Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(13): e2313239121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38498710

ABSTRACT

High-entropy alloy nanoparticles (HEANs) possessing regulated defect structure and electron interaction exhibit a guideline for constructing multifunctional catalysts. However, the microstructure-activity relationship between active sites of HEANs for multifunctional electrocatalysts is rarely reported. In this work, HEANs distributed on multi-walled carbon nanotubes (HEAN/CNT) are prepared by Joule heating as an example to explain the mechanism of trifunctional electrocatalysis for oxygen reduction, oxygen evolution, and hydrogen evolution reaction. HEAN/CNT excels with unmatched stability, maintaining a 0.8V voltage window for 220 h in zinc-air batteries. Even after 20 h of water electrolysis, its performance remains undiminished, highlighting exceptional endurance and reliability. Moreover, the intrinsic characteristics of the defect structure and electron interaction for HEAN/CNT are investigated in detail. The electrocatalytic mechanism of trifunctional electrocatalysis of HEAN/CNT under different conditions is identified by in situ monitoring and theoretical calculation. Meanwhile, the electron interaction and adaptive regulation of active sites in the trifunctional electrocatalysis of HEANs were further verified by density functional theory. These findings could provide unique ideas for designing inexpensive multifunctional high-entropy electrocatalysts.

2.
J Appl Microbiol ; 134(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040654

ABSTRACT

AIMS: Four nitric oxide (NO) donors, S-nitrosoglutathione (GSNO), S-nitrosocysteine (CySNO), S-nitroso-N-acetylcysteine (SNAC), and 2-(2-S-nitroso propionamide) acetic acid (GAS) were prepared and their physicochemical characteristics were analyzed. Besides, the antibacterial properties of NO donors were investigated against Escherichia coli and Staphylococcus aureus. METHODS AND RESULTS: UV-visible absorption spectrum and Fourier transform infrared spectrum verified the successful preparation of RSNOs. All NO donors (10 mmol l-1) could release NO continuously, and the amount of NO release was from 80.22 µmol l-1 to 706.63 µmol l-1, in which the release of NO from SNAC was the highest, and the release of NO from NaNO2 was the least. The inhibition zone indicated that all NO donors showed stronger antibacterial activity against E. coli and S. aureus, and the antibacterial ability was in the order of SNAC > GSNO > CySNO > GAS > NaNO2 for both E. coli and S. aureus (P < 0.05). Scanning electron microscopy(SEM) showed that all NO donors could result in varying degrees of damage to cell wall and membrane of both E. coli and S. aureus and the damage of E. coli was more severe. CONCLUSION: Four alternative NO donors were successfully synthesized. All alternative NO donors showed better antibacterial properties against E. coli and S. aureus than NaNO2.


Subject(s)
Nitric Oxide Donors , Staphylococcus aureus , Nitric Oxide Donors/pharmacology , Staphylococcus aureus/metabolism , S-Nitrosoglutathione/pharmacology , Escherichia coli/metabolism , Nitric Oxide/metabolism , Anti-Bacterial Agents/pharmacology
3.
J Clin Ultrasound ; 51(6): 972-973, 2023.
Article in English | MEDLINE | ID: mdl-37126542

ABSTRACT

Angiosarcoma is an extremely rare primary cardiac malignant tumor, with characteristics of early blood metastasis and radiochemotherapy resistance. Early diagnosis and timely treatment are of great significance to the prognosis of patients. Hereinafter, we report a case of angiosarcoma in the left atrium of a 61-year-old woman who underwent multimodality imaging and successful resection of the angiosarcoma. Results of the present case suggest that multimodal imaging plays an important role in detecting angiosarcoma and determining the treatment plan and prognosis for patients after treatment.


Subject(s)
Brain Neoplasms , Heart Neoplasms , Hemangiosarcoma , Female , Humans , Middle Aged , Hemangiosarcoma/diagnostic imaging , Hemangiosarcoma/pathology , Heart Atria/diagnostic imaging , Heart Atria/pathology , Heart Neoplasms/diagnostic imaging , Heart Neoplasms/pathology , Multimodal Imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/therapy , Brain Neoplasms/pathology
4.
BMC Neurol ; 22(1): 298, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35962342

ABSTRACT

BACKGROUND: N-methyl-D-aspartate receptor (NMDAR) is an ionotropic glutamate (Glu) receptor that is widely expressed in the central nervous system (CNS), mainly in the hippocampus. We present a case in which the patient had atypical clinical manifestations and was positive for anti-NMDAR antibodies. CASE PRESENTATION: A 40-year-old male was admitted to the hospital with "dizziness and double vision for 2 months". At admission, the patient was lethargic, had short-term memory loss, exhibited loss of orientation (time, place, and person) and calculation ability, and had limited left eye abduction. After admission, serum anti- NMDAR antibody was 1:32, and cerebrospinal fluid was 1:1. Magnetic resonance imaging (MRI) revealed diffuse abnormal signals in the bilateral basal ganglia, thalamus, brainstem, hippocampus, and temporal lobe, with patchy and heterogeneous enhancement. A stereotactic brain biopsy was performed, and the pathological results indicated normal brain tissue. Preliminary diagnosis suggested anti-NMDAR antibody encephalitis. The patient was treated with methylprednisolone combined with intravenous gamma globulin; the symptoms were alleviated, and the patient was discharged. Two months later, the patient's symptoms worsened, and a second stereotactic brain biopsy was performed. The pathological results showed that the patient had primary diffuse large B-cell lymphoma of the CNS, and the patient was transferred to the Department of Hematology and received chemotherapy combined with rituximab. The patient was in stable condition. CONCLUSIONS: When the primary CNS diffuses large B-cell lymphoma is associated with autoimmune encephalitis, it is very easy to be misdiagnosed. The diagnosis should not be based on the pathological examination that was performed in the early stage of the disease. Therefore, in the diagnosis of immune diseases caused by nervous system infections, it is necessary to dynamically observe the evolution of the disease, perform differential diagnoses when necessary, and ultimately improve our understanding of the disease.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Lymphoma, Large B-Cell, Diffuse , Adult , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/complications , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Brain/pathology , Central Nervous System/pathology , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Male , Receptors, N-Methyl-D-Aspartate
5.
J Stroke Cerebrovasc Dis ; 31(6): 106453, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35367846

ABSTRACT

OBJECTIVE: More preclinical research evidence has shown that dental pulp stem cells (DPSCs) transplantation is expected to promote the recovery of ischemic stroke (IS), but it still lacks an evidence-based analysis. The purpose of this study was to investigate the effects of DPSCs on neurological function and infarct size in Sprague-Dawley (SD) rats with middle cerebral artery embolization (MCAO). METHODS: According to PRISMA guidelines, the preclinical study of DPSCs in the treatment of IS was screened according to the inclusion and exclusion criteria, and the relevant data and quality were evaluated by two independent researchers; A meta-analysis of histological and behavioral results was performed. RESULTS: Seven studies were finally included, with quality evaluation scores ranging from 8 to 9. Four articles reported modified Neurological Severity Scores (mNSS), three studies reported rotarod test, and six studies reported infarct volume. Meta-analysis showed that the mNSS score decreased by 1.17 times, the rotarod test increased by 1.11 times and the volume of cerebral infarction decreased by 1.91 times in the DPSC group compared with the blank control group. CONCLUSION: Transplantation of DPSCs can significantly improve the neurological function of ischemic stroke and reduce the infarct volume.


Subject(s)
Ischemic Stroke , Animals , Dental Pulp/pathology , Disease Models, Animal , Humans , Infarction , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/therapy , Rats , Rats, Sprague-Dawley , Stem Cell Transplantation
7.
Histochem Cell Biol ; 146(1): 33-43, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26883442

ABSTRACT

The formation of fat-laden foam cells, contributing to the fatty streaks of the plaques of atheroma, is the critical early process in atherosclerosis. The previous study demonstrated that vascular smooth muscle cells (VSMCs) contain a much larger burden of the excess cholesterol in comparison with monocyte-derived macrophages in human coronary atherosclerosis, as the main origin of foam cells. It is noteworthy that VSMC-derived foam cells are deposited in subintima but not media, where VSMCs normally deposit in. Therefore, migration from media to intima is an indispensable step for a VSMC to accrue neutral lipids and form foam cell. Whether this migration occurs paralleled with or prior to the formation of foam cell is still unclear. Herein, the present study was designed to test the VSMC migratory capability in the process of foam cell formation induced by oxidized low-density lipoprotein (oxLDL). In conclusion, we provide evidence that oxLDL induces the VSMC-derived foam cells formation with increased migration ability and MMP-9 expression, which were partly attributed to the impaired SIRT1 and enhanced nuclear factor-kappa B (NF-κB) activity. As activation of transient receptor potential vanilloid type 1 (TRPV1) has been reported to have anti-atherosclerotic effects, we investigated its role in oxLDL-treated VSMC migration. It is found that activating TRPV1 by capsaicin inhibits VSMC foam cell formation and the accompanied migration through rescuing the SIRT1 and suppressing NF-κB signaling. The present study provides evidence that SIRT1 may be a promising intervention target of atherosclerosis, and raises the prospect of TRPV1 in prevention and treatment of atherosclerosis.


Subject(s)
Cell Movement , Foam Cells/metabolism , Muscle, Smooth, Vascular/metabolism , Sirtuin 1/metabolism , Animals , Cells, Cultured , Foam Cells/cytology , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/cytology
8.
Int J Neurosci ; 126(12): 1103-11, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26643496

ABSTRACT

PURPOSE/AIM OF THE STUDY: We aimed to evaluate the association between serum uric acid (SUA) levels and cerebral white matter lesions (WMLs) in Chinese individuals. MATERIAL AND METHODS: We prospectively identified patients aged 50 years and older in neurology department from July 2014 to March 2015. Both periventricular WMLs (P-WMLs) and deep WMLs (D-WMLs) were identified on magnetic resonance imanging (MRI) scans and the severity was graded using the Fazekas method. Multivariate logistic regression analyses were performed to examine the association between SUA and WMLs. RESULTS: A total of 480 eligible participants were enrolled in this study. SUA level in severe group was much higher than that in mild group (for P-WMLs: 320.21 ± 79.97 vs. 286.29 ± 70.18, p = 0.000; for D-WMLs: 314.71 ± 74.74 vs. 290.07 ± 74.04, p = 0.031). Subgroup analyses showed that higher SUA level was associated with higher severity of P-WMLs in women, but not in male patients. Multivariate logistic regression analyses showed that SUA was still associated with increased risk of higher severity of P-WMLs (OR = 1.003, 95% = 1.000-1.006), but not D-WMLs. CONCLUSION: Elevated SUA level was independently associated with greater odds of higher severity of P-WMLs, particularly in women.


Subject(s)
Cerebral Cortex/pathology , Leukoencephalopathies/blood , Uric Acid/blood , Aged , Aged, 80 and over , Analysis of Variance , Asian People , Cerebral Cortex/diagnostic imaging , Cholesterol/blood , Female , Humans , Leukoencephalopathies/diagnostic imaging , Lipoproteins, LDL/blood , Logistic Models , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies
9.
Exp Ther Med ; 27(1): 6, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223327

ABSTRACT

The imbalance in immune homeostasis plays a crucial role in the pathogenesis of myasthenia gravis (MG). MicroRNAs (miRs) have been identified as key regulators of immune homeostasis. B-cell lymphoma/leukemia 10 (BCL10) has been implicated in the activation and suppressive function of regulatory T cells (Tregs). This study aimed to investigate the potential role of miR-155-5p in modulating the activation and function of Tregs in MG. To achieve this objective, blood samples were collected from MG patients to assess the expression levels of miR-155-5p and BCL10, as well as the proportion of circulating Tregs, in comparison to healthy controls. The correlation between miR-155-5p and BCL10 levels was evaluated in human samples. The expression levels of miR-155-5p and the numbers of circulating Tregs were also examined in an animal model of experimental autoimmune MG (EAMG). A dual-luciferase reporter assay was used to verify whether miR-155-5p can target BCL10. To determine the regulatory function of BCL10 in Tregs, CD4+ CD25+ Tregs were transfected with either small interfering-BCL10 or miR-155-5p inhibitor, and the expression levels of the anti-inflammatory cytokine IL-10 and transcription factors Foxp3, TGF-ß1, CTLA4, and ICOS were measured. The results demonstrated that the expression level of miR-155-5p was significantly higher in patients with MG compared with that in healthy controls, whereas the expression level of BCL10 was significantly decreased in patients with MG. Furthermore, there was a significant negative correlation between the expression levels of miR-155-5p and BCL10. The number of circulating Tregs was significantly reduced in patients with MG and in the spleen of rats with EAMG compared with that in the corresponding control groups. The dual-luciferase reporter assay demonstrated that miR-155-5p could target BCL10. The Tregs transfected with si-BCL10 demonstrated significant decreases in the protein levels of TGF-ß1 and IL-10, as well as in the mRNA expression levels of Foxp3, TGF-ß1, CTLA-4 and ICOS. Conversely, the Tregs transfected with the miR-155-5p inhibitor exhibited a substantial increase in these protein and mRNA expression levels compared with their respective control groups. Furthermore, the knockdown of BCL10 exhibited a decline in the suppressive efficacy of Tregs on the proliferation of CD4+ T cells. Conversely, the suppression of miR-155-5p expression attenuated the inhibition of the BCL10 gene, potentially causing an indirect influence on the suppressive capability of Tregs on the proliferation of CD4+ T cells. BCL10 was thus found to contribute to the activation and immunosuppressive function of Tregs. In summary, the present study demonstrated that miR-155-5p inhibited the activation and immunosuppressive function of Tregs by targeting BCL10, which may be used as a future potential target for the treatment of MG.

10.
Eur J Pharmacol ; 973: 176600, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38643834

ABSTRACT

Multiple sclerosis is an autoimmune disease that causes inflammatory damage to the central nervous system. At present, the pathogenesis of the disease is unknown. There is a lack of few effective therapy medications available. Therefore, it is necessary to further explore the pathogenesis of this illness and develop potential therapeutic drugs. Dabrafenib is potential therapeutic medicine for nervous system disease. In this study, we preliminarily studied the possible mechanism of dabrafenib in the treatment of multiple sclerosis from the perspective of ferroptosis. First, we observed that dabrafenib significantly improved symptoms of gait abnormalities, limb weakness or paralysis, and down-regulated levels of spinal cord inflammation in an experimental autoimmune encephalitis (EAE) model. Meanwhile, we also observed that dabrafenib could inhibit the proteins of ferroptosis in spinal cord tissue of EAE mice by Western blot. The results of immunohistochemical analysis showed that the effect of dabrafenib on ferroptosis mainly occurred in microglia. Second, dabrafenib was demonstrated to be able to inhibit the S phase of the cell cycle, reduce ROS levels, and reinstate mitochondrial activity in the LPS-induced BV2 inflammatory cell model. Futhermore, we found that dabrafenib inhibits P-JAK2 and P-STAT3 activation by acting Axl receptor, which in turn prevents neurogenic inflammation in microglia. The co-stimulated BV2 cell model with LPS and Erastin also verified these findings. Ultimately, the Axl knockout mice used to construct the EAE model allowed for the confirmation that dabrafenib prevented ferroptosis in microglia by up-regulating Axl receptor, which reduced the inflammatory demyelination associated with EAE. In summary, our research demonstrates the advantages of dabrafenib in multiple sclerosis treatment, which can prevent ferroptosis in microglia in multiple sclerosis through up-regulating Axl receptor, thus halting the progression of multiple sclerosis.


Subject(s)
Axl Receptor Tyrosine Kinase , Encephalomyelitis, Autoimmune, Experimental , Ferroptosis , Imidazoles , Oximes , Proto-Oncogene Proteins , Receptor Protein-Tyrosine Kinases , Up-Regulation , Animals , Imidazoles/pharmacology , Imidazoles/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Ferroptosis/drug effects , Proto-Oncogene Proteins/metabolism , Mice , Oximes/pharmacology , Oximes/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Up-Regulation/drug effects , Mice, Inbred C57BL , Female , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , STAT3 Transcription Factor/metabolism , Cell Line , Spinal Cord/drug effects , Spinal Cord/pathology , Spinal Cord/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Signal Transduction/drug effects
11.
Heliyon ; 10(8): e29418, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38638970

ABSTRACT

Background: With the aging population, the incidence of neurodegenerative diseases increases yearly, seriously impacting human health. Various journals have published studies on the pathogenesis of ferroptosis in neurodegenerative diseases. However, bibliometric analysis in this field is still lacking. The study aims to visually analyze global research trends in this field over the past decade. Methods: The articles and reviews regarding ferroptosis in neurodegenerative diseases were retrieved from the Web of Science on September 1, 2023. Citespace [version 6.2. R4 (64-bit)] and VOSviewer (version 1.6.18) were used to conduct the bibliometric and knowledge-map analysis. Results: In total, 370 studies were included in the paper and ranked by their citation frequency. Many articles on ferroptosis in neurodegenerative diseases have been published in the past decade. The country, institution, author, and journal with the highest publications were China, Guangzhou Medical University, Maher, Pamela, and Free Radical Biology And Medicine, respectively. The analysis of keyword co-occurrence indicated that research frontiers were molecular mechanisms of ferroptosis in neurodegenerative diseases, especially a few key pathways that triggered ferroptosis in these diseases, including lipid peroxidation signaling, iron metabolism, and GSH/GPX4 signaling. In addition, ferroptosis inhibitors such as liproxstatins and ferrostatins had protective effects in animal models of neurodegenerative diseases. Therefore, future attention should also be focused on therapeutic drugs that target ferroptosis. Conclusion: This study comprehensively analyzed the publications on ferroptosis in neurodegenerative diseases from a bibliometric perspective. Research on this topic is currently expanding at a rapid pace, and the China holds a leading position in this field by its scientific achievements and productivity. Moreover, the research frontiers were molecular mechanisms of ferroptosis in neurodegenerative diseases and developing targeted therapeutic drugs. In summary, our results showed an all-sided overview of the knowledge atlas and a valuable reference for the future research in this field.

12.
Heliyon ; 10(4): e26030, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420408

ABSTRACT

Curcumin is widely used as a traditional drug in Asia. Interestingly, curcumin and its metabolites have been demonstrated to influence the microbiota. However, the effect of curcumin on the gut microbiota in patients with myasthenia gravis (MG) remains unclear. This study aimed to investigate the effects of curcumin on the gut microbiota community, short-chain fatty acids (SCFAs) levels, intestinal permeability, and Th17/Treg balance in a Torpedo acetylcholine receptor (T-AChR)-induced MG mouse model. The results showed that curcumin significantly alleviated the clinical symptoms of MG mice induced by T-AChR. Curcumin modified the gut microbiota composition, increased microbial diversity, and, in particular, reduced endotoxin-producing Proteobacteria and Desulfovibrio levels in T-AChR-induced gut dysbiosis. Moreover, we found that curcumin significantly increased fecal butyrate levels in mice with T-AChR-induced gut dysbiosis. Butyrate levels increased in conjunction with the increase in butyrate-producing species such as Oscillospira, Akkermansia, and Allobaculum in the curcumin-treated group. In addition, curcumin repressed the increased levels of lipopolysaccharide (LPS), zonulin, and FD4 in plasma. It enhanced Occludin expression in the colons of MG mice induced with T-AChR, indicating dramatically alleviated gut permeability. Furthermore, curcumin treatment corrected T-AChR-induced imbalances in Th17/Treg cells. In summary, curcumin may protect mice against myasthenia gravis by modulating both the gut microbiota and SCFAs, improving gut permeability, and regulating the Th17/Treg balance. This study provides novel insights into curcumin's clinical value in MG therapy.

13.
Transl Pediatr ; 13(6): 976-986, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38984028

ABSTRACT

Background: Congenital mesoblastic nephroma (CMN) is a rare renal tumor with good prognosis in children; however, cellular CMN is a special subtype with poor prognosis. The ETV6 fusion gene has been found in some cellular CMNs, whereas CMNs with TPM3::NTRK1 fusion gene have not been reported. This study aims to share the progression and treatment of a case of CMNs with TPM3::NTRK1 fusion gene, in order to provide experience for the diagnosis and treatment of such specific diseases. Case Description: We report a case of CMN with TPM3::NTRK1 fusion gene and a 3-year course of disease that originated during the fetal period. The child experienced rapid tumor progression 22 months after birth, followed by tumor recurrence 3 months after complete resection of CMN. Although traditional chemotherapy could not prevent the tumor progression. The tropomyosin receptor kinase (TRK) inhibitor larotrectinib resulted in significant inhibitory effects on metastatic lesions in the lungs, liver, and peritoneum. However, the patient ultimately died as the tumor became resistant to larotrectinib. Conclusions: CMN, is a rare pediatric renal tumor that warrant prompt surgical management. A watchful waiting approach may allow for aggressive growth of metastatic disease, as seen in this case of cellular CMN with TPM3::NTRK1 fusion gene, TRK inhibitors can play significant roles in the treatment of CMN with TPM3::NTRK1 fusion gene, but we still need to pay attention to the phenomenon of drug resistance to larotrectinib caused by site mutations of TRKA.

14.
J Hepatocell Carcinoma ; 11: 1221-1233, 2024.
Article in English | MEDLINE | ID: mdl-38957436

ABSTRACT

Purpose: Long noncoding RNAs (lncRNAs) might be closely associated with hepatocellular carcinoma (HCC) progression and could serve as diagnostic and prognostic markers. This study aimed to investigate lncRNA-based diagnostic biomarkers for hepatitis B virus (HBV)-associated HCC. Materials and Methods: High-throughput transcriptome sequencing was conducted on the liver tissues of 15 patients with HBV-associated liver diseases (5 with chronic hepatitis B [CHB], 5 with liver cirrhosis [LC], and 5 with HCC). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze lncRNA expressions. Potential diagnostic performance for HBV-associated HCC screening was evaluated. Results: Through trend analysis and functional analysis, we found that 8 lncRNAs were gradually upregulated and 1 lncRNA was progressively downregulated by regulation of target mRNAs and downstream HCC-associated signaling pathways. The validation of dysregulated lncRNAs in peripheral blood mononuclear cells (PBMCs) and HCC tissues by qRT-PCR revealed that ADAMTSL4-AS1, SOCS2-AS1, and AC067931 were significantly increased in HCC compared with CHB and cirrhosis. Moreover, differentially expressed lncRNAs were aberrantly elevated in Huh7, Hep3B, HepG2, and HepG2.215 cells compared with LX2 cells. Furthermore, ADAMTSL4-AS1, SOCS2-AS1, and AC067931 were identified as novel biomarkers for HBV-associated HCC. For distinguishing HCC from CHB, ADAMTSL4-AS1, AC067931, and SOCS2-AS1 combined with alpha-fetoprotein (AFP) had an area under the curve (AUC) of 0.945 (sensitivity, 83.9%; specificity, 89.8%). Similarly, for distinguishing HCC from LC, this combination had an AUC of 0.871 (sensitivity, 91.1%; specificity, 68.2%). Furthermore, this combination showed the highest diagnostic ability to distinguish HCC from CHB and LC (AUC, 0.905; sensitivity, 91.1%; specificity, 75.3%). In particular, this combination identified AFP-negative (AFP < 20 ng/mL) (AUC = 0.814), small (AUC = 0.909), and early stage (AUC = 0.863) tumors. Conclusion: ADAMTSL4-AS1, SOCS2-AS1, and AC067931 combined with AFP in PBMCs may serve as a noninvasive diagnostic biomarker for HBV-associated HCC, especially AFP-negative, small, and early stage HCC.

15.
Int J Biol Macromol ; 259(Pt 1): 129119, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185296

ABSTRACT

Stem canker is a highly destructive disease that threatens prickly ash plantations in China. This study demonstrated the effective control of stem canker in prickly ash using chitosan priming, reducing lesion areas by 46.77 % to 75.13 % across all chitosan treatments. The mechanisms underlying chitosan-induced systemic acquired resistance (SAR) in prickly ash were further investigated. Chitosan increased H2O2 levels and enhanced peroxidase and catalase enzyme activities. A well-constructed regulatory network depicting the genes involved in the SAR and their corresponding expression levels in prickly ash plants primed with chitosan was established based on transcriptomic analysis. Additionally, 224 ZbWRKYs were identified based on the whole genome of prickly ash, and their phylogenetic evolution, conserved motifs, domains and expression patterns of ZbWRKYs were comprehensively illustrated. The expression of 12 key genes related to the SAR was significantly increased by chitosan, as determined using reverse transcription-quantitative polymerase chain reaction. Furthermore, the activities of defensive enzymes and the accumulation of lignin and flavonoids in prickly ash were significantly enhanced by chitosan treatment. Taken together, this study provides valuable insights into the chitosan-mediated activation of the immune system in prickly ash, offering a promising eco-friendly approach for forest stem canker control.


Subject(s)
Chitosan , Fusarium , Chitosan/pharmacology , Phylogeny , Hydrogen Peroxide , Fusarium/genetics
16.
J Phys Chem Lett ; 14(1): 164-169, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36579936

ABSTRACT

In this work, we first developed Cs2KBiCl6 cubic double perovskite nanocrystals and a series of morphologically isotropic double perovskite nanocrystals. Different contributions of different elements to self-trapped states were revealed by density functional theory. Meanwhile, these double perovskite nanocrystals exhibit the coexistence of free and self-trapped exciton dual-color photoluminescence. Femtosecond transient absorption spectroscopy can confirm that the double perovskite nanocrystals produce a relatively obvious structural deformation in the excited state. We infer that this can lead to a large deviation of the excitation and emission transition dipoles, thus causing large photoluminescence anisotropy. Most importantly, we observe for the first time that both free exciton emission and self-trapped exciton emission are highly anisotropic, which are comparable to or even better than that of lead halide perovskites. This research paves the way for exploring more possibilities and practical applications.

17.
J Phys Chem Lett ; 14(18): 4365-4371, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37140150

ABSTRACT

Recently, hybrid metal halides have received great attention in the field of solid-state lighting because of their diverse structures and excellent photoluminescence properties. In this work, we first reported two hybrid zinc-based metal halides with zero-dimensional structures, (BMPP)2ZnBr4 and (TBA)2ZnBr4, which exhibited broadband emission with large Stokes shifts. Notably, the highest photoluminescence quantum yield of 59.76% was observed. Additionally, the luminescence mechanism of metal halides was investigated by using time-resolved femtosecond transient absorption experiments. A broad excited-state absorption platform with the tendency of slowly decaying was shown in the detection range, demonstrating that after the electrons were excited to the excited state, the free excitons underwent a nonadiabatic transition to self-trapped excitons and went through a radiation recombination process to the ground state. A blue-light-emitting diode could be easily obtained by coating (BMPP)2ZnBr4 on a GaN chip, which indicated that it has good competitiveness in the application of solid-state lighting devices.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122821, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37167741

ABSTRACT

The space configurations of organic ammonium cations play a vital role in indirectly revealing the relationship between the structures and photoluminescence properties. Structural transformation induced tunability of the photophysical properties has rarely been reported. In this work, two organic-inorganic halide perovskites with different octahedral distortions were synthesized to explore the relationships between "steric effect" of organic cations and photoluminescence properties. The broadband emission of (DETA)PbBr5·H2O with high octahedral distortion is attributed to self-trapped excitons and trap states, whereas smaller steric hindrance ammonium cation 1,4-butanediamine form a 2D layered perovskite with narrowband emission due to free excitons. More importantly, the photoactive metal ions Mn2+ doping strategy gives rise to tunable broadband light emission from weak to strong orange emission with higher PLQY up to 20.96 % and 12.90% in 0D (DETA)Pb0.2Mn0.8Br5·H2O and 2D (BDA)Pb0.8Mn0.2Br4 respectively. Combined with time-correlated single photon counting and photoluminescence spectra, Mn-doped perovskites reveal energy transfer from host to Mn2+ characteristic energy level (4T1-6A1). Importantly, defect states are reduced by doping manganese ions in (DETA)PbBr5·H2O to enhance photoluminescence intensity. This work sheds light on the mechanism of defect-related emission and provides a successful strategy for designing novel and adjustable materials.

19.
Ultrasound Med Biol ; 49(6): 1395-1400, 2023 06.
Article in English | MEDLINE | ID: mdl-36878830

ABSTRACT

OBJECTIVE: The functional characteristics of exercise-induced myocardial hypertrophy were studied in a rat model in conjunction with ultrasound layered strain technique to investigate the hidden changes in the heart brought about by exercise. METHODS: Forty specific pathogen free (SPF) adult Sprague-Dawley rats were selected and randomly divided into two groups of 20 exercise and 20 control rats. The longitudinal and circumferential strain parameters were measured using the ultrasonic stratified strain technique. The differences between the two groups and the predictive effect of stratified strain parameters on left ventricular systolic function were analyzed. RESULTS: The exercise group had significantly higher global endocardial myocardial longitudinal strain (GLSendo), global mid-myocardial global longitudinal strain (GLSmid) and global endocardial myocardial global longitudinal strain (GCSendo) values than the control group (p < 0.05). Even though global mid-myocardial circumferential strain (GCSmid) and global epicardial myocardial circumferential strain (GCSepi) were higher in the exercise group than in the control group, statistical significance was not reached (p > 0.05). Conventional echocardiography parameters were well correlated with GLSendo, GLSmid, and GCSendo (p < 0.05). GLSendo was the best predictor of left ventricular myocardial contractile performance in athletes determined using the receiver operating characteristic curve, with an area under the curve of 0.97, sensitivity of 95% and specificity of 90%. CONCLUSION: Rats performing endurance exercise exhibited subclinical changes in the heart after prolonged high-intensity exercise. A stratified strain parameter, GLSendo, played an important role in the evaluation of LV systolic performance in exercising rats.


Subject(s)
Echocardiography , Ventricular Function, Left , Rats , Animals , Pilot Projects , Rats, Sprague-Dawley , Echocardiography/methods , Systole
20.
Mol Immunol ; 159: 15-27, 2023 07.
Article in English | MEDLINE | ID: mdl-37263067

ABSTRACT

Microglia, being the primary immune cells of the central nervous system (CNS), are responsible for pathological inflammatory demyelination in multiple sclerosis (MS). It has been demonstrated that AXL, one of the receptor tyrosine kinases, could alleviate the inflammatory response of microglia. However, the specific mechanism remains unclear. Herein, we explored the role of AXL in the autophagy of microglia and its effect on the experimental autoimmune encephalomyelitis (EAE) model. We revealed that knockout of AXL in BV2 microglia significantly promoted the expression of phosphorylated-PI3K/p-AKT/p-mTOR while significantly inhibiting LC3-Ⅱ/Beclin1. Similarly, autophagy was significantly inhibited in the AXL-/- mice. Knockout of AXL induced serious symptoms, infiltration of inflammatory cells, and demyelination changes, manifesting as the upregulation of pro-inflammatory factors TNF-α and IL-6 and downregulation of anti-inflammatory factors TGF-ß and IL-10. In conclusion, this study substantiated that autophagy induced by AXL inhibited the inflammatory response of microglia and alleviated symptoms of EAE. Autophagy activation was mediated by the PI3K/AKT/mTOR signaling pathway.


Subject(s)
Axl Receptor Tyrosine Kinase , Encephalomyelitis, Autoimmune, Experimental , Animals , Mice , Autophagy , Inflammation/pathology , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Axl Receptor Tyrosine Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL