABSTRACT

In recent times, numerous and significant technological and supportive changes have taken place in Australian transplantation. These changes are often deployed without the wider clinical community having a full understanding of what has brought about these changes and the impacts they have. Here, we aim to clarify the reasoning behind these changes and shed light on potential future endeavours to improve patient outcomes.


Subject(s)
Kidney Transplantation , Tissue Donors , Humans , Australia , Graft Survival , HLA Antigens , Histocompatibility Testing
7.
Clin Orthop Relat Res ; 481(8): 1504-1511, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36795497

ABSTRACT

BACKGROUND: Previous studies have demonstrated racial disparities in opioid prescribing in emergency departments and after surgical procedures. Orthopaedic surgeons account for a large proportion of dispensed opioid prescriptions, yet there are few data investigating whether racial or ethnic disparities exist in opioid dispensing after orthopaedic procedures. QUESTIONS/PURPOSES: (1) Are Black, Hispanic or Latino, or Asian or Pacific Islander (PI) patients less likely than non-Hispanic White patients to receive an opioid prescription after an orthopaedic procedure in an academic United States health system? (2) Of the patients who do receive a postoperative opioid prescription, do Black, Hispanic or Latino, or Asian or PI patients receive a lower analgesic dose than non-Hispanic White patients when analyzed by type of procedure performed? METHODS: Between January 2017 and March 2021, 60,782 patients underwent an orthopaedic surgical procedure at one of the six Penn Medicine healthcare system hospitals. Of these patients, we considered patients who had not been prescribed an opioid within 1 year eligible for the study, resulting in 61% (36,854) of patients. A total of 40% (24,106) of patients were excluded because they did not undergo one of the top eight most-common orthopaedic procedures studied or their procedure was not performed by a Penn Medicine faculty member. Missing data consisted of 382 patients who had no race or ethnicity listed in their record or declined to provide a race or ethnicity; these patients were excluded. This left 12,366 patients for analysis. Sixty-five percent (8076) of patients identified as non-Hispanic White, 27% (3289) identified as Black, 3% (372) identified as Hispanic or Latino, 3% (318) identified as Asian or PI, and 3% (311) identified as another race ("other"). Prescription dosages were converted to total morphine milligram equivalents for analysis. Statistical differences in receipt of a postoperative opioid prescription were assessed with multivariate logistic regression models within procedure, adjusted for age, gender, and type of healthcare insurance. Kruskal-Wallis tests were used to assess for differences in the total morphine milligram equivalent dosage of the prescription, stratified by procedure. RESULTS: Almost all patients (95% [11,770 of 12,366]) received an opioid prescription. After risk adjustment, we found no differences in the odds of Black (odds ratio 0.94 [95% confidence interval 0.78 to 1.15]; p = 0.68), Hispanic or Latino (OR 0.75 [95% CI 0.47 to 1.20]; p = 0.18), Asian or PI (OR 1.00 [95% CI 0.58 to 1.74]; p = 0.96), or other-race patients (OR 1.33 [95% CI 0.72 to 2.47]; p = 0.26) receiving a postoperative opioid prescription compared with non-Hispanic White patients. There were no race or ethnicity differences in the median morphine milligram equivalent dose of postoperative opioid analgesics prescribed (p > 0.1 for all eight procedures) based on procedure. CONCLUSION: In this academic health system, we did not find any differences in opioid prescribing after common orthopaedic procedures by patient race or ethnicity. A potential explanation is the use of surgical pathways in our orthopaedic department. Formal standardized opioid prescribing guidelines may reduce variability in opioid prescribing. LEVEL OF EVIDENCE: Level III, therapeutic study.


Subject(s)
Analgesics, Opioid , Healthcare Disparities , Orthopedic Procedures , Pain, Postoperative , Practice Patterns, Physicians' , Humans , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/therapeutic use , Ethnicity , Hispanic or Latino , Morphine Derivatives , Practice Patterns, Physicians'/statistics & numerical data , United States/epidemiology , Pain, Postoperative/drug therapy , Healthcare Disparities/ethnology , Healthcare Disparities/statistics & numerical data , Black or African American , White , Asian , Pacific Island People , Academic Medical Centers
8.
J Biol Chem ; 297(4): 101141, 2021 10.
Article in English | MEDLINE | ID: mdl-34478713

ABSTRACT

The CD8αß heterodimer plays a crucial role in the stabilization between major histocompatibility complex class I molecules (MHC-I) and the T cell receptor (TCR). The interaction between CD8 and MHC-I can be regulated by posttranslational modifications, which are proposed to play an important role in the development of CD8 T cells. One modification that has been proposed to control CD8 coreceptor function is ribosylation. Utilizing NAD+, the ecto-enzyme adenosine diphosphate (ADP) ribosyl transferase 2.2 (ART2.2) catalyzes the addition of ADP-ribosyl groups onto arginine residues of CD8α or ß chains and alters the interaction between the MHC and TCR complexes. To date, only interactions between modified CD8 and classical MHC-I (MHC-Ia), have been investigated and the interaction with non-classical MHC (MHC-Ib) has not been explored. Here, we show that ADP-ribosylation of CD8 facilitates the binding of the liver-restricted nonclassical MHC, H2-Q10, independent of the associated TCR or presented peptide, and propose that this highly regulated binding imposes an additional inhibitory leash on the activation of CD8-expressing cells in the presence of NAD+. These findings highlight additional important roles for nonclassical MHC-I in the regulation of immune responses.


Subject(s)
ADP-Ribosylation/immunology , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , H-2 Antigens/immunology , Protein Multimerization/immunology , ADP Ribose Transferases/genetics , ADP Ribose Transferases/immunology , ADP-Ribosylation/genetics , Animals , CD8 Antigens/genetics , H-2 Antigens/genetics , Liver/immunology , Mice , Mice, Knockout , Protein Multimerization/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology
9.
J Biol Chem ; 295(10): 3239-3246, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31992596

ABSTRACT

The immune co-receptor CD8 molecule (CD8) has two subunits, CD8α and CD8ß, which can assemble into homo or heterodimers. Nonclassical (class-Ib) major histocompatibility complex (MHC) molecules (MHC-Ibs) have recently been identified as ligands for the CD8αα homodimer. This was demonstrated by the observation that histocompatibility 2, Q region locus 10 (H2-Q10) is a high-affinity ligand for CD8αα which also binds the MHC-Ib molecule H2-TL. This suggests that MHC-Ib proteins may be an extended source of CD8αα ligands. Expression of H2-T3/TL and H2-Q10 is restricted to the small intestine and liver, respectively, yet CD8αα-containing lymphocytes are present more broadly. Therefore, here we sought to determine whether murine CD8αα binds only to tissue-specific MHC-Ib molecules or also to ubiquitously expressed MHC-Ib molecules. Using recombinant proteins and surface plasmon resonance-based binding assays, we show that the MHC-Ib family furnishes multiple binding partners for murine CD8αα, including H2-T22 and the CD94/NKG2-A/B-activating NK receptor (NKG2) ligand Qa-1b We also demonstrate a hierarchy among MHC-Ib proteins with respect to CD8αα binding, in which Qa-1b > H2-Q10 > TL. Finally, we provide evidence that Qa-1b is a functional ligand for CD8αα, distinguishing it from its human homologue MHC class I antigen E (HLA-E). These findings provide additional clues as to how CD8αα-expressing cells are controlled in different tissues. They also highlight an unexpected immunological divergence of Qa-1b/HLA-E function, indicating the need for more robust studies of murine MHC-Ib proteins as models for human disease.


Subject(s)
CD8 Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , NK Cell Lectin-Like Receptor Subfamily D/chemistry , Animals , CD8 Antigens/genetics , Dimerization , Humans , Interferon-gamma/metabolism , Intraepithelial Lymphocytes/cytology , Intraepithelial Lymphocytes/immunology , Intraepithelial Lymphocytes/metabolism , Jurkat Cells , Ligands , Mice , Mice, Inbred C57BL , NK Cell Lectin-Like Receptor Subfamily D/metabolism , Protein Binding , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Surface Plasmon Resonance , HLA-E Antigens
10.
Transpl Infect Dis ; 23(3): e13550, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33351991

ABSTRACT

BACKGROUND: Optimizing immunosuppression in lung transplant recipients (LTR) is crucially important in minimizing the risk of infection and rejection. Quantiferon®-Monitor (QFM) is a candidate immune function biomarker which has not yet been rigorously evaluated in the lung transplant setting. The aim of this prospective cohort study was to explore relationships between QFM results, immunosuppression, and infection/rejection in LTR. METHODS: QFM, which measures interferon-γ after stimulation with innate and adaptive immune antigens, was tested before and at 2, 6, 12, 24 and 52 weeks post-transplant. Immunosuppression relationships were assessed with linear mixed effects models. Clinical outcomes were analyzed based on the preceding QFM result. RESULTS: Eighty LTR were included. Median pre-transplant QFM levels were 171 IU/mL (IQR 45-461), decreasing to 3 IU/mL (IQR 1-8) at 2 weeks post-transplant then progressively recovering toward baseline with time from transplant. Prednisolone was strongly inversely associated with QFM level (0.1 mg/kg dose increase correlating with 88 IU/mL QFM decrease, 95% CI 61-114, P < .001). Patients with QFM values <10 and <60 IU/mL were more likely to develop a serious opportunistic infection between 3 and 6 months (HR 6.38, 95% CI 1.37-29.66, P = .02) and 6-12 months (HR 3.25, 95% CI 1.11-9.49, P = .03) post-transplant, respectively. CONCLUSIONS: QFM values declined significantly post-transplant, with patients recovering at different rates. Prednisolone dose significantly impacted QFM results. Low levels were associated with infection beyond 3 months post-transplant, suggesting that QFM may be able to identify overly immunosuppressed patients who could be targeted for dose reduction. Larger prospective studies are needed to further evaluate this promising assay.


Subject(s)
Immunosuppression Therapy , Transplant Recipients , Biomarkers , Graft Rejection , Humans , Lung , Lung Transplantation , Prospective Studies
11.
Proc Natl Acad Sci U S A ; 115(46): 11808-11813, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30381460

ABSTRACT

Natural killer (NK) cells play a critical role in controlling malignancies. Susceptibility or resistance to lung cancer, for example, specifically depends on NK cell function. Nevertheless, intrinsic factors that control NK cell-mediated clearance of lung cancer are unknown. Here we report that NK cells exposed to exogenous major histocompatibility class I (MHCI) provide a significant immunologic barrier to the growth and progression of malignancy. Clearance of lung cancer is facilitated by up-regulation of NKG2D, NKp46, and other activating receptors upon exposure to environmental MHCI. Surface expression of the inhibitory receptor Ly49C/I, on the other hand, is down-regulated upon exposure to tumor-bearing tissue. We thus demonstrate that NK cells exhibit dynamic plasticity in surface expression of both activating and inhibitory receptors based on the environmental context. Our data suggest that altering the activation state of NK cells may contribute to immunologic control of lung and possibly other cancers.


Subject(s)
Antigens, Ly/immunology , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , NK Cell Lectin-Like Receptor Subfamily A/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology , Natural Cytotoxicity Triggering Receptor 1/immunology , Receptors, Immunologic/immunology , Receptors, Natural Killer Cell/metabolism , Animals , Cytotoxicity, Immunologic , Down-Regulation , Histocompatibility Antigens Class I/metabolism , Lung Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Up-Regulation
12.
Am J Respir Cell Mol Biol ; 62(4): 430-439, 2020 04.
Article in English | MEDLINE | ID: mdl-31697586

ABSTRACT

We investigated the contribution of human leukocyte antigen A2 (HLA-A2) and HLA-E-restricted CD8+ T cells in patients with Mycobacterium tuberculosis and human immunodeficiency virus 1 (HIV-1) coinfection. HIV-1 downregulates HLA-A, -B, and -C molecules in infected cells, thus influencing recognition by HLA class I-restricted CD8+ T cells but not by HLA-E-restricted CD8+ T cells, owing to the inability of the virus to downmodulate their expression. Therefore, antigen-specific HLA-E-restricted CD8+ T cells could play a protective role in Mycobacterium tuberculosis and HIV-1 coinfection. HLA-E- and HLA-A2-restricted Mycobacterium tuberculosis-specific CD8+ T cells were tested in vitro for cytotoxic and microbicidal activities, and their frequencies and phenotypes were evaluated ex vivo in patients with active tuberculosis and concomitant HIV-1 infection. HIV-1 and Mycobacterium tuberculosis coinfection caused downmodulation of HLA-A2 expression in human monocyte-derived macrophages associated with resistance to lysis by HLA-A2-restricted CD8+ T cells and failure to restrict the growth of intracellular Mycobacterium tuberculosis. Conversely, HLA-E surface expression and HLA-E-restricted cytolytic and microbicidal CD8 responses were not affected. HLA-E-restricted and Mycobacterium tuberculosis-specific CD8+ T cells were expanded in the circulation of patients with Mycobacterium tuberculosis/HIV-1 coinfection, as measured by tetramer staining, but displayed a terminally differentiated and exhausted phenotype that was rescued in vitro by anti-PD-1 (programmed cell death protein 1) monoclonal antibody. Together, these results indicate that HLA-E-restricted and Mycobacterium tuberculosis-specific CD8+ T cells in patients with Mycobacterium tuberculosis/HIV-1 coinfection have an exhausted phenotype and fail to expand in vitro in response to antigen stimulation, which can be restored by blocking the PD-1 pathway using the specific monoclonal antibody nivolumab.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Coinfection/immunology , HIV Infections/immunology , HIV-1/immunology , HLA-A2 Antigen/immunology , Histocompatibility Antigens Class I/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Adult , Antigens, Bacterial/immunology , Down-Regulation/immunology , Female , Humans , Lymphocyte Activation/immunology , Lymphocyte Count/methods , Male , Middle Aged , HLA-E Antigens
13.
Immunity ; 34(3): 327-39, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21376639

ABSTRACT

Natural killer T (NKT) cells respond to a variety of CD1d-restricted antigens (Ags), although the basis for Ag discrimination by the NKT cell receptor (TCR) is unclear. Here we have described NKT TCR fine specificity against several closely related Ags, termed altered glycolipid ligands (AGLs), which differentially stimulate NKT cells. The structures of five ternary complexes all revealed similar docking. Acyl chain modifications did not affect the interaction, but reduced NKT cell proliferation, indicating an affect on Ag processing or presentation. Conversely, truncation of the phytosphingosine chain caused an induced fit mode of TCR binding that affected TCR affinity. Modifications in the glycosyl head group had a direct impact on the TCR interaction and associated cellular response, with ligand potency reflecting the t(1/2) life of the interaction. Accordingly, we have provided a molecular basis for understanding how modifications in AGLs can result in striking alterations in the cellular response of NKT cells.


Subject(s)
Antigens, CD1d/immunology , Epitopes , Natural Killer T-Cells/immunology , Animals , Carbohydrate Sequence , Cell Line , Cell Proliferation , Glycolipids/immunology , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Sequence Data , Natural Killer T-Cells/cytology , Receptors, Natural Killer Cell/immunology
14.
Am J Transplant ; 19(5): 1577-1581, 2019 05.
Article in English | MEDLINE | ID: mdl-30653828

ABSTRACT

Antibody-mediated rejection, whereby transplant recipient B cells and/or plasma cells produce alloreactive anti-human leukocyte antigen (HLA) antibodies, negatively influences transplant outcomes and is a major contributor to graft loss. An early humoral immune response is suggested by the production of anti-HLA donor-specific antibodies (DSA) that can be measured using solid phase assays. We report the early posttransplant coexistence of a shared anti-HLA antibody profile in 5 solid organ transplant recipients who received organs from the same donor. Retrospective analysis of the donor's serum confirmed the presence of the same anti-HLA profile, suggesting the transfer of donor-derived anti-HLA antibodies, or the cells that produce them, to multiple solid organ transplant recipients. The time frame and extent of transfer suggest a novel variant of the passenger lymphocyte syndrome. These findings have important implications for the consideration of all posttransplant antibody measurements, particularly the interpretation of non-DSAs in the sera of transplant recipients.


Subject(s)
HLA Antigens/immunology , Immunity, Humoral/immunology , Isoantibodies/immunology , Lung Transplantation/methods , Lymphocytes/immunology , Postoperative Complications/immunology , Tissue Donors/supply & distribution , Adult , Female , Humans , Male , Middle Aged , Organ Transplantation , Prognosis , Retrospective Studies , Syndrome
15.
Immunol Cell Biol ; 97(3): 326-339, 2019 03.
Article in English | MEDLINE | ID: mdl-30537346

ABSTRACT

Class Ib major histocompatibility complex (MHC) is an extended family of molecules, which demonstrate tissue-specific expression and presentation of monomorphic antigens. These characteristics tend to imbue class Ib MHC with unique functions. H2-Q10 is potentially one such molecule that is overexpressed in the liver but its immunological function is not known. We have previously shown that H2-Q10 is a ligand for the natural killer cell receptor Ly49C and now, using H2-Q10-deficient mice, we demonstrate that H2-Q10 can also stabilize the expression of Qa-1b. In the absence of H2-Q10, the development and maturation of conventional hepatic natural killer cells is disrupted. We also provide evidence that H2-Q10 is a new high affinity ligand for CD8αα and controls the development of liver-resident CD8αα γδT cells. These data demonstrate that H2-Q10 has multiple roles in the development of immune subsets and identify an overlap of recognition within the class Ib MHC that is likely to be relevant to the regulation of immunity.


Subject(s)
H-2 Antigens/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, Immunologic/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Biomarkers , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , H-2 Antigens/genetics , H-2 Antigens/metabolism , Immunomodulation/genetics , Immunophenotyping , Killer Cells, Natural/cytology , Ligands , Liver/immunology , Liver/metabolism , Mice , Protein Binding , T-Lymphocyte Subsets/cytology
16.
Immunol Rev ; 267(1): 148-66, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26284476

ABSTRACT

The surveillance of target cells by natural killer (NK) cells utilizes an ensemble of inhibitory and activating receptors, many of which interact with major histocompatibility complex (MHC) class I molecules. NK cell recognition of MHC class I proteins is important developmentally for the acquisition of full NK cell effector capacity and during target cell recognition, where the engagement of inhibitory receptors and MHC class I molecules attenuates NK cell activation. Human NK cells have evolved two broad strategies for recognition of human leukocyte antigen (HLA) class I molecules: (i) direct recognition of polymorphic classical HLA class I proteins by diverse receptor families such as the killer cell immunoglobulin-like receptors (KIRs), and (ii) indirect recognition of conserved sets of HLA class I-derived peptides displayed on the non-classical HLA-E for recognition by CD94-NKG2 receptors. In this review, we assess the structural basis for the interaction between these NK receptors and their HLA class I ligands and, using the suite of published KIR and CD94-NKG2 ternary complexes, highlight the features that allow NK cells to orchestrate the recognition of a range of different HLA class I proteins.


Subject(s)
HLA Antigens/immunology , Histocompatibility Antigens Class I/immunology , Killer Cells, Natural/immunology , Receptors, Natural Killer Cell/immunology , Animals , HLA Antigens/chemistry , HLA Antigens/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism , Humans , Killer Cells, Natural/metabolism , Ligands , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Receptors, Natural Killer Cell/chemistry , Receptors, Natural Killer Cell/metabolism
17.
J Biol Chem ; 292(51): 21149-21158, 2017 12 22.
Article in English | MEDLINE | ID: mdl-28972140

ABSTRACT

αß T cell receptors (TCRs) interact with peptides bound to the polymorphic major histocompatibility complex class Ia (MHC-Ia) and class II (MHC-II) molecules as well as the essentially monomorphic MHC class Ib (MHC-Ib) molecules. Although there is a large amount of information on how TCRs engage with MHC-Ia and MHC-II, our understanding of TCR/MHC-Ib interactions is very limited. Infection with cytomegalovirus (CMV) can elicit a CD8+ T cell response restricted by the human MHC-Ib molecule human leukocyte antigen (HLA)-E and specific for an epitope from UL40 (VMAPRTLIL), which is characterized by biased TRBV14 gene usage. Here we describe an HLA-E-restricted CD8+ T cell able to recognize an allotypic variant of the UL40 peptide with a modification at position 8 (P8) of the peptide (VMAPRTLVL) that uses the TRBV9 gene segment. We report the structures of a TRBV9+ TCR in complex with the HLA-E molecule presenting the two peptides. Our data revealed that the TRBV9+ TCR adopts a different docking mode and molecular footprint atop HLA-E when compared with the TRBV14+ TCR-HLA-E ternary complex. Additionally, despite their differing V gene segment usage and different docking mechanisms, mutational analyses showed that the TCRs shared a conserved energetic footprint on the HLA-E molecule, focused around the peptide-binding groove. Hence, we provide new insights into how monomorphic MHC molecules interact with T cells.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Energy Metabolism , Histocompatibility Antigens Class I/metabolism , Models, Molecular , Receptors, Antigen, T-Cell, alpha-beta/agonists , Amino Acid Sequence , Binding Sites , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Clone Cells , Conserved Sequence , Crystallography, X-Ray , Epitope Mapping , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Humans , Molecular Docking Simulation , Mutagenesis, Site-Directed , Mutation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , HLA-E Antigens
18.
Mol Ecol ; 27(8): 1833-1847, 2018 04.
Article in English | MEDLINE | ID: mdl-29087012

ABSTRACT

Plant-associated soil microbes are important mediators of plant defence responses to diverse above-ground pathogen and insect challengers. For example, closely related strains of beneficial rhizosphere Pseudomonas spp. can induce systemic resistance (ISR), systemic susceptibility (ISS) or neither against the bacterial foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000). Using a model system composed of root-associated Pseudomonas spp. strains, the foliar pathogen Pto DC3000 and the herbivore Trichoplusia ni (cabbage looper), we found that rhizosphere-associated Pseudomonas spp. that induce either ISS and ISR against Pto DC3000 all increased resistance to herbivory by T. ni. We found that resistance to T. ni and resistance to Pto DC3000 are quantitative metrics of the jasmonic acid (JA)/salicylic acid (SA) trade-off and distinct strains of rhizosphere-associated Pseudomonas spp. have distinct effects on the JA/SA trade-off. Using genetic analysis and transcriptional profiling, we provide evidence that treatment of Arabidopsis with Pseudomonas sp. CH267, which induces ISS against bacterial pathogens, tips the JA/SA trade-off towards JA-dependent defences against herbivores at the cost of a subset of SA-mediated defences against bacterial pathogens. In contrast, treatment of Arabidopsis with the ISR strain Pseudomonas sp. WCS417 disrupts JA/SA antagonism and simultaneously primes plants for both JA- and SA-mediated defences. Our findings show that ISS against the bacterial foliar pathogens triggered by Pseudomonas sp. CH267, which is a seemingly deleterious phenotype, may in fact be an adaptive consequence of increased resistance to herbivory. Our work shows that pleiotropic effects of microbiome modulation of plant defences are important to consider when using microbes to modify plant traits in agriculture.


Subject(s)
Arabidopsis/genetics , Brassicaceae/genetics , Plant Diseases/genetics , Pseudomonas syringae/pathogenicity , Arabidopsis/microbiology , Brassicaceae/microbiology , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Herbivory/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/microbiology , Oxylipins/metabolism , Plant Diseases/microbiology , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/microbiology , Pseudomonas syringae/genetics , Rhizosphere , Salicylic Acid/metabolism
19.
Immunity ; 31(1): 47-59, 2009 Jul 17.
Article in English | MEDLINE | ID: mdl-19592275

ABSTRACT

The semi-invariant natural killer T cell receptor (NKT TCR) recognizes CD1d-lipid antigens. Although the TCR alpha chain is typically invariant, the beta chain expression is more diverse, where three V beta chains are commonly expressed in mice. We report the structures of V alpha 14-V beta 8.2 and V alpha 14-V beta 7 NKT TCRs in complex with CD1d-alpha-galactosylceramide (alpha-GalCer) and the 2.5 A structure of the human NKT TCR-CD1d-alpha-GalCer complex. Both V beta 8.2 and V beta 7 NKT TCRs and the human NKT TCR ligated CD1d-alpha-GalCer in a similar manner, highlighting the evolutionarily conserved interaction. However, differences within the V beta domains of the V beta 8.2 and V beta 7 NKT TCR-CD1d complexes resulted in altered TCR beta-CD1d-mediated contacts and modulated recognition mediated by the invariant alpha chain. Mutagenesis studies revealed the differing contributions of V beta 8.2 and V beta 7 residues within the CDR2 beta loop in mediating contacts with CD1d. Collectively we provide a structural basis for the differential NKT TCR V beta usage in NKT cells.


Subject(s)
Antigens, CD1d/immunology , Galactosylceramides/immunology , Natural Killer T-Cells/immunology , Peptide Fragments/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Animals , Antigens, CD1d/chemistry , Cloning, Molecular , Crystallization , Galactosylceramides/chemistry , Humans , Mice , Mutagenesis , Peptide Fragments/chemistry , Peptide Fragments/genetics , Protein Conformation , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics
20.
Immunity ; 30(2): 193-203, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19167249

ABSTRACT

During selection of the T cell repertoire, the immune system navigates the subtle distinction between self-restriction and self-tolerance, yet how this is achieved is unclear. Here we describe how self-tolerance toward a trans-HLA (human leukocyte antigen) allotype shapes T cell receptor (TCR) recognition of an Epstein-Barr virus (EBV) determinant (FLRGRAYGL). The recognition of HLA-B8-FLRGRAYGL by two archetypal TCRs was compared. One was a publicly selected TCR, LC13, that is alloreactive with HLA-B44; the other, CF34, lacks HLA-B44 reactivity because it arises when HLA-B44 is coinherited in trans with HLA-B8. Whereas the alloreactive LC13 TCR docked at the C terminus of HLA-B8-FLRGRAYGL, the CF34 TCR docked at the N terminus of HLA-B8-FLRGRAYGL, which coincided with a polymorphic region between HLA-B8 and HLA-B44. The markedly contrasting footprints of the LC13 and CF34 TCRs provided a portrait of how self-tolerance shapes the specificity of TCRs selected into the immune repertoire.


Subject(s)
Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Self Tolerance/immunology , Amino Acid Sequence , Antigens, Viral/chemistry , Antigens, Viral/immunology , Crystallography, X-Ray , HLA-B8 Antigen/chemistry , HLA-B8 Antigen/immunology , Herpesvirus 4, Human/chemistry , Herpesvirus 4, Human/immunology , Humans , Models, Molecular , Peptides/chemistry , Peptides/immunology , Protein Structure, Quaternary , Structural Homology, Protein , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL