Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924756

ABSTRACT

BACKGROUND: Amivantamab plus lazertinib (amivantamab-lazertinib) has shown clinically meaningful and durable antitumor activity in patients with previously untreated or osimertinib-pretreated EGFR (epidermal growth factor receptor)-mutated advanced non-small-cell lung cancer (NSCLC). METHODS: In a phase 3, international, randomized trial, we assigned, in a 2:2:1 ratio, patients with previously untreated EGFR-mutated (exon 19 deletion or L858R), locally advanced or metastatic NSCLC to receive amivantamab-lazertinib (in an open-label fashion), osimertinib (in a blinded fashion), or lazertinib (in a blinded fashion, to assess the contribution of treatment components). The primary end point was progression-free survival in the amivantamab-lazertinib group as compared with the osimertinib group, as assessed by blinded independent central review. RESULTS: Overall, 1074 patients underwent randomization (429 to amivantamab-lazertinib, 429 to osimertinib, and 216 to lazertinib). The median progression-free survival was significantly longer in the amivantamab-lazertinib group than in the osimertinib group (23.7 vs. 16.6 months; hazard ratio for disease progression or death, 0.70; 95% confidence interval [CI], 0.58 to 0.85; P<0.001). An objective response was observed in 86% of the patients (95% CI, 83 to 89) in the amivantamab-lazertinib group and in 85% of those (95% CI, 81 to 88) in the osimertinib group; among patients with a confirmed response (336 in the amivantamab-lazertinib group and 314 in the osimertinib group), the median response duration was 25.8 months (95% CI, 20.1 to could not be estimated) and 16.8 months (95% CI, 14.8 to 18.5), respectively. In a planned interim overall survival analysis of amivantamab-lazertinib as compared with osimertinib, the hazard ratio for death was 0.80 (95% CI, 0.61 to 1.05). Predominant adverse events were EGFR-related toxic effects. The incidence of discontinuation of all agents due to treatment-related adverse events was 10% with amivantamab-lazertinib and 3% with osimertinib. CONCLUSIONS: Amivantamab-lazertinib showed superior efficacy to osimertinib as first-line treatment in EGFR-mutated advanced NSCLC. (Funded by Janssen Research and Development; MARIPOSA ClinicalTrials.gov number, NCT04487080.).

2.
Proc Natl Acad Sci U S A ; 121(13): e2318382121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38502702

ABSTRACT

The huge carbon stock in humus layers of the boreal forest plays a critical role in the global carbon cycle. However, there remains uncertainty about the factors that regulate below-ground carbon sequestration in this region. Notably, based on evidence from two independent but complementary methods, we identified that exchangeable manganese is a critical factor regulating carbon accumulation in boreal forests across both regional scales and the entire boreal latitudinal range. Moreover, in a novel fertilization experiment, manganese addition reduced soil carbon stocks, but only after 4 y of additions. Our results highlight an underappreciated mechanism influencing the humus carbon pool of boreal forests.


Subject(s)
Manganese , Taiga , Carbon , Soil , Carbon Sequestration , Forests
3.
Proc Natl Acad Sci U S A ; 121(20): e2401398121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38728227

ABSTRACT

Decomposition of dead organic matter is fundamental to carbon (C) and nutrient cycling in terrestrial ecosystems, influencing C fluxes from the biosphere to the atmosphere. Theory predicts and evidence strongly supports that the availability of nitrogen (N) limits litter decomposition. Positive relationships between substrate N concentrations and decomposition have been embedded into ecosystem models. This decomposition paradigm, however, relies on data mostly from short-term studies analyzing controls on early-stage decomposition. We present evidence from three independent long-term decomposition investigations demonstrating that the positive N-decomposition relationship is reversed and becomes negative during later stages of decomposition. First, in a 10-y decomposition experiment across 62 woody species in a temperate forest, leaf litter with higher N concentrations exhibited faster initial decomposition rates but ended up a larger recalcitrant fraction decomposing at a near-zero rate. Second, in a 5-y N-enrichment experiment of two tree species, leaves with experimentally enriched N concentrations had faster decomposition initial rates but ultimately accumulated large slowly decomposing fractions. Measures of amino sugars on harvested litter in two experiments indicated that greater accumulation of microbial residues in N-rich substrates likely contributed to larger slowly decomposing fractions. Finally, a database of 437 measurements from 120 species in 45 boreal and temperate forest sites confirmed that higher N concentrations were associated with a larger slowly decomposing fraction. These results challenge the current treatment of interactions between N and decomposition in many ecosystems and Earth system models and suggest that even the best-supported short-term controls of biogeochemical processes might not predict long-term controls.


Subject(s)
Forests , Nitrogen , Plant Leaves , Trees , Nitrogen/metabolism , Nitrogen/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Trees/metabolism , Carbon/metabolism , Carbon/chemistry , Ecosystem , Taiga , Carbon Cycle
4.
Proc Natl Acad Sci U S A ; 121(16): e2320623121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38607930

ABSTRACT

Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional "root economics space" synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data including 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reliance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.


Subject(s)
Ecosystem , Longevity , Biological Evolution , Climate Change , Head
5.
EMBO Rep ; 25(3): 1055-1074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38351372

ABSTRACT

Activation of hepatic stellate cells (HSCs) plays a critical role in liver fibrosis. However, the molecular basis for HSC activation remains poorly understood. Herein, we demonstrate that primary cilia are present on quiescent HSCs but exhibit a significant loss upon HSC activation which correlates with decreased levels of the ciliary protein intraflagellar transport 88 (IFT88). Ift88-knockout mice are more susceptible to chronic carbon tetrachloride-induced liver fibrosis. Mechanistic studies show that the X-linked inhibitor of apoptosis (XIAP) functions as an E3 ubiquitin ligase for IFT88. Transforming growth factor-ß (TGF-ß), a profibrotic factor, enhances XIAP-mediated ubiquitination of IFT88, promoting its proteasomal degradation. Blocking XIAP-mediated IFT88 degradation ablates TGF-ß-induced HSC activation and liver fibrosis. These findings reveal a previously unrecognized role for ciliary homeostasis in regulating HSC activation and identify the XIAP-IFT88 axis as a potential therapeutic target for liver fibrosis.


Subject(s)
Cilia , Liver Cirrhosis , Animals , Mice , Cilia/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Transforming Growth Factor beta/metabolism
6.
Nano Lett ; 24(6): 1843-1850, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38316029

ABSTRACT

The penetrating growth of Li into the inorganic solid-state electrolyte (SSE) is one key factor limiting its practical application. Research to understand the underlying mechanism of Li penetration has been ongoing for years and is continuing. Here, we report an in situ scanning electron microscopy methodology to investigate the dynamic behaviors of isolated Li filaments in the garnet SSE under practical cycling conditions. We find that the filaments tend to grow in the SSE, while surprisingly, those filaments can self-dissolve with a decrease in the current density without a reversal of the current direction. We further build a coupled electro-chemo-mechanical model to assess the interplay between electrochemistry and mechanics during the dynamic evolution of filaments. We reveal that filament growth is strongly regulated by the competition between the electrochemical driving force and mechanical resistive force. The numerical results provide rational guidance for the design of solid-state batteries with excellent properties.

7.
Proteomics ; : e2400035, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994817

ABSTRACT

Given the pivotal roles of metabolomics and microbiomics, numerous data mining approaches aim to uncover their intricate connections. However, the complex many-to-many associations between metabolome-microbiome profiles yield numerous statistically significant but biologically unvalidated candidates. To address these challenges, we introduce BiOFI, a strategic framework for identifying metabolome-microbiome correlation pairs (Bi-Omics). BiOFI employs a comprehensive scoring system, incorporating intergroup differences, effects on feature correlation networks, and organism abundance. Meanwhile, it establishes a built-in database of metabolite-microbe-KEGG functional pathway linking relationships. Furthermore, BiOFI can rank related feature pairs by combining importance scores and correlation strength. Validation on a dataset of cesarean-section infants confirms the strategy's validity and interpretability. The BiOFI R package is freely accessible at https://github.com/chentianlu/BiOFI.

8.
J Cell Mol Med ; 28(9): e18338, 2024 May.
Article in English | MEDLINE | ID: mdl-38683122

ABSTRACT

Respiratory syncytial virus (RSV) infects neuronal cells in the central nervous system (CNS), resulting in neurological symptoms. In the present study, we intended to explore the mechanism of RSV infection-induced neuroinflammatory injury from the perspective of the immune response and sought to identify effective protective measures against the injury. The findings showed that toll-like receptor 4 (TLR4) was activated after RSV infection in human neuronal SY5Y cells. Furthermore, TLR4 activation induced autophagy and apoptosis in neuronal cells, promoted the formation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, and increased the secretion of downstream inflammatory cytokines such as interleukin-1ß (IL-1ß), interleukin-18 (IL-18) and tumour necrosis factor-α (TNF-α). Interestingly, blockade of TLR4 or treatment with exogenous melatonin significantly suppressed TLR4 activation as well as TLR4-mediated apoptosis, autophagy and immune responses. Therefore, we infer that melatonin may act on the TLR4 to ameliorate RSV-induced neuronal injury, which provides a new therapeutic target for RSV infection.


Subject(s)
Apoptosis , Autophagy , Inflammasomes , Melatonin , NLR Family, Pyrin Domain-Containing 3 Protein , Respiratory Syncytial Virus Infections , Toll-Like Receptor 4 , Humans , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Central Nervous System/virology , Central Nervous System/metabolism , Central Nervous System/drug effects , Central Nervous System/pathology , Cytokines/metabolism , Inflammasomes/drug effects , Inflammasomes/metabolism , Melatonin/pharmacology , Neurons/metabolism , Neurons/drug effects , Neurons/virology , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Viruses/drug effects , Respiratory Syncytial Viruses/physiology , Toll-Like Receptor 4/drug effects , Toll-Like Receptor 4/metabolism
9.
Anal Chem ; 96(26): 10630-10638, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38912708

ABSTRACT

Paper-based lateral flow immunoassays (LFIAs) are cost-effective, portable, and simple methods for detection of diverse analytes, which however only provide qualitative or semiquantitative results and lack sufficient sensitivity. A combination of LFIA and electrochemical detection, namely, electrochemical lateral flow immunoassay (eLFIA), enables quantitative detection of analytes with high sensitivity, but the integration of external electrodes makes the system relatively expensive and unstable. Herein, the working, counter, and reference electrodes were prepared directly on the nitrocellulose membrane using screen printing, which remarkably simplified the structure of eLFIA and decreased the cost. Moreover, a horseradish peroxidase (HRP)-based electrochemical signal amplification strategy was used for further increasing the analytical sensitivity. HRP captured on the working electrode can catalyze the oxidation of tetramethylbenzidine (TMB) to form the TMB-TMBox precipitate on the electrode surface, which as an electrochemically active product can output an amplified current for quantification. We demonstrated that the eLFIA could detect low-abundant inflammatory biomarkers in human plasma samples with limits of detection of 0.17 and 0.54 pg mL-1 for interleukin-6 and C-reactive protein, respectively. Finally, a fully portable system was fabricated by integrating eLFIA with a flexible and wireless electrochemical workstation, realizing the point-of-care detection of interleukin-6.


Subject(s)
Biomarkers , C-Reactive Protein , Electrochemical Techniques , Electrodes , Interleukin-6 , Humans , Immunoassay/methods , Immunoassay/instrumentation , Electrochemical Techniques/instrumentation , Biomarkers/blood , Biomarkers/analysis , Interleukin-6/blood , Interleukin-6/analysis , C-Reactive Protein/analysis , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Limit of Detection , Inflammation/blood , Inflammation/diagnosis , Benzidines
10.
Anal Chem ; 96(13): 5178-5187, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38500378

ABSTRACT

Accurate, ultrasensitive, and point-of-care (POC) diagnosis of the African swine fever virus (ASFV) remains imperative to prevent its spread and limit the losses incurred. Herein, we propose a CRISPR-Cas12a-assisted triplex amplified colorimetric assay for ASFV DNA detection with ultrahigh sensitivity and specificity. The specific recognition of recombinase aided amplification (RAA)-amplified ASFV DNA could activate the Cas12a/crRNA/ASFV DNA complex, leading to the digestion of the linker DNA (bio-L1) on magnetic beads (MBs), thereby preventing its binding of gold nanoparticles (AuNPs) network. After magnetic separation, the release of AuNPs network comprising a substantial quantity of AuNPs could lead to a discernible alteration in color and significantly amplify the plasmonic signal, which could be read by spectrophotometers or smartphones. By combining the RAA, CRISPR/Cas12a-assisted cleavage, and AuNPs network-mediated colorimetric amplification together, the assay could detect as low as 0.1 copies/µL ASFV DNA within 1 h. The assay showed an accuracy of 100% for the detection of ASFV DNA in 16 swine tissue fluid samples, demonstrating its potential for on-site diagnosis of ASFV.


Subject(s)
African Swine Fever Virus , Metal Nanoparticles , Animals , Swine , African Swine Fever Virus/genetics , CRISPR-Cas Systems/genetics , Gold , Point-of-Care Systems , Hydrolases , Recombinases , Sensitivity and Specificity , Nucleic Acid Amplification Techniques
11.
Biochem Biophys Res Commun ; 721: 150130, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38761750

ABSTRACT

Apigenin (API) is a natural flavonoid compound with antioxidant, anti fibrotic, anti-inflammatory and other effects, but there is limited research on the effect of API on liver fibrosis. This study aims to explore the effect and potential mechanism of API on liver fibrosis induced by CCl4 in mice. The results indicate that API reduces oxidative stress levels, inhibits hepatic stellate cell (HSC) activation, and exerts anti liver fibrosis effects by regulating the PKM2-HIF-1α pathway. We observed that API alleviated liver tissue pathological damage and collagen deposition in CCl4 induced mouse liver fibrosis model, promoting the recovery of liver function in mice with liver fibrosis. In addition, the API inhibits the transition of Pyruvate kinase isozyme type M2 (PKM2) from dimer to tetramer formation by regulating the EGFR-MEK1/2-ERK1/2 pathway, thereby preventing dimer from entering the nucleus and blocking PKM2-HIF-1α access. This change leads to a decrease in malondialdehyde (MDA) and Catalase (CAT) levels and an increase in glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) levels, as well as total antioxidant capacity (T-AOC) in the liver of liver fibrosis mice. At the same time, API downregulated the expression of α-smooth muscle actin (α-SMA), Vimentin and Desmin in the liver tissue of mice with liver fibrosis, inhibited the activation of HSC, and reduced collagen deposition. These results indicate that API can inhibit HSC activation and alleviate CCl4 induced liver fibrosis by inhibiting the PKM2-HIF-1α pathway and reducing oxidative stress, laying an important foundation for the development and clinical application of API as a novel drug for treating liver fibrosis.


Subject(s)
Apigenin , Hypoxia-Inducible Factor 1, alpha Subunit , Liver Cirrhosis , Oxidative Stress , Animals , Oxidative Stress/drug effects , Apigenin/pharmacology , Apigenin/therapeutic use , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Mice , Male , Pyruvate Kinase/metabolism , Mice, Inbred C57BL , Carbon Tetrachloride/toxicity , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/pathology , Thyroid Hormone-Binding Proteins , Liver/metabolism , Liver/drug effects , Liver/pathology , Thyroid Hormones/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , ErbB Receptors
12.
Eur Respir J ; 64(1)2024 Jul.
Article in English | MEDLINE | ID: mdl-38387969

ABSTRACT

BACKGROUND: This study aimed to evaluate the longitudinal progression of residual lung abnormalities (ground-glass opacities, reticulation and fibrotic-like changes) and pulmonary function at 3 years following coronavirus disease 2019 (COVID-19). METHODS: This prospective, longitudinal cohort study enrolled COVID-19 survivors who exhibited residual lung abnormalities upon discharge from two hospitals. Follow-up assessments were conducted at 6 months, 12 months, 2 years and 3 years post-discharge, and included pulmonary function tests, 6-min walk distance (6MWD), chest computed tomography (CT) scans and symptom questionnaires. Non-COVID-19 controls were retrospectively recruited for comparative analysis. RESULTS: 728 COVID-19 survivors and 792 controls were included. From 6 months to 3 years, there was a gradual improvement in reduced diffusing capacity of the lung for carbon monoxide (D LCO <80% predicted: 49% versus 38%; p=0.001), 6MWD (496 versus 510 m; p=0.002) and residual lung abnormalities (46% versus 36%; p<0.001), regardless of disease severity. Patients with residual lung abnormalities at 3 years more commonly had respiratory symptoms (32% versus 16%; p<0.001), lower 6MWD (494 versus 510 m; p=0.003) and abnormal D LCO (57% versus 27%; p<0.001) compared with those with complete resolution. Compared with controls, the proportions of D LCO impairment (38% versus 17%; p<0.001) and respiratory symptoms (23% versus 2.2%; p<0.001) were significantly higher in the matched COVID-19 survivors at the 3-year follow-up. CONCLUSIONS: Most patients exhibited improvement in radiological abnormalities and pulmonary function over time following COVID-19. However, more than a third continued to have persistent lung abnormalities at the 3-year mark, which were associated with respiratory symptoms and reduced diffusion capacity.


Subject(s)
COVID-19 , Lung , Respiratory Function Tests , Tomography, X-Ray Computed , Humans , COVID-19/diagnostic imaging , COVID-19/physiopathology , Male , Female , Middle Aged , Longitudinal Studies , Lung/diagnostic imaging , Lung/physiopathology , Prospective Studies , Aged , SARS-CoV-2 , Hospitalization/statistics & numerical data , Adult , Pulmonary Diffusing Capacity , Disease Progression , Walk Test
13.
Small ; 20(32): e2311817, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38461534

ABSTRACT

The atomically dispersed Fe-N4 active site presents enormous potential for various renewable energy conversions. Despite its already remarkable catalytic performance, the local atomic microenvironment of each Fe atom can be regulated to further enhance its efficiency. Herein, a novel conceptual strategy that utilizes a simple salt-template polymerization method to simultaneously adjust the first coordination shell (Fe-N3S1) and second coordination shell (C-S-C, a structure similar to thiophene) of Fe-N4 isolated atoms is proposed. Theoretical studies suggest that this approach can redistribute charge density in the MN4 moiety, lowering the d-band center of the metal site. This weakens the binding of oxygenated intermediates, enhancing oxygen reduction reaction (ORR) activity when compared to only implementing coordination shell regulation. Based on the above discovery, a single Fe atom electrocatalyst with the optimal Fe-N3S1-S active moiety incorporated in nitrogen, sulfur co-doped graphene (Fe-SAc/NSG) is designed and synthesized. The Fe-SAc/NSG catalyst exhibits excellent alkaline ORR activity, exceeding benchmark Pt/C and most Fe-SAc ORR electrocatalysts, as well as superior stability in Zn-air battery. This work aims to pave the way for creating highly active single metal atom catalysts through the localized regulation of their atomic structure.

14.
J Transl Med ; 22(1): 767, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143639

ABSTRACT

Genetic epilepsy with febrile seizures plus (GEFS+) is a genetic epilepsy syndrome characterized by a marked hereditary tendency inherited as an autosomal dominant trait. Patients with GEFS+ may develop typical febrile seizures (FS), while generalized tonic-clonic seizures (GTCSs) with fever commonly occur between 3 months and 6 years of age, which is generally followed by febrile seizure plus (FS+), with or without absence seizures, focal seizures, or GTCSs. GEFS+ exhibits significant genetic heterogeneity, with polymerase chain reaction, exon sequencing, and single nucleotide polymorphism analyses all showing that the occurrence of GEFS+ is mainly related to mutations in the gamma-aminobutyric acid type A receptor gamma 2 subunit (GABRG2) gene. The most common mutations in GABRG2 are separated in large autosomal dominant families, but their pathogenesis remains unclear. The predominant types of GABRG2 mutations include missense (c.983A → T, c.245G → A, p.Met199Val), nonsense (R136*, Q390*, W429*), frameshift (c.1329delC, p.Val462fs*33, p.Pro59fs*12), point (P83S), and splice site (IVS6+2T → G) mutations. All of these mutations types can reduce the function of ion channels on the cell membrane; however, the degree and mechanism underlying these dysfunctions are different and could be linked to the main mechanism of epilepsy. The γ2 subunit plays a special role in receptor trafficking and is closely related to its structural specificity. This review focused on investigating the relationship between GEFS+ and GABRG2 mutation types in recent years, discussing novel aspects deemed to be great significance for clinically accurate diagnosis, anti-epileptic treatment strategies, and new drug development.


Subject(s)
Mutation , Receptors, GABA-A , Seizures, Febrile , Humans , Receptors, GABA-A/genetics , Seizures, Febrile/genetics , Mutation/genetics , Epilepsy/genetics , Animals
15.
J Transl Med ; 22(1): 494, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790051

ABSTRACT

BACKGROUND: Diabetic cardiomyopathy (DCM), a serious complication of diabetes, leads to structural and functional abnormalities of the heart and ultimately evolves to heart failure. IL-37 exerts a substantial influence on the regulation of inflammation and metabolism. Whether IL-37 is involved in DCM is unknown. METHODS: The plasma samples were collected from healthy controls, diabetic patients and DCM patients, and the level of IL-37 and its relationship with heart function were observed. The changes in cardiac function, myocardial fibrosis and mitochondrial injury in DCM mice with or without IL-37 intervention were investigated in vivo. By an in vitro co-culture approach involving HG challenge of cardiomyocytes and fibroblasts, the interaction carried out by cardiomyocytes on fibroblast profibrotic activation was studied. Finally, the possible interactive mediator between cardiomyocytes and fibroblasts was explored, and the intervention role of IL-37 and its relevant molecular mechanisms. RESULTS: We showed that the level of plasma IL-37 in DCM patients was upregulated compared to that in healthy controls and diabetic patients. Both recombinant IL-37 administration or inducing IL-37 expression alleviated cardiac dysfunction and myocardial fibrosis in DCM mice. Mechanically, hyperglycemia impaired mitochondria through SIRT1/AMPK/PGC1α signaling, resulting in significant cardiomyocyte apoptosis and the release of extracellular vesicles containing mtDNA. Fibroblasts then engulfed these mtDNA-enriched vesicles, thereby activating TLR9 signaling and the cGAS-STING pathway to initiate pro-fibrotic process and adverse remodeling. However, the presence of IL-37 ameliorated mitochondrial injury by preserving the activity of SIRT1-AMPK-PGC1α axis, resulting in a reduction in release of mtDNA-enriched vesicle and ultimately attenuating the progression of DCM. CONCLUSIONS: Collectively, our study demonstrates a protective role of IL-37 in DCM, offering a promising therapeutic agent for this disease.


Subject(s)
DNA, Mitochondrial , Diabetic Cardiomyopathies , Fibrosis , Interleukin-1 , Myocytes, Cardiac , Animals , Female , Humans , Male , Mice , Middle Aged , Apoptosis/drug effects , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , DNA, Mitochondrial/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Interleukin-1/metabolism , Mice, Inbred C57BL , Myocardium/pathology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Signal Transduction/drug effects , Sirtuin 1/metabolism
16.
Metab Eng ; 83: 150-159, 2024 May.
Article in English | MEDLINE | ID: mdl-38621518

ABSTRACT

Microbial CO2 fixation into lactic acid (LA) is an important approach for low-carbon biomanufacturing. Engineering microbes to utilize CO2 and sugar as co-substrates can create efficient pathways through input of moderate reducing power to drive CO2 fixation into product. However, to achieve complete conservation of organic carbon, how to engineer the CO2-fixing modules compatible with native central metabolism and merge the processes for improving bioproduction of LA is a big challenge. In this study, we designed and constructed a solar formic acid/pentose (SFAP) pathway in Escherichia coli, which enabled CO2 fixation merging into sugar catabolism to produce LA. In the SFAP pathway, adequate reducing equivalents from formate oxidation drive glucose metabolism shifting from glycolysis to the pentose phosphate pathway. The Rubisco-based CO2 fixation and sequential reduction of C3 intermediates are conducted to produce LA stoichiometrically. CO2 fixation theoretically can bring a 20% increase of LA production compared with sole glucose feedstock. This SFAP pathway in the integration of photoelectrochemical cell and an engineered Escherichia coli opens an efficient way for fixing CO2 into value-added bioproducts.


Subject(s)
Escherichia coli , Formates , Lactic Acid , Metabolic Engineering , Escherichia coli/metabolism , Escherichia coli/genetics , Formates/metabolism , Lactic Acid/metabolism , Lactic Acid/biosynthesis , Carbon Dioxide/metabolism
17.
J Med Virol ; 96(7): e29800, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39014958

ABSTRACT

Globally, the rollout of COVID-19 vaccine had been faced with a significant barrier in the form of vaccine hesitancy. This study adopts a multi-stage perspective to explore the prevalence and determinants of COVID-19 vaccine hesitancy, focusing on their dynamic evolutionary features. Guided by the integrated framework of the 3Cs model (complacency, confidence, and convenience) and the EAH model (environmental, agent, and host), this study conducted three repeated national cross-sectional surveys. These surveys carried out from July 2021 to February 2023 across mainland China, targeted individuals aged 18 and older. They were strategically timed to coincide with three critical vaccination phases: universal coverage (stage 1), partial coverage (stage 2), and key population coverage (stage 3). From 2021 to 2023, the surveys examined sample sizes of 29 925, 6659, and 5407, respectively. The COVID-19 vaccine hesitation rates increased from 8.39% in 2021 to 29.72% in 2023. Urban residency, chronic condition, and low trust in vaccine developer contributed to significant COVID-19 vaccine hesitancy across the pandemic. Negative correlations between the intensity of vaccination policies and vaccine hesitancy, and positive correlations between vaccine hesitancy and long COVID, were confirmed. This study provides insights for designing future effective vaccination programs for emerging vaccine-preventable infectious X diseases.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccination Hesitancy , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , China/epidemiology , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , Cross-Sectional Studies , East Asian People , Surveys and Questionnaires , Vaccination/psychology , Vaccination/statistics & numerical data , Vaccination Hesitancy/statistics & numerical data , Vaccination Hesitancy/psychology
18.
Cardiovasc Diabetol ; 23(1): 233, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965574

ABSTRACT

BACKGROUND: Artificial sweeteners are widely popular worldwide as substitutes for sugar or caloric sweeteners, but there are still several important unknowns and controversies regarding their associations with cardiovascular disease (CVD). We aimed to extensively assess the association and subgroup variability between artificial sweeteners and CVD and CVD mortality in the UK Biobank cohort, and further investigate the modification effects of genetic susceptibility and the mediation role of type 2 diabetes mellitus (T2DM). METHODS: This study included 133,285 participants in the UK Biobank who were free of CVD and diabetes at recruitment. Artificial sweetener intake was obtained from repeated 24-hour diet recalls. Cox proportional hazard models were used to estimate HRs. Genetic predisposition was estimated using the polygenic risk score (PRS). Furthermore, time-dependent mediation was performed. RESULTS: In our study, artificial sweetener intake (each teaspoon increase) was significantly associated with an increased risk of incident overall CVD (HR1.012, 95%CI: 1.008,1.017), coronary artery disease (CAD) (HR: 1.018, 95%CI: 1.001,1.035), peripheral arterial disease (PAD) (HR: 1.035, 95%CI: 1.010,1.061), and marginally significantly associated with heart failure (HF) risk (HR: 1.018, 95%CI: 0.999,1.038). In stratified analyses, non-whites were at greater risk of incident overall CVD from artificial sweetener. People with no obesity (BMI < 30 kg/m2) also tended to be at greater risk of incident CVD from artificial sweetener, although the obesity interaction is not significant. Meanwhile, the CVD risk associated with artificial sweeteners is independent of genetic susceptibility, and no significant interaction exists between genetic susceptibility and artificial sweeteners in terms of either additive or multiplicative effects. Furthermore, our study revealed that the relationship between artificial sweetener intake and overall CVD is significantly mediated, in large part, by prior T2DM (proportion of indirect effect: 70.0%). In specific CVD subtypes (CAD, PAD, and HF), the proportion of indirect effects ranges from 68.2 to 79.9%. CONCLUSIONS: Our findings suggest significant or marginally significant associations between artificial sweeteners and CVD and its subtypes (CAD, PAD, and HF). The associations are independent of genetic predisposition and are mediated primarily by T2DM. Therefore, the large-scale application of artificial sweeteners should be prudent, and the responses of individuals with different characteristics to artificial sweeteners should be better characterized to guide consumers' artificial sweeteners consumption behavior.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Genetic Predisposition to Disease , Non-Nutritive Sweeteners , Adult , Aged , Female , Humans , Male , Middle Aged , Cardiovascular Diseases/mortality , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/diagnosis , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Heart Disease Risk Factors , Incidence , Prognosis , Prospective Studies , Risk Assessment , Risk Factors , UK Biobank , United Kingdom/epidemiology , Non-Nutritive Sweeteners/adverse effects
19.
Toxicol Appl Pharmacol ; 483: 116802, 2024 02.
Article in English | MEDLINE | ID: mdl-38184280

ABSTRACT

The incidence of postoperative myocardial injury remains high as the underlying pathogenesis is still unknown. The dorsal root ganglion (DRG) neurons express transient receptor potential vanilloid 1 (TRPV1) and its downstream effector, calcitonin gene-related peptide (CGRP) participating in transmitting pain signals and cardiac protection. Opioids remain a mainstay therapeutic option for moderate-to-severe pain relief clinically, as a critical component of multimodal postoperative analgesia via intravenous and epidural delivery. Evidence indicates the interaction of opioids and TRPV1 activities in DRG neurons. Here, we verify the potential impairment of myocardial viability by epidural usage of opioids in postoperative analgesia. We found that large dose of epidural morphine (50 µg) significantly worsened the cardiac performance (+dP/dtmax reduction by 11% and -dP/dtmax elevation by 24%, all P < 0.001), the myocardial infarct size (morphine vs Control, 0.54 ± 0.09 IS/AAR vs. 0.23 ± 0.06 IS/AAR, P < 0.001) and reduced CGRP in the myocardium (morphine vs. Control, 9.34 ± 2.24 pg/mg vs. 21.23 ± 4.32 pg/mg, P < 0.001), while induced definite suppression of nociception in the postoperative animals. It was demonstrated that activation of µ-opioid receptor (µ-OPR) induced desensitization of TRPV1 by attenuating phosphorylation of the channel in the dorsal root ganglion neurons, via inhibiting the accumulation of cAMP. CGRP may attenuated the buildup of ROS and the reduction of mitochondrial membrane potential in cardiomyocytes induced by hypoxia/reoxygenation. The findings of this study indicate that epidurally giving large dose of µ-OPR agonist may aggravate myocardial injury by inhibiting the activity of TRPV1/CGRP pathway.


Subject(s)
Analgesics, Opioid , Calcitonin Gene-Related Peptide , Animals , Analgesics, Opioid/toxicity , Calcitonin Gene-Related Peptide/pharmacology , Receptors, Opioid, mu/agonists , Morphine/toxicity , Myocardium/pathology , Pain/drug therapy , Pain/metabolism , Pain/pathology , Myocytes, Cardiac/metabolism , TRPV Cation Channels/metabolism , Ganglia, Spinal
20.
Cancer Cell Int ; 24(1): 78, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374122

ABSTRACT

BACKGROUND: Liver specific genes (LSGs) are crucial for hepatocyte differentiation and maintaining normal liver function. A deep understanding of LSGs and their heterogeneity in hepatocellular carcinoma (HCC) is necessary to provide clues for HCC diagnosis, prognosis, and treatment. METHODS: The bulk and single-cell RNA-seq data of HCC were downloaded from TCGA, ICGC, and GEO databases. Through unsupervised cluster analysis, LSGs-based HCC subtypes were identified in TCGA-HCC samples. The prognostic effects of the subtypes were investigated with survival analyses. With GSVA and Wilcoxon test, the LSGs score, stemness score, aging score, immune score and stromal score of the samples were estimated and compared. The HCC subtype-specific genes were identified. The subtypes and their differences were validated in ICGC-HCC samples. LASSO regression analysis was used for key gene selection and risk model construction for HCC overall survival. The model performance was estimated and validated. The key genes were validated for their heterogeneities in HCC cell lines with quantitative real-time PCR and at single-cell level. Their dysregulations were investigated at protein level. Their correlations with HCC response to anti-cancer drugs were estimated in HCC cell lines. RESULTS: We identified three LSGs-based HCC subtypes with different prognosis, tumor stemness, and aging level. The C1 subtype with low LSGs score and high immune score presented a poor survival, while the C2 subtype with high LSGs score and immune score indicated an enduring survival. Although no significant survival difference between C2 and C3 HCCs was shown, the C2 HCCs presented higher immune score and stroma score. The HCC subtypes and their differences were confirmed in ICGC-HCC dataset. A five-gene prognostic signature for HCC survival was constructed. Its good performance was shown in both the training and validation datasets. The five genes presented significant heterogeneities in different HCC cell lines and hepatocyte subclusters. Their dysregulations were confirmed at protein level. Furthermore, their significant associations with HCC sensitivities to anti-cancer drugs were shown. CONCLUSIONS: LSGs-based HCC subtype classification and the five-gene risk model might provide useful clues not only for HCC stratification and risk prediction, but also for the development of more personalized therapies for effective HCC treatment.

SELECTION OF CITATIONS
SEARCH DETAIL