Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(23): e2219419120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252972

ABSTRACT

Prolyl hydroxylase domain (PHD) enzymes change HIF activity according to oxygen signal; whether it is regulated by other physiological conditions remains largely unknown. Here, we report that PHD3 is induced by fasting and regulates hepatic gluconeogenesis through interaction and hydroxylation of CRTC2. Pro129 and Pro615 hydroxylation of CRTC2 following PHD3 activation is necessary for its association with cAMP-response element binding protein (CREB) and nuclear translocation, and enhanced binding to promoters of gluconeogenic genes by fasting or forskolin. CRTC2 hydroxylation-stimulated gluconeogenic gene expression is independent of SIK-mediated phosphorylation of CRTC2. Liver-specific knockout of PHD3 (PHD3 LKO) or prolyl hydroxylase-deficient knockin mice (PHD3 KI) show attenuated fasting gluconeogenic genes, glycemia, and hepatic capacity to produce glucose during fasting or fed with high-fat, high-sucrose diet. Importantly, Pro615 hydroxylation of CRTC2 by PHD3 is increased in livers of fasted mice, diet-induced insulin resistance or genetically obese ob/ob mice, and humans with diabetes. These findings increase our understanding of molecular mechanisms linking protein hydroxylation to gluconeogenesis and may offer therapeutic potential for treating excessive gluconeogenesis, hyperglycemia, and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Humans , Mice , Animals , Glucose/metabolism , Proline/metabolism , Hydroxylation , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Gluconeogenesis/physiology , Prolyl Hydroxylases/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL
2.
Blood ; 141(23): 2824-2840, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36696631

ABSTRACT

Peripheral T-cell lymphomas (PTCLs), especially angioimmunoblastic and follicular TCLs, have a dismal prognosis because of the lack of efficient therapies, and patients' symptoms are often dominated by an inflammatory phenotype, including fever, night sweats, weight loss, and skin rash. In this study, we investigated the role of inflammatory granulocytes and activated cytokine signaling on T-cell follicular helper-type PTCL (TFH-PTCL) disease progression and symptoms. We showed that ITK-SYK-driven murine PTCLs and primary human TFH-PTCL xenografts both induced inflammation in mice, including murine neutrophil expansion and massive cytokine release. Granulocyte/lymphoma interactions were mediated by positive autoregulatory cytokine loops involving interferon gamma (CD4+ malignant T cells) and interleukin 6 (IL-6; activated granulocytes), ultimately inducing broad JAK activation (JAK1/2/3 and TYK2) in both cell types. Inflammatory granulocyte depletion via antibodies (Ly6G), genetic granulocyte depletion (LyzM-Cre/MCL1flox/flox), or IL-6 deletion within microenvironmental cells blocked inflammatory symptoms, reduced lymphoma infiltration, and enhanced mouse survival. Furthermore, unselective JAK inhibitors (ruxolitinib) inhibited both TCL progression and granulocyte activation in various PTCL mouse models. Our results support the important role of granulocyte-driven inflammation, cytokine-induced granulocyte/CD4+ TCL interactions, and an intact JAK/STAT signaling pathway for TFH-PTCL development and also support broad JAK inhibition as an effective treatment strategy in early disease stages.


Subject(s)
Lymphoma, T-Cell, Peripheral , Lymphoma, T-Cell , Humans , Animals , Mice , Lymphoma, T-Cell, Peripheral/pathology , Interleukin-6 , Lymphoma, T-Cell/pathology , Granulocytes/pathology , Inflammation
3.
Proc Natl Acad Sci U S A ; 119(10): e2107357119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238644

ABSTRACT

The Food and Drug Administration­approved drug sirolimus, which inhibits mechanistic target of rapamycin (mTOR), is the leading candidate for targeting aging in rodents and humans. We previously demonstrated that sirolimus could treat ARHL in mice. In this study, we further demonstrate that sirolimus protects mice against cocaine-induced hearing loss. However, using efficacy and safety tests, we discovered that mice developed substantial hearing loss when administered high doses of sirolimus. Using pharmacological and genetic interventions in murine models, we demonstrate that the inactivation of mTORC2 is the major driver underlying hearing loss. Mechanistically, mTORC2 exerts its effects primarily through phosphorylating in the AKT/PKB signaling pathway, and ablation of P53 activity greatly attenuated the severity of the hearing phenotype in mTORC2-deficient mice. We also found that the selective activation of mTORC2 could protect mice from acoustic trauma and cisplatin-induced ototoxicity. Thus, in this study, we discover a function of mTORC2 and suggest that its therapeutic activation could represent a potentially effective and promising strategy to prevent sensorineural hearing loss. More importantly, we elucidate the side effects of sirolimus and provide an evaluation criterion for the rational use of this drug in a clinical setting.


Subject(s)
Hearing Loss, Sensorineural/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , Signal Transduction , Animals , Disease Models, Animal , Hearing Loss, Sensorineural/chemically induced , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/prevention & control , Mechanistic Target of Rapamycin Complex 2/genetics , Mice , Mice, Knockout , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/genetics , Sirolimus/adverse effects , Sirolimus/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
4.
J Transl Med ; 22(1): 157, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38365777

ABSTRACT

UBXD family (UBXDF), a group of proteins containing ubiquitin regulatory X (UBX) domains, play a crucial role in the imbalance of proliferation and apoptotic in cancer. In this study, we summarised bioinformatics proof on multi-omics databases and literature on UBXDF's effects on cancer. Bioinformatics analysis revealed that Fas-associated factor 1 (FAF1) has the largest number of gene alterations in the UBXD family and has been linked to survival and cancer progression in many cancers. UBXDF may affect tumour microenvironment (TME) and drugtherapy and should be investigated in the future. We also summarised the experimental evidence of the mechanism of UBXDF in cancer, both in vitro and in vivo, as well as its application in clinical and targeted drugs. We compared bioinformatics and literature to provide a multi-omics insight into UBXDF in cancers, review proof and mechanism of UBXDF effects on cancers, and prospect future research directions in-depth. We hope that this paper will be helpful for direct cancer-related UBXDF studies.


Subject(s)
Neoplasms , Ubiquitin , Humans , Ubiquitin/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Transcription Factors/metabolism , Neoplasms/genetics , Neoplasms/therapy , Computational Biology , Tumor Microenvironment
5.
Hepatology ; 78(5): 1492-1505, 2023 11 01.
Article in English | MEDLINE | ID: mdl-36680394

ABSTRACT

BACKGROUND AND AIMS: NASH has emerged as a leading cause of chronic liver disease. However, the mechanisms that govern NASH fibrosis remain largely unknown. CREBZF is a CREB/ATF bZIP transcription factor that causes hepatic steatosis and metabolic defects in obesity. APPROACH AND RESULTS: Here, we show that CREBZF is a key mechanism of liver fibrosis checkpoint that promotes hepatocyte injury and exacerbates diet-induced NASH in mice. CREBZF deficiency attenuated liver injury, fibrosis, and inflammation in diet-induced mouse models of NASH. CREBZF increases HSC activation and fibrosis in a hepatocyte-autonomous manner by stimulating an extracellular matrix protein osteopontin, a key regulator of fibrosis. The inhibition of miR-6964-3p mediates CREBZF-induced production and secretion of osteopontin in hepatocytes. Adeno-associated virus -mediated rescue of osteopontin restored HSC activation, liver fibrosis, and NASH progression in CREBZF-deficient mice. Importantly, expression levels of CREBZF are increased in livers of diet-induced NASH mouse models and humans with NASH. CONCLUSIONS: Osteopontin signaling by CREBZF represents a previously unrecognized intrahepatic mechanism that triggers liver fibrosis and contributes to the severity of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Osteopontin , Animals , Humans , Mice , Basic-Leucine Zipper Transcription Factors/metabolism , Disease Models, Animal , Fatty Liver/genetics , Fatty Liver/metabolism , Fibrosis , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Osteopontin/genetics , Osteopontin/metabolism
6.
BMC Musculoskelet Disord ; 25(1): 397, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773452

ABSTRACT

BACKGROUND: This study aimed to evaluate the biomechanical effects of reinserted or revised subaxial cervical vertebral screws. METHODS: The first part aimed to gauge the maximum insertional torque (MIT) of 30 subaxial cervical vertebrae outfitted with 4.0-mm titanium screws. A reinsertion group was created wherein a screw was wholly removed and replaced along the same trajectory to test its maximum pullout strength (MPOS). A control group was also implemented. The second part involved implanting 4.0-mm titanium screws into 20 subaxial cervical vertebrae, testing them to failure, and then reinserting 4.5-mm revision screws along the same path to determine and compare the MIT and MPOS between the test and revision groups. RESULTS: Part I findings: No significant difference was observed in the initial insertion's maximum insertion torque (MIT) and maximum pull-out strength (MPOS) between the control and reinsertion groups. However, the MIT of the reinsertion group was substantially decreased compared to the first insertion. Moderate to high correlations were observed between the MIT and MPOS in both groups, as well as between the MIT of the first and second screw in the reinsertion group. Part II, the MIT and MPOS of the screw in the test group showed a strong correlation, while a modest correlation was observed for the revision screw used in failed cervical vertebrae screw. Additionally, the MPOS of the screw in the test group was significantly higher than that of the revision screw group. CONCLUSION: This study suggests that reinsertion of subaxial cervical vertebrae screws along the same trajectory is a viable option that does not significantly affect fixation stability. However, the use of 4.5-mm revision screws is inadequate for failed fixation cases with 4.0-mm cervical vertebral screws.


Subject(s)
Bone Screws , Cervical Vertebrae , Torque , Cervical Vertebrae/surgery , Cervical Vertebrae/diagnostic imaging , Humans , Biomechanical Phenomena , Male , Female , Reoperation , Spinal Fusion/instrumentation , Spinal Fusion/methods , Middle Aged , Adult , Aged , Titanium , Materials Testing
7.
Toxicol Mech Methods ; 33(1): 65-72, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35655407

ABSTRACT

As a traditional Chinese medicine, strychnos alkaloids have wide effects including antitumor, analgesic, and anti-inflammatory. However, the therapeutic window of strychnos alkaloids is quite narrow due to potential neurotoxicity. Therefore, it is necessary to explore some efficient biomarkers to identify and predict the neurotoxicity induced by strychnos alkaloids and find a therapy to prevent the neurotoxicity of strychnos alkaloids. Based on the previous studies of our research team, 21 endogenous substances related to neurotoxicity were monitored in rats' serum with HPLC-MS/MS and ELISA. Starting from these fundamentals, a Lasso-Logistic regression model was used to select efficient biomarkers from 21 endogenous substances to predict brain injury and verify the neuroprotective effect of peonies. Under the processing of the Lasso-Logistic regression model, 12 biomarkers were identified from 21 endogenous substances to predict the neurotoxicity induced by strychnos alkaloids. At the same time, the neuroprotective effect of peonies was further confirmed by evaluating the level of 12 biomarkers. The results indicated that the development of the Lasso-Logistic regression model would provide a new, simple and efficient method for the prediction and diagnosis of the neurotoxicity induced by strychnos alkaloids.


Subject(s)
Alkaloids , Neuroprotective Agents , Strychnos , Rats , Animals , Tandem Mass Spectrometry , Neuroprotective Agents/pharmacology , Logistic Models , Biomarkers
8.
Diabetes Metab Res Rev ; 38(8): e3570, 2022 11.
Article in English | MEDLINE | ID: mdl-35938229

ABSTRACT

AIMS: The study aimed to develop a novel noninvasive model to detect advanced fibrosis based on routinely available clinical and laboratory tests. MATERIALS AND METHODS: A total of 309 patients who underwent liver biopsy were randomly divided into the estimation group (n = 201) and validation group (n = 108). The model was developed using multiple regression analysis in the estimation group and further verified in the validation group. Diagnostic accuracy was evaluated using the receiver operating characteristic (ROC) curve. RESULTS: The model was named NAFLD Fibrosis Index (NFI): -10.844 + 0.046 × age - 0.01 × platelet count + 0.19 × 2h postprandial plasma glucose (PG) + 0.294 × conjugated bilirubin - 0.015 × ALT + 0.039 × AST + 0.109 × total iron binding capacity -0.033 × parathyroid hormone (PTH). The area under the ROC curve (AUC) of NFI was 0.86 (95% CI: 0.79-0.93, p < 0.001) in the estimation group and 0.80 (95% CI: 0.69-0.91, p < 0.001) in the validation group, higher than NFS, FIB4, APRI, and BARD, and similar to FibroScan (NFI AUC = 0.77, 95% CI: 0.66-0.89, p = 0.001 vs. FibroScan AUC = 0.76, 95% CI: 0.62-0.90, p = 0.002). By applying the low cut-off value (-2.756), advanced fibrosis could be excluded among 49.3% and 48% of patients in the estimation group (sensitivity: 93.1%, NPV: 97.9%, specificity: 55.2%, and PPV: 26.0%) and validation group (sensitivity: 81.3%, NPV: 94.2%, specificity: 53.3%, and PPV: 23.2%), respectively, allowing them to avoid liver biopsy. CONCLUSIONS: The study has established a novel model for advanced fibrosis, the diagnostic accuracy of which is superior to the current clinical scoring systems and is similar to FibroScan.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Infant, Newborn , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Aspartate Aminotransferases , Alanine Transaminase , Liver Cirrhosis/pathology , Predictive Value of Tests , Severity of Illness Index , ROC Curve , Biopsy , Liver/diagnostic imaging
9.
Crit Rev Food Sci Nutr ; : 1-36, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36123805

ABSTRACT

The consumption of fresh fruits and vegetables is restricted by the susceptibility of fresh produce to deterioration caused by postharvest physiological and metabolic activities. Developing efficient preservation strategies is thus among the most important scientific issues to be urgently addressed in the field of food science. The incorporation of active agents into a polymer matrix to prepare biodegradable active packaging is being increasingly explored to mitigate the postharvest spoilage of fruits and vegetables during storage. This paper reviews the composition of biodegradable polymers and the methods used to prepare biodegradable active packaging. In addition, the interactions between bioactive ingredients and biodegradable polymers that can lead to plasticizing or cross-linking effects are summarized. Furthermore, the applications of biodegradable active (i.e., antibacterial, antioxidant, ethylene removing, barrier, and modified atmosphere) packaging in the preservation of fruits and vegetables are illustrated. These films may increase sensory acceptability, improve quality, and prolong the shelf life of postharvest products. Finally, the challenges and trends of biodegradable active packaging in the preservation of fruits and vegetables are discussed. This review aims to provide new ideas and insights for developing novel biodegradable active packaging materials and their practical application in the preservation of postharvest fruits and vegetables.

10.
BMC Musculoskelet Disord ; 23(1): 160, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177064

ABSTRACT

BACKGROUND: To retrospectively compare clinical and radiological results of long-segment fixation (LF) and six-screw short-segment fixation combined with kyphoplasty (SSFK) for osteoporotic thoracolumbar burst fracture (OTBF). METHODS: Forty patients affected by OTBF with mean age of 61.85 years were included in this study. The mean follow-up period was 13.63 months. Twenty-four patients were treated by SSFK, and 16 patients were treated by LF. Clinical outcomes, radiological parameters and complications were assessed and compared. RESULTS: The mean operative time and blood loss were 89.71 ± 7.62 min and 143.75 ± 42.51 ml for SSFK group, respectively; 111.69 ± 12.25 min (P < 0.01) and 259.38 ± 49.05 ml (P < 0.01) for LF group, respectively. The two groups were similar in terms of preoperative radiological and clinical results. Compared with preoperative values, both groups achieved significant improvement in terms of VAS, ODI, Cobb angle and anterior vertebral body height (AVH) ratio at final follow-up. However, during the follow-up period, significant loss of Cobb angle and AVH ratio were observed for both groups. Five cases (20.83%) of asymptomatic cement leakage were observed in SSFK group. One case of implant failure and two cases of adjacent or non-adjacent vertebral fractures were observed in LF group. CONCLUSIONS: Both SSFK and LF are safe and effective for treatment of OTBF. Comparatively, SSFK is less invasive and can preserve more motion segments, which may be a more valuable surgical option in some elderly patients. A high-quality randomized controlled study is required to confirm our finding in the future.


Subject(s)
Kyphoplasty , Osteoporotic Fractures , Pedicle Screws , Spinal Fractures , Aged , Fracture Fixation, Internal/methods , Humans , Kyphoplasty/adverse effects , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/injuries , Lumbar Vertebrae/surgery , Middle Aged , Osteoporotic Fractures/complications , Osteoporotic Fractures/diagnostic imaging , Osteoporotic Fractures/surgery , Pedicle Screws/adverse effects , Retrospective Studies , Spinal Fractures/diagnostic imaging , Spinal Fractures/etiology , Spinal Fractures/surgery , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/injuries , Thoracic Vertebrae/surgery , Treatment Outcome
11.
Biochem Biophys Res Commun ; 548: 7-13, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33631677

ABSTRACT

Lipocalin family members, LCN8 and LCN9, are specifically expressed in the initial segment of mouse caput epididymis. However, the biological functions of the molecules in vivo are yet to be clarified. In this study, CRISPR/Cas9 technology was used to generate Lcn8 and Lcn9 knockout mice, respectively. Lcn8-/- and Lcn9-/- male mice showed normal spermatogenesis and fertility. In the cauda epididymis of Lcn8-/- male mice, morphologically abnormal sperm was increased significantly, the proportion of progressive motility sperm was decreased, the proportion of immobilized sperm was elevated, and the sperm spontaneous acrosome reaction (AR) frequency was increased. Conversely, the knockout of Lcn9 did not have any effect on the ratio of morphologically abnormal sperm, sperm motility, and sperm spontaneous AR frequencies. These results demonstrated the role of LCN8 in maintaining the sperm quality in the epididymis, and suggested that the deficiency of LCN8 leads to epididymal sperm maturation defects.


Subject(s)
Epididymis/pathology , Lipocalins/metabolism , Sperm Maturation/physiology , Animals , Base Sequence , CRISPR-Cas Systems/genetics , Fertility , Male , Mice, Inbred C57BL , Spermatogenesis , Spermatozoa
12.
Mol Biol Rep ; 48(8): 6015-6023, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34328598

ABSTRACT

BACKGROUND: Sperm acquire the ability to fertilize ova through a complex process of epididymal maturation. To identify the functions of genes expressed in the proximal epididymis, mouse models specific to this region are needed. METHODS AND RESULTS: A Lcn8-Cre knock-in mouse line was generated using CRISPR/Cas9 technology. A 37 bp coding sequence of Lcn8 from the ATG start codon was replaced by an NLS-Cre-polyA cassette, resulting in Cre expression and the absence of Lcn8. Epididymal initial segment-specific Cre expression was identified using RT-PCR and western blotting, and the spatial-temporal Cre activity was further confirmed by using the Rosa26tdTomato reporter mice. Immunofluorescence staining showed that active Cre recombinase was present in the principal cells. Histological analyses of sperm and epididymides, and the four-month mating tests, were used to confirm that Cre expression did not affect normal development and male fecundity. CONCLUSIONS: The novel Lcn8-Cre mice can be used to establish epididymal initial segment-specific conditional knock-out mouse models.


Subject(s)
Epididymis/metabolism , Lipocalins/genetics , Spermatozoa/metabolism , Animals , Genital Diseases, Male , Integrases , Lipocalins/metabolism , Male , Mice , Mice, Inbred C57BL , Testis/metabolism
13.
Lipids Health Dis ; 20(1): 27, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33757528

ABSTRACT

BACKGROUND: The performance of liver stiffness measurements (LSMs) obtained using FibroScan can be affected by several factors, and cut-off values are different for fibrosis caused by various aetiologies. The study aims to evaluate the diagnostic accuracy of LSM in nonalcoholic fatty liver disease (NAFLD) patients with abnormal glucose metabolism and investigate whether the LSM value would be affected by metabolic indicators. METHODS: The study involved 91 NAFLD patients with abnormal glucose metabolism who underwent liver biopsy. The diagnostic accuracy of LSM value was evaluated by the receiver operator characteristic (ROC) curves, with the biopsy results taken as the gold standard. Multivariate linear regression and subgroup analysis were performed to determine the correlated indicators. RESULTS: The areas under the ROC curves (AUROCs) of LSM values for detecting fibrosis stage ≥1, 2, 3 and 4 were 0.793 (95% confidence interval [CI]: 0.695-0.871), 0.764 (95% CI: 0.663-0.846), 0.837 (95% CI: 0.744-0.906) and 0.902 (95% CI: 0.822-0.955), with cut-off values of 6.3, 7.6, 8.3 and 13.8 kPa, respectively. Multivariate linear regression demonstrated that haemoglobin A1c (HbA1c, ß = 0.205, P = 0.026) and alanine aminotransferase (ALT, ß = 0.192, P = 0.047) were independently associated with the LSM value after adjustment for fibrosis stage, ballooning and inflammation grade from liver biopsy. Subgroup analysis demonstrated that LSM values were slightly higher in patients with HbA1c ≥7% than in those with HbA1c < 7% and in patients with body mass index (BMI) ≥30 kg/m2 than in those with BMI < 30 kg/m2. CONCLUSIONS: FibroScan was valuable for the evaluation of liver fibrosis in NAFLD patients with abnormal glucose metabolism. FibroScan is recommended to evaluate severe fibrosis, especially to exclude advanced fibrosis. Glucose metabolism state may affect LSM values.


Subject(s)
Glucose/metabolism , Liver/metabolism , Liver/physiopathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/physiopathology , Adult , Biomechanical Phenomena , Female , Humans , Linear Models , Liver/pathology , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Liver Cirrhosis/physiopathology , Male , Middle Aged , Multivariate Analysis , Non-alcoholic Fatty Liver Disease/complications , Sensitivity and Specificity
14.
J Sci Food Agric ; 101(3): 1150-1160, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32789860

ABSTRACT

BACKGROUND: With an increasing demand for edible protein, research on new extraction methods is attracting more attention. The effects of such methods on functional properties are important. The present study aimed to evaluate the effect of ultrasound-assisted extraction on the extraction efficiency, structure, and the emulsifying properties of peanut protein isolate (PPI). RESULTS: Ultrasound-assisted extraction significantly improved extraction efficiency and shortened the processing time. The nanostructure, molecular weight distribution, and particle size of PPI were altered by ultrasound-assisted extraction. The emulsifying properties of the PPI from ultrasound-assisted extraction were significantly improved compared with alkaline extraction. Peanut protein isolate had lower molecular weight fractions, higher levels of hydrophobic amino acids, and the highest fluorescence intensity with ultrasound intensity, temperature, and time of 3.17 W cm-3 , 35 °C, and 30 min, respectively. These contributed to the higher emulsifying activity index and emulsifying stability index of the PPI emulsions. The uniform distribution of droplets and smaller particle size of the PPI emulsions was also observed. CONCLUSION: The results suggested that ultrasound can be used to induce the conformational changes to modify the interfacial association between protein-oil phases, thereby improving the emulsifying properties of peanut protein. © 2020 Society of Chemical Industry.


Subject(s)
Arachis/chemistry , Emulsifying Agents/chemistry , Emulsifying Agents/isolation & purification , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Ultrasonics/methods , Emulsions/chemistry , Emulsions/isolation & purification , Hydrophobic and Hydrophilic Interactions , Molecular Weight , Particle Size , Solubility , Ultrasonics/instrumentation
15.
BMC Plant Biol ; 20(1): 565, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317475

ABSTRACT

BACKGROUND: Environmental lodging stress, which is a result of numerous factors, is characterized by uncertainty. However, several studies related to lodging in cereal crops have reported that lodging in the Hippeastrum rutilum environment is very rare. Hippeastrum rutilum is a garden flower with high ornamental value and abundant germplasm resources. Under past cultivation practices, it was found that the plant types of 'Red Lion', with red flowers, and 'Apple Blossom', with pink flowers, are quite different. The leaves of 'Red Lion' are upright, while the leaves of 'Apple Blossom' show lodging, which seriously affects its ornamental value. The aims of this study were to compare the differences between the two varieties with leaf lodging and upright leaves according to morphological and physiological attributes. In this study, karyotype analysis and phenotypic morphological and physiological characteristics were compared to explore the differences between the two plant types. RESULTS: The karyotype analysis of the two cultivars showed that their chromosome types were both tetraploid plants. The results showed that the lignin content in the leaves of 'Red Lion' was high, the cross-sectional structure of the leaf vascular bundle was more stable, and the chlorophyll content was high. In addition, significantly less energy was transferred to the electron transport chain (ETR) during the photoreaction. Similarly, the results regarding the maximum photosynthetic rate (Fv/Fm), nonphotochemical quenching (NPQ) and effective quantum yield of photosystem II photochemistry (△F/Fm') all indicated that the photosynthetic capacity of "Red Lion" was greater than that of "Apple Blossom", which was affected by leaf lodging. The size of the leaves was significantly smaller, and the leaf sag angle, leaf width, and leaf tip angle presented significantly lower values in 'Red Lion' than in 'Apple Blossom', which exhibits leaf sag. The difference in these factors may be the reason for the different phenotypes of the two cultivars. CONCLUSION: The results of this study proved that lodging affects the photosynthetic capacity of Hippeastrum rutilum and revealed some indexes that might be related to leaf lodging, laying a theoretical foundation for cultivating and improving new varieties.


Subject(s)
Amaryllidaceae/anatomy & histology , Amaryllidaceae/physiology , Amaryllidaceae/genetics , Plant Breeding , Plant Leaves/anatomy & histology , Plant Leaves/physiology
16.
Cell Commun Signal ; 18(1): 112, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32665011

ABSTRACT

BACKGROUND: Many cancers evade immune surveillance by overexpressing PD-L1. PD-L1 interacted with its receptor PD-1, resulting in reduction of T cell proliferation and activation and thereafter cancer cell death mediated by T-lymphocyte. Understanding the mechanisms that regulate PD-L1 was of vital importance for immune checkpoint blockade therapy (ICBT). METHODS: Human non-small cell lung cancer cells and 293FT cells were used to investigate the function of USP22 upon PD-L1 and CSN5 by WB, Immunoprecipitation, Immunofluorescence and Flow cytometry analysis. B16-F10 cells were used to explore the role of USP22 on tumorigenesis and T cell cytotoxicity. The relationship between USP22 and PD-L1 expression was investigated by Immunohistochemistry analysis in human non-small cell lung cancer samples. RESULTS: Our data showed that USP22 interacted with PD-L1 and promoted its stability. USP22 deubiquitinated PD-L1 and inhibited its proteasome degradation. Moreover, USP22 also interacted with CSN5 and stabilized CSN5 through deubiquitination. Either USP22 or CSN5 could facilitate the interaction of PD-L1 with the other one. Furthermore, USP22 removed K6, K11, K27, K29, K33 and K63-linked ubiquitin chain of both CSN5 and PD-L1. In addition, USP22 depletion inhibited tumorigenesis and promoted T cell cytotoxicity. Besides, USP22 expression positively correlated with PD-L1 expression in human non-small cell lung cancer samples. CONCLUSIONS: Here, we suggested that USP22 is a new regulator for PD-L1. On the one hand, USP22 could directly regulate PD-L1 stability through deubiquitination. On the other hand, USP22 regulated PD-L1 protein level through USP22-CSN5-PD-L1 axis. In addition, USP22 depletion inhibited tumorigenesis and promoted T cell cytotoxicity. Besides, USP22 expression positively correlated with PD-L1 expression in human non-small cell lung cancer samples. Together, we identified a new regulator of PD-L1 and characterized the important role of USP22 in PD-L1 mediated immune evasion. Targeting USP22 might be a new solution to ICBT. Video abstract.


Subject(s)
B7-H1 Antigen/metabolism , Proteolysis , Ubiquitin Thiolesterase/metabolism , Animals , COP9 Signalosome Complex/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cytotoxicity, Immunologic , HEK293 Cells , Humans , Immunosuppression Therapy , Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/metabolism , Mice , Peptide Hydrolases/metabolism , Protein Binding , Protein Stability , T-Lymphocytes/immunology , Ubiquitination
17.
Chem Pharm Bull (Tokyo) ; 68(1): 64-69, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31708557

ABSTRACT

Invasive fungal disease constitutes a growing health problem and development of novel antifungal drugs with high potency and selectivity are in an urgent need. In this study, a novel series of triazole derivatives containing different ester skeleton were designed and synthesized. Microdilution broth method was used to investigate antifungal activity. Significant inhibitory activity of compounds 5c, 5d, 5e, 5f, 5m and 5n was evaluated against the Candida albicans (I), Candida albicans clinical isolate (II), Candida glabrata clinical isolate (I), and Candida glabrata (II) with minimum inhibitory concentrations (MIC80) values ranging from 2 to 16 µg/mL. Notably, compounds 5e and 5n showed the best inhibition against Candida albicans (II), Candida glabrata (I), and Candida glabrata (II) at the concentrations of 2 and 8 µg/mL, respectively. Molecular docking study revealed that the target compounds interacted with CYP51 mainly through hydrophobic and van der Waals interactions. The results indicated that these novel triazole derivatives could serve as promising leads for development of antifungal agents.


Subject(s)
Antifungal Agents/chemical synthesis , Drug Design , Molecular Docking Simulation , Triazoles/chemistry , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Binding Sites , Candida/drug effects , Catalytic Domain , Esters/chemistry , Microbial Sensitivity Tests , Static Electricity , Sterol 14-Demethylase/chemistry , Sterol 14-Demethylase/metabolism , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/pharmacology
18.
Exp Cell Res ; 370(2): 579-590, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30026030

ABSTRACT

The stimulatory heterotrimeric Gs protein alpha subunit (Gsα) is a ubiquitous guanine nucleotide-binding protein that regulates the intracellular cAMP signaling pathway and consequently participates in a wide range of biological events. In the reproductive system, despite Gsα being associated with oocyte meiotic arrest in vitro, the exact role of Gsα in female fertility in vivo remains largely unknown. Here, we generated oocyte-specific Gsα knockout mice by using the Cre/LoxP system. We observed that the deletion of Gsα caused complete female infertility. Exclusion of post-implantation abnormalities, oogenesis, fertilization, and early embryo development was subsequently monitored; meiosis in Gsα-deficient oocytes precociously resumed in only 43% of antral follicles from mutant mice, indicating that alteration of meiotic pause was not the key factor in infertility. Ovulation process and number were normal, but the rate of morphological abnormal oocytes was apparently increased; spindle organization, fertilization, and early embryo development were impaired. Furthermore, the level of ROS (reactive oxygen species) and the mitochondrial aggregation increased, and antioxidant glutathione (GSH) content, ATP level, mtDNA copy number, and mitochondrial membrane potential decreased in Gsα-deficient oocytes. GV oocytes from mutant mice showed early-stage apoptosis. Meanwhile, the Gsα knockout-induced decline in oocyte quality and low developmental potential was partially rescued by antioxidant supplementation. To sum up, our results are the first to reveal that the profile of Gsα oocyte-specific deletion caused female infertility in vivo, and oxidative stress plays an important role in this event.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Oocytes/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Animals , Antioxidants/metabolism , Apoptosis/physiology , Embryonic Development/physiology , Meiosis/physiology , Mice, Transgenic , Mitochondria/metabolism
19.
Lipids Health Dis ; 18(1): 197, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31729980

ABSTRACT

BACKGROUND: Excessive intrahepatic lipid accumulation is the major characteristic of nonalcoholic fatty liver disease (NAFLD). We sought to identify the mechanisms involved in hepatic triglyceride (TG) homeostasis. Forkhead box class O (FoxO) transcription factors have been shown to play an important role in hepatic metabolism. However, little is known about the effect of FoxO3 on hepatic TG metabolism. METHODS: Liver biopsy samples from patients with NALFD and liver tissues from high glucose and high sucrose (HFHS) fed mice, ob/ob mice and db/db mice were collected for protein and mRNA analysis. HepG2 cells were transfected with small interfering RNA to mediate FoxO3 knockdown, or adenovirus and plasmid to mediate FoxO3 overexpression. FoxO3-cDNA was delivered by adenovirus to the liver of C57BL/6 J male mice on a chow diet or on a high-fat diet, followed by determination of hepatic lipid metabolism. Sterol regulatory element-binding protein 1c (SREBP1c) luciferase reporter gene plasmid was co-transfected into HepG2 cells with FoxO3 overexpression plasmid. RESULTS: FoxO3 expression was increased in the livers of HFHS mice, ob/ob mice, db/db mice and patients with NAFLD. Knockdown of FoxO3 reduced whereas overexpression of FoxO3 increased cellular TG concentrations in HepG2 cells. FoxO3 gain-of-function caused hepatic TG deposition in C57BL/6 J mice on a chow diet and aggravated hepatic steatosis when fed a high-fat diet. Analysis of the transcripts established the increased expression of genes related to TG synthesis, including SREBP1c, SCD1, FAS, ACC1, GPAM and DGAT2 in mouse liver. Mechanistically, overexpression of FoxO3 stimulated the expression of SREBP1c, whereas knockdown of FoxO3 inhibited the expression of SREBP1c. Luciferase reporter assays showed that SREBP1c regulated the transcriptional activity of the SREBP1c promoter. CONCLUSIONS: FoxO3 promotes the transcriptional activity of the SREBP1c promoter, thus leading to increased TG synthesis and hepatic TG accumulation.


Subject(s)
Forkhead Box Protein O3/physiology , Liver/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides/metabolism , Animals , Blotting, Western , Fatty Liver/metabolism , Forkhead Box Protein O3/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , HEK293 Cells , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Real-Time Polymerase Chain Reaction , Up-Regulation
20.
Rapid Commun Mass Spectrom ; 32(3): 269-276, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29105858

ABSTRACT

RATIONALE: Pimavanserin, a selective serotonin 2A receptor inverse agonist, is a promising candidate for treating Parkinson's disease psychosis. Our previous study revealed that there might be the presence of extensive metabolites of pimavanserin in rats. However, the metabolic fate of pimavanserin in vivo remains unknown. Thus, it is essential to develop an efficient method to investigate the metabolic profile of pimavanserin in rats. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to date has the highest mass measurement accuracy and resolution of any mass spectrometry platform. METHODS: After a single intragastric administration of pimavanserin at a dose of 50 mg kg-1 , plasma, bile, urine and feces were collected from rats. A novel and efficient strategy was developed to analyze the metabolic profile of pimavanserin in vivo based on ultrahigh-performance liquid chromatography (UHPLC) coupled with FT-ICR-MS. RESULTS: A total of 23 metabolites were detected and tentatively identified through comparing their mass spectrometry profiles with those of pimavanserin. These metabolites were found in feces (22), bile (21), rat urine (16) and plasma (15). Results demonstrated that metabolic pathways of pimavanserin in rats included dehydrogenation, demethylation, deethylation, depropylation, debutylation, hydroxylation, dihydroxylation and trihydroxylation. CONCLUSIONS: A total of 22 phase I metabolites of pimavanserin were detected and tentatively identified. This report presents the first study of screening and identification of the metabolites of pimavanserin. The UHPLC/FT-ICR-MS method is a powerful tool for exploring and identifying metabolites in complex biological samples.


Subject(s)
Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Piperidines/pharmacokinetics , Urea/analogs & derivatives , Administration, Oral , Animals , Bile/chemistry , Feces , Fourier Analysis , Male , Piperidines/administration & dosage , Piperidines/metabolism , Rats, Sprague-Dawley , Tissue Distribution , Urea/administration & dosage , Urea/metabolism , Urea/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL