Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; : e2403070, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770743

ABSTRACT

Among silicon-based anode family for Li-ion battery technology, SiOx, a nonstoichiometric silicon suboxide holds the potential for significant near-term commercial impact. In this context, this study mainly focuses on demonstrating an innovative SiOx@C anode design that adopts a pre-lithiation strategy based on in situ pyrolysis of Li-salt of silsesquioxane trisilanolate without the need for lithium metal or active lithium compounds and creates dual carbon encapsulation of SiOC nanodomains by simply one-step thermal treatment. This ingenious design ensures the pre-lithiation process and pre-lithiation material with high-environmental stability. Moreover, phenyl-rich organosiloxane clusters and polyacrylonitrile polymers are expected to serve as internal and external carbon source, respectively. The formation of an interpenetrating and continuous carbon matrix network would not only synergistically offer an improved electrochemical accessibility of active sites but also alleviate the volume expansion effect during cycling. As a result, this new type of anode delivered a high reversible capacity, remarkable cycle stability as well as excellent high-rate capability. In particular, the L2-SiOx@C material has a high initial coulomb efficienc of 80.4% and, after 500 cycles, a capacity retention as high as 97.5% at 0.5 A g-1 with a reversible specific capacity of 654.5 mA h g-1.

2.
J Colloid Interface Sci ; 647: 134-141, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37247477

ABSTRACT

In spite of the fact that lithium metal batteries (LMBs) facilitate the diversification of energy storage technologies, their electrochemical reversibility and stability have long been constrained by side reactions and lithium dendrite problems. While single-ion conducting polymer electrolytes (SICPEs) possess unique advantages of suppressing Li dendrite growth, they deal with difficulties in practical applications due to their slow ion transport in general application scenarios at âˆ¼25 °C. In this study, we develop novel bifunctional lithium salts with negative sulfonylimide (-SO2N(-)SO2-) anions mounted between two styrene reactive groups, which is capable of constructing 3D cross-linked networks with multiscale reticulated ion nanochannels, resulting in the uniform and rapid distribution of Li+ ions in the crosslinked electrolyte. To verify the feasibility of our strategy, we designed PVDF-HFP-based SICPEs and the obtained electrolyte exhibits high thermal stability, outstanding Li+ transference number (0.95), pleasing ionic conductivity (0.722 mS cm-1), and broad chemical window (greater than5.85 V) at ambient temperature. As a result of the electrolyte structural merits, the Li||LFP cells displayed excellent cycling stability (96.4% reversible capacities after 300 cycles at 0.2C) without additional auxiliary heating. This ingenious strategy is expected to providing a new perspective for advanced performance and high safety LMBs.

3.
Food Sci Nutr ; 8(11): 5767-5775, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33282229

ABSTRACT

The effects of different pretreatments on the vitamin C content of peeled fresh potato, the drying characteristics, and several quality attributes of dehydrated potatoes were investigated. Citric acid pretreatment (0.1%-0.3%, 10-30 min), steam blanching (100ºC, 1-2 min), and water blanching (95°C, 1-2 min) were found to have no obvious effect on the drying rate of potatoes, whereas temperature was the main influencing factor. In terms of quality of dehydrated diced potato, 20 min of citric acid pretreatment resulted in the highest vitamin C retention and better color. Furthermore, dehydrated potato pretreated with citric acid all showed similar dynamic moisture adsorption curves, namely type II sorption isotherm. The moisture adsorption curves can be well fitted using the Guggenheim-Anderson-deBoer model with R 2 higher than .97.

SELECTION OF CITATIONS
SEARCH DETAIL