Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Glob Chang Biol ; 28(15): 4509-4522, 2022 08.
Article in English | MEDLINE | ID: mdl-35106864

ABSTRACT

Marine heatwaves can cause coral bleaching and reduce coral cover on reefs, yet few studies have identified "bright spots," where corals have recently shown a capacity to survive such pressures. We analyzed 7714 worldwide surveys from 1997 to 2018 along with 14 environmental and temperature metrics in a hierarchical Bayesian model to identify conditions that contribute to present-day coral cover. We also identified locations with significantly higher (i.e., "bright spots") and lower coral cover (i.e., "dark spots") than regionally expected. In addition, using 4-km downscaled data of Representative Concentration Pathways (RCPs) 4.5 and 8.5, we projected coral cover on reefs for the years 2050 and 2100. Coral cover on modern reefs was positively associated with historically high maximum sea-surface temperatures (SSTs), and negatively associated with high contemporary SSTs, tropical-cyclone frequencies, and human-population densities. By 2100, under RCP8.5, we projected relative decreases in coral cover of >40% on most reefs globally but projected less decline on reefs in Indonesia, Malaysia, the central Philippines, New Caledonia, Fiji, and French Polynesia, which should be focal localities for multinational networks of protected areas.


Subject(s)
Anthozoa , Coral Reefs , Animals , Bayes Theorem , Climate Change , Oceans and Seas
2.
Glob Chang Biol ; 26(3): 1367-1373, 2020 03.
Article in English | MEDLINE | ID: mdl-31912964

ABSTRACT

Thermal-stress events that cause coral bleaching and mortality have recently increased in frequency and severity. Yet few studies have explored conditions that moderate coral bleaching. Given that high light and high ocean temperature together cause coral bleaching, we explore whether corals at turbid localities, with reduced light, are less likely to bleach during thermal-stress events than corals at other localities. We analyzed coral bleaching, temperature, and turbidity data from 3,694 sites worldwide with a Bayesian model and found that Kd 490, a measurement positively related to turbidity, between 0.080 and 0.127 reduced coral bleaching during thermal-stress events. Approximately 12% of the world's reefs exist within this "moderating turbidity" range, and 30% of reefs that have moderating turbidity are in the Coral Triangle. We suggest that these turbid nearshore environments may provide some refuge through climate change, but these reefs will need high conservation status to sustain them close to dense human populations.


Subject(s)
Anthozoa , Animals , Bayes Theorem , Climate Change , Coral Reefs , Hot Temperature , Temperature
3.
Science ; 372(6545): 977-980, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34045353

ABSTRACT

Climate change threatens coral reefs by causing heat stress events that lead to widespread coral bleaching and mortality. Given the global nature of these mass coral mortality events, recent studies argue that mitigating climate change is the only path to conserve coral reefs. Using a global analysis of 223 sites, we show that local stressors act synergistically with climate change to kill corals. Local factors such as high abundance of macroalgae or urchins magnified coral loss in the year after bleaching. Notably, the combined effects of increasing heat stress and macroalgae intensified coral loss. Our results offer an optimistic premise that effective local management, alongside global efforts to mitigate climate change, can help coral reefs survive the Anthropocene.


Subject(s)
Anthozoa/physiology , Climate Change , Coral Reefs , Heat-Shock Response , Animals , Conservation of Natural Resources , Extreme Heat , Fishes , Sea Urchins , Seaweed/physiology , Stress, Physiological , Water Movements , Water Pollution, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL