Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurosci ; 43(43): 7073-7083, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37648450

ABSTRACT

Neuronal Kv7 voltage-gated potassium channels generate the M-current and regulate neuronal excitability. Here, we report that dehydroepiandrosterone sulfate (DHEAS) is an endogenous Kv7 channel modulator that attenuates Gq-coupled receptor-induced M-current suppression. DHEAS reduced muscarinic agonist-induced Kv7-current suppression of Kv7.1, Kv7.2, Kv7.4, or Kv7.5 homomeric currents and endogenous M-currents in rat sympathetic ganglion neurons. However, DHEAS per se did not alter the voltage dependence of these Kv7 homomeric channels or the m1 receptor-induced activation of phospholipase C or protein kinase C. DHEAS-treated Kv7.2 homomeric currents became resistant to depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) induced by voltage-activated phosphatase, Ci-VSP or eVSP. Our computational models predicted a novel binding site for DHEAS in the cytoplasmic domain of Kv7 subunits. A single-point mutation of the predicted key histidine into cysteine in the rat Kv7.2 subunit, rKv7.2(H558C), resulted in a loss of effects of DHEAS on muscarinic Kv7 current suppression. Furthermore, in vivo administration of DHEAS in mice of both sexes reduced late phase pain responses in the formalin paw test. However, it did not have effects on early phase responses in the formalin paw test or responses in the hot plate test. Coadministration of a selective Kv7 inhibitor, XE991, and DHEAS eliminated analgesic effects of DHEAS in late phase responses in the formalin paw test. Collectively, these results suggest that DHEAS attenuates M-current suppression by stabilizing PIP2-Kv7 subunit interaction and can mitigate inflammatory pain.SIGNIFICANCE STATEMENT M-current suppression induced by stimulation of Gq-coupled receptors is a form of Kv7 current modulation that can reversibly increase neuronal excitability. This study demonstrates that DHEAS, an endogenous steroid hormone, is a novel Kv7 channel modulator that can attenuate M-current suppression without affecting basal Kv7 channel kinetics. Administration of DHEAS in vivo alleviated inflammatory pain in rodents. These results suggest that the degree of M-current suppression can be dynamically regulated by small molecules. Therefore, this novel form of Kv7 channel regulation holds promising potential as a therapeutic target for sensitized nervous activities, such as inflammatory pain.


Subject(s)
KCNQ2 Potassium Channel , Muscarinic Agonists , Male , Female , Mice , Rats , Animals , Dehydroepiandrosterone Sulfate , KCNQ2 Potassium Channel/metabolism , Muscarinic Agonists/pharmacology , Pain/drug therapy , Formaldehyde , KCNQ3 Potassium Channel/genetics , KCNQ3 Potassium Channel/metabolism
2.
Biochem Biophys Res Commun ; 691: 149310, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38039838

ABSTRACT

In this study, gallium- and gelatin-modified strontium-doped hydroxyapatite (SrHA-Gel-Ga) bilayer coatings were prepared on titanium substrates by electrodeposition and spin-coating techniques. The results showed that gallium and gelatin were uniformly doped into the SrHA coatings, which exhibited good hydrophilicity and bioactivity. Furthermore, SrHA-Gel-Ga demonstrated good antimicrobial properties against E. coli and S. aureus, especially S. aureus. The co-doping of Sr and gelatin in the coatings was effective in mitigating the cytotoxicity of Ga. SrHA-Gel-Ga was better able to promote the adhesion, proliferation and early differentiation of MC3T3-E1 cells. This study provides a new strategy for the development of anti-infective bone repair coatings.


Subject(s)
Anti-Infective Agents , Gelatin , Gelatin/pharmacology , Escherichia coli , Staphylococcus aureus , Osteogenesis , Anti-Infective Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Titanium/pharmacology
3.
Small ; 20(4): e2305613, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712119

ABSTRACT

Covalent organic frameworks (COFs) are a family of engaging membrane materials for molecular separation, which remain challenging to fabricate in the form of thin-film composite membranes due to slow crystal growth and insoluble powder. Here, an additive approach is presented to construct COF-based thin-film composite membranes in 10 min via COF oligomer coating onto poly(ether ether ketone) (PEEK)ultrafiltration membranes. By the virtue of ultra-thin liquid phase and liquid-solid interface-confined assembly, the COF oligomers are fast stacked up and grow along the interface with the solvent evaporation. Benefiting from the low out-plane resistance of COFs, COF@PEEK composite membranes exhibit high solvent permeances in a negative correlation with solvent viscosity. The well-defined pore structures enable high molecular sieving ability (Mw = 300 g mol-1 ). Besides, the COF@PEEK composite membranes possess excellent mechanical integrities and steadily operate for over 150 h in the condition of high-pressure cross flow. This work not only exemplifies the high-efficiency and scale-up preparation of COF-based thin-film composite membranes but also provides a new strategy for COF membrane processing.

4.
FASEB J ; 37(12): e23288, 2023 12.
Article in English | MEDLINE | ID: mdl-37997502

ABSTRACT

Thyroid carcinoma (THCA) is the most common malignancy in the endocrine system. Long intergenic non-coding RNA 2454 (LINC02454) exhibits an HMGA2-like expression pattern, but their relationship and roles in THCA are largely unknown. The present purpose was to delineate the roles of LINC02454 in THCA progression and its molecular mechanisms. We collected THCA tissues from patients and monitored patient survival. THCA cell colony formation, migration, and invasion were evaluated. Metastasis was evaluated by examining EMT markers through Western blotting. Gene interaction was determined with ChIP, RIP, RNA pull-down, and luciferase activity assays. A mouse model of a subcutaneous tumor was used to determine the activity of LINC02454 knockdown in vivo. We found that LINC02454 was highly expressed in THCA, and its upregulation was associated with poor survival. The knockdown of LINC02454 repressed colony formation, migration, and invasion. Moreover, loss of LINC02454 inhibited tumor growth and metastasis in mice. HMGA2 promoted LINC02454 transcription via binding to the LINC02454 promoter, and silencing of HMGA2 suppressed malignant behaviors through downregulation of LINC02454. HMGA2 was a novel functional target of LINC02454 in THCA cells, and knockdown of LINC02454-mediated anti-tumor effects was reversed by HMGA2 overexpression. Mechanically, LINC02454 promoted CREB1 phosphorylation and nuclear translocation, and CREB1 was subsequently bound to the HMGA2 promoter to facilitate its expression. LINC02454 cis-regulates HMGA2 transcription via facilitating CREB1 phosphorylation and nuclear translocation, and, in turn, HMGA2 promotes LINC02454 expression, thus accelerating thyroid carcinoma progression. Our results support therapeutic targets of LINC02454 and HMGA2 for THCA.


Subject(s)
MicroRNAs , Thyroid Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Down-Regulation , Gene Expression Regulation, Neoplastic , HMGA2 Protein/genetics , MicroRNAs/genetics , Thyroid Neoplasms/metabolism , Transcriptional Activation , Up-Regulation
5.
FASEB J ; 37(7): e22998, 2023 07.
Article in English | MEDLINE | ID: mdl-37289136

ABSTRACT

Dementia is a well-known syndrome and Alzheimer's disease (AD) is the main cause of dementia. Lipids play a key role in the pathogenesis of AD, however, the prediction value of serum lipidomics on AD remains unclear. This study aims to construct a lipid score system to predict the risk of progression from mild cognitive impairment (MCI) to AD. First, we used the least absolute shrinkage and selection operator (LASSO) Cox regression model to select the lipids that can signify the progression from MCI to AD based on 310 older adults with MCI. Then we constructed a lipid score based on 14 single lipids using Cox regression and estimated the association between the lipid score and progression from MCI to AD. The prevalence of AD in the low-, intermediate- and high-score groups was 42.3%, 59.8%, and 79.8%, respectively. The participants in the intermediate- and high-score group had a 1.65-fold (95% CI 1.10 to 2.47) and 3.55-fold (95% CI 2.40 to 5.26) higher risk of AD, respectively, as compared to those with low lipid scores. The lipid score showed moderate prediction efficacy (c-statistics > 0.72). These results suggested that the score system based on serum lipidomics is useful for the prediction of progression from MCI to AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/complications , Lipidomics , Cognitive Dysfunction/etiology , Lipids , Disease Progression , Biomarkers
6.
Prev Med ; 182: 107942, 2024 May.
Article in English | MEDLINE | ID: mdl-38548025

ABSTRACT

OBJECTIVE: Genetic and lifestyles contribute to cholelithiasis, but the impact of adhering to healthy lifestyle on cholelithiasis risk remains uncertain. We aimed to assess combined lifestyle factors and a polygenic risk score on incident cholelithiasis. METHODS: We utilized cholelithiasis genome-wide association study (GWAS) data from FinnGen study, constructing varied polygenic risk score (PRS), and applied them to 317,640 UK Biobank participants. The relative and absolute risk of incident cholelithiasis associated with six well-established lifestyle risk factors, was evaluated and stratified by PRS (low risk [quintile 1], intermediate risk [quintiles 2-4] and high risk [quintile 5]). Lifestyle score was also categorized into favorable, intermediate, and unfavorable groups. RESULTS: The PRS derived from 13 single nucleotide polymorphisms (p ≤ 5 × 10-6, r2 < 0.001) showed the best performance. A significant gradient of increase in risk of cholelithiasis was observed across the quintiles of the polygenic risk score (p < 0.001). Compared to participants with low genetic risk, those with intermediate or high genetic risk had a 10% (95% confidence interval [CI] = 1.05-1.17) and 24% (95% CI = 1.16-1.32) higher risk of cholelithiasis. An unfavorable lifestyle was associated with an approximately 50% higher risk of cholelithiasis than a favorable lifestyle. Participants with high genetic risk and an unfavorable lifestyle had 98% (Hazard ratio [HR]: 1.98; 95% CI: 1.67-2.35) higher risk of cholelithiasis than those with low genetic risk and a favorable lifestyle. CONCLUSIONS: Our study highlights the importance of lifestyle behaviors intervention on cholelithiasis risk regardless of the genetic risk in White European population.

7.
J Gastroenterol Hepatol ; 39(2): 289-296, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37961012

ABSTRACT

BACKGROUND AND AIM: The association between proton-pump inhibitors (PPIs) and rhabdomyolysis were unclear. The aim of this study was to explore and systematically analyze the potential link between five PPIs and the rhabdomyolysis events using the FDA Adverse Event Reporting System (FAERS) database. METHODS: Suspected rhabdomyolysis events associated with PPIs were identified by data mining with the reporting odds ratio (ROR), proportional reporting ratio (PRR), the information component (IC), and Empirical Bayes Geometric Mean (EBGM). Demographic information, drug administration, and outcomes of PPI-induced rhabdomyolysis events were also analyzed. RESULTS: There were 3311 reports associated with PPI-induced rhabdomyolysis that were identified. After removing duplicates, 1899 cases were determined to contain complete patient demographic data. The average age was 65 ± 18 year and 57% were male. Omeprazole and pantoprazole had the same largest percentage of reports. Lansoprazole had the highest ROR index of 12.67, followed by esomeprazole (11.18), omeprazole (10.27), rabeprazole (10.06), and pantoprazole (9.24). PRR, IC, and EBGM showed similar patterns. This suggested that lansoprazole exhibited the strongest correlation with rhabdomyolysis. In rhabdomyolysis events, PPIs were mainly "concomitant" (>60%), and only a few cases were "primary suspects" (<15%). Rabeprazole showed the lowest death rate while lansoprazole showed the highest. CONCLUSIONS: The study suggested that significant rhabdomyolysis signals were associated with PPIs. Further research should be performed in drug safety evaluation for a more comprehensive association.


Subject(s)
Proton Pump Inhibitors , Rhabdomyolysis , Male , Humans , Middle Aged , Aged , Aged, 80 and over , Female , Proton Pump Inhibitors/adverse effects , Pantoprazole , Rabeprazole , Pharmacovigilance , Bayes Theorem , Omeprazole/adverse effects , Lansoprazole , Rhabdomyolysis/chemically induced , Rhabdomyolysis/epidemiology
8.
Small ; : e2305163, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38048535

ABSTRACT

Miniaturization of modern micro-electronic devices urges the development of multi-functional thermal management materials. Traditional polymer composite-based thermal management materials are promising candidates, but they suffer from single functionality, high cost, and low fire-resistance. Herein, a multifunctional liquid metal (LM)-bridged graphite nanoplatelets (GNPs)/ aramid nanofibers (ANFs) film is fabricated via a facile vacuum-assisted self-assembly approach followed by compression. ANFs serve as interfacial binders to link LM and GNPs together via hydrogen bondings and π-π interactions, while LM bridges the adjacent layer of GNPs to endow a fast thermal transport by phonons and electrons. The resultant composite films exhibit a high bidirectional thermal conductivity (In-plane: 29.5 W m-1 K-1 and through-plane: 5.3 W m-1 K-1 ), offering a reliable and effective cooling. Moreover, the as-fabricated composite films exhibit superior flame-retardance (peak of heat release rate of 4000J g-1 ), outstanding Joule heating performance (200 °C at supplied voltage of 3.5 V), and excellent electromagnetic interference shielding effectiveness (EMI SE of 62 dB). This work provides an efficient avenue to fabricate multifuntional thermal management materials for micro-electronic devices, battery thermal management, and artificial intelligence.

9.
Sensors (Basel) ; 23(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37765885

ABSTRACT

The traditional LDPC encoding and decoding system is characterized by low throughput and high resource consumption, making it unsuitable for use in cost-efficient, energy-saving sensor networks. Aiming to optimize coding complexity and throughput, this paper proposes a combined design of a novel LDPC code structure and the corresponding overlapping decoding strategies. With regard to structure of LDPC code, a CCSDS-like quasi-cyclic parity check matrix (PCM) with uniform distribution of submatrices is constructed to maximize overlap depth and adapt the parallel decoding. In terms of reception decoding strategies, we use a modified 2-bit Min-Sum algorithm (MSA) that achieves a coding gain of 5 dB at a bit error rate of 10-6 compared to an uncoded BPSK, further mitigating resource consumption, and which only incurs a slight loss compared to the standard MSA. Moreover, a shift-register-based memory scheduling strategy is presented to fully utilize the quasi-cyclic characteristic and shorten the read/write latency. With proper overlap scheduling, the time consumption can be reduced by one third per iteration compared to the non-overlap algorithm. Simulation and implementation results demonstrate that our decoder can achieve a throughput up to 7.76 Gbps at a frequency of 156.25 MHz operating eight iterations, with a two-thirds resource consumption saving.

10.
Int J Mol Sci ; 24(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37108789

ABSTRACT

The Chinese tongue sole (Cynoglossus semilaevis) is a traditional, precious fish in China. Due to the large growth difference between males and females, the investigation of their sex determination and differentiation mechanisms receives a great deal of attention. Forkhead Box O (FoxO) plays versatile roles in the regulation of sex differentiation and reproduction. Our recent transcriptomic analysis has shown that foxo genes may participate in the male differentiation and spermatogenesis of Chinese tongue sole. In this study, six Csfoxo members (Csfoxo1a, Csfoxo3a, Csfoxo3b, Csfoxo4, Csfoxo6-like, and Csfoxo1a-like) were identified. Phylogenetic analysis indicated that these six members were clustered into four groups corresponding to their denomination. The expression patterns of the gonads at different developmental stages were further analyzed. All members showed high levels of expression in the early stages (before 6 months post-hatching), and this expression was male-biased. In addition, promoter analysis found that the addition of C/EBPα and c-Jun transcription factors enhanced the transcriptional activities of Csfoxo1a, Csfoxo3a, Csfoxo3b, and Csfoxo4. The siRNA-mediated knockdown of the Csfoxo1a, Csfoxo3a, and Csfoxo3b genes in the testicular cell line of Chinese tongue sole affected the expression of genes related to sex differentiation and spermatogenesis. These results have broadened the understanding of foxo's function and provide valuable data for studying the male differentiation of tongue sole.


Subject(s)
Flatfishes , Flounder , Animals , Female , Male , Phylogeny , Flatfishes/genetics , Flatfishes/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Amino Acid Sequence , Testis/metabolism , Flounder/genetics
11.
Angew Chem Int Ed Engl ; 62(42): e202311930, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37665223

ABSTRACT

Cation-disordered Rocksalt oxides (DRXs) are a promising new class of cathode materials for Li-ion batteries due to their natural abundance, low cost and great electrochemical performance. High entropy strategy in Mn-based DRXs appears to be an effective strategy for improving the rate capability, but it suffers from challenges including capacity degradation. The present paper reports a new group of high entropy DRXs (HE DRX) based on Ni2+ -Nb5+ pair; the structural and chemical evolution upon cycling of DRXs with an increasing transition metal (TM) species are systematically investigated. An explanation is proposed for how the crystal field stability energy determines that HE DRX could exist in single Rocksalt solid solution structures. We further reveal that the charge compensation mechanism in HE DRX is the result of various TM synergistic effect. More importantly, through various in situ and ex situ techniques and theoretical calculation, the effective integration of more TM cation species within the HE DRX framework promotes better Li+ diffusion and improves lattice oxygen stability, consequently increasing capacity upon cycling.

12.
Small ; 18(21): e2201470, 2022 May.
Article in English | MEDLINE | ID: mdl-35460175

ABSTRACT

The properties of separators significantly affect the efficiency, stability, and safety of the lithium-based batteries. Therefore, the improvement of the separator material is critical. Polyetherketone (PEK) has excellent general properties, such as mechanical strength, chemical stability, and thermal stability. Thus, it is expected to be an optimal separator material. However, its low solubility-induced poor processibility makes it difficult to be used for nanoscale product manufacturing. In this work, the soluble precursor polymer is prepared by introducing a "protecting" group into monomer, and fabricated into nanofiber membrane, which can be converted into polyetherketone nanofiber membrane by a simple acid treatment. The membrane prepared by this chemical-induced crystallization method exhibits superior chemical, thermal stability, and mechanical strength. Li-O2 batteries with the fabricated membrane as separator have a high cycling stability (194 cycles at 200 mA g-1 and 500 mAh g-1 ). This work broadens the application field of PEK and provides a potential route for battery separators.

13.
BMC Microbiol ; 22(1): 266, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335318

ABSTRACT

Macrococcus caseolyticus is an opportunistic pathogen that is frequently isolated from dairy products and veterinary infections. Recent studies have reported the possibility of methicillin resistance that be transferred among staphylococcal species in foods. The present study examined the population structure, antimicrobial resistance, virulence factors, and morphology of methicillin-resistant M. caseolyticus by investigation of 94 genomes derived from both isolates in beef (n = 7) and pork (n = 2) at Shanghai and those deposited in public domain (n = 85). Phylogenetically, M. caseolyticus were divided into four clades, which each consisted of genomes isolated from continent of European countries (82.4%, n = 78), Asian countries (11.3%, n = 10), United States (4.1%, n = 4), Australia (1%, n = 1), and Sudan (1%, n = 1). The M. caseolyticus isolated from present study formed a genetically distinguished clade, which was characterized by novel alleles in the traditional 7-gene MLST scheme. Furthermore, we identified 24 AMR genes that were associated with 10 classes of antimicrobial agents in M. caseolyticus. Most AMR genes were carried by dominant plasmids such as rep7a, rep22 and repUS56. The genomes in the global clades carried significantly less AMR genes (p < 0.05) and more virulence factors (p < 0.001) than present clade. Virulence factors were detected in methicillin resistant M. caseolyticus including genes coding hemolysin, adherence, biofilm formation, exotoxin, and capsule that associated to human health and infection. Finally, as the close relative of the genus Staphylococcus, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed for morphological comparison that M. caseolyticus has a larger diameter and thicker cell wall compared with S. aureus ATCC 25,923. Taken together, our study suggested that M. caseolyticus mediating divergent antimicrobial resistance and virulence factors could serve as the vector for methicillin resistance habitats in foodborne microorganisms.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Cattle , Animals , Humans , Methicillin Resistance/genetics , Anti-Bacterial Agents/pharmacology , Multilocus Sequence Typing , Virulence Factors/genetics , Staphylococcus aureus , Drug Resistance, Bacterial/genetics , Phylogeny , China , Staphylococcus , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests
14.
PLoS Comput Biol ; 17(1): e1008561, 2021 01.
Article in English | MEDLINE | ID: mdl-33406072

ABSTRACT

Phylogeographic inference allows reconstruction of past geographical spread of pathogens or living organisms by integrating genetic and geographic data. A popular model in continuous phylogeography-with location data provided in the form of latitude and longitude coordinates-describes spread as a Brownian motion (Brownian Motion Phylogeography, BMP) in continuous space and time, akin to similar models of continuous trait evolution. Here, we show that reconstructions using this model can be strongly affected by sampling biases, such as the lack of sampling from certain areas. As an attempt to reduce the effects of sampling bias on BMP, we consider the addition of sequence-free samples from under-sampled areas. While this approach alleviates the effects of sampling bias, in most scenarios this will not be a viable option due to the need for prior knowledge of an outbreak's spatial distribution. We therefore consider an alternative model, the spatial Λ-Fleming-Viot process (ΛFV), which has recently gained popularity in population genetics. Despite the ΛFV's robustness to sampling biases, we find that the different assumptions of the ΛFV and BMP models result in different applicabilities, with the ΛFV being more appropriate for scenarios of endemic spread, and BMP being more appropriate for recent outbreaks or colonizations.


Subject(s)
Genetics, Population/methods , Models, Genetic , Phylogeography/methods , Selection Bias , Bayes Theorem , Computational Biology , Disease Outbreaks/statistics & numerical data , Flavivirus/genetics , Flavivirus Infections/epidemiology , Flavivirus Infections/virology , Humans , Markov Chains
15.
J Clin Pharm Ther ; 47(12): 2162-2169, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36053892

ABSTRACT

WHAT IS KNOWN AND OBJECTIVE: Linezolid is an alternative first-line agent for MRSA pneumonia. This study assessed whether dose adjustments of linezolid against methicillin-resistant Staphylococcus aureus (MRSA) infections were needed based on renal function in populations with different body weight. METHODS: Monte Carlo simulations were conducted to evaluate renal function in relation to the probability of target attainment (PTA) in three population groups with different body weight. Area under the concentration time curve (AUC)/ minimum inhibitory concentration (MIC) ratio and percentage of time above the MIC (%T > MIC) were regarded as pharmacokinetic/pharmacodynamic targets. The PTA and cumulative fractions of response (CFR) were calculated to assess the efficacy. Regarding safety, trough plasma concentration (Cmin ) > 8 mg/L was used as target for toxicity. RESULTS AND DISCUSSION: Using AUC/MIC >100 as the target pharmacodynamic (PD) index, the CFR of linezolid at the standard dose (600 mg every 12 h [q12h]) were 57.01%, 93.22%, and 99.93% in patients with normal renal function, patients with renal dysfunction and low body weight patients with renal dysfunction, respectively. Using 100%T > MIC as the target PD index, all the CFR of three population groups were more than 90% at the standard dose. The percentages of Cmin > 8 mg/L at the standard dose of linezolid were 24.16%, 53.24%, and 90.10% in three population groups on day 7. WHAT IS NEW AND CONCLUSION: The risk of thrombocytopenia of linezolid was extremely higher in low body weight patients with renal impairment when receiving standard linezolid dose compared with patients with normal renal function. 450 mg q12h and 300 mg q12h might be effective and safe against MRSA infection in patients with renal dysfunction and low body weight patients with renal dysfunction, respectively.


Subject(s)
Kidney Diseases , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Linezolid/adverse effects , Anti-Bacterial Agents/adverse effects , Body Weight , Kidney/physiology , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy
16.
Environ Res ; 194: 110592, 2021 03.
Article in English | MEDLINE | ID: mdl-33333036

ABSTRACT

Estuaries are among the most productive ecosystems and dynamic environments on Earth. Varying salinity is the most important challenge for phytoplankton survival in estuaries. In order to investigate the role of iron nutrition on phytoplankton survival under salinity stress, a freshwater cyanobacterial strain was cultivated in media added with different proportions of seawater (measured with siderophore activities), and supplied with gel-immobilized ferrihydrite as iron source. Results showed that the strain grew well in media with 0% seawater supplied with ferrihydrite as iron source. Surprisingly, the biomasses in media with 50% seawater, with more newly excreted siderophore, were similar to those with 0% seawater, but better than those with 6.25%, 12.5% and 25% seawater. Smaller iron isotopic discriminations between the cyanobacterial cells associated iron and dissolved iron were observed in media with 0% and 50% seawater suggested that higher fractions of iron uptake from aqueous dissolved iron reservoir by these comparatively larger biomasses. In summary, this study proved that iron availability plays a key role in cyanobacterial survival under varying salinity stress, and suggested that siderophores introduced by seawater may accelerate iron dissolution, increase iron availability, and make cyanobacterial cells overcome the adverse effects of high-salinity, and indicated that siderophore excretion is a kind of survival strategy for phytoplankton in face of salinity stress.


Subject(s)
Cyanobacteria , Iron , Ecosystem , Fresh Water , Seawater , Siderophores
17.
Entropy (Basel) ; 23(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34441224

ABSTRACT

Timely status updates are critical in remote control systems such as autonomous driving and the industrial Internet of Things, where timeliness requirements are usually context dependent. Accordingly, the Urgency of Information (UoI) has been proposed beyond the well-known Age of Information (AoI) by further including context-aware weights which indicate whether the monitored process is in an emergency. However, the optimal updating and scheduling strategies in terms of UoI remain open. In this paper, we propose a UoI-optimal updating policy for timely status information with resource constraint. We first formulate the problem in a constrained Markov decision process and prove that the UoI-optimal policy has a threshold structure. When the context-aware weights are known, we propose a numerical method based on linear programming. When the weights are unknown, we further design a reinforcement learning (RL)-based scheduling policy. The simulation reveals that the threshold of the UoI-optimal policy increases as the resource constraint tightens. In addition, the UoI-optimal policy outperforms the AoI-optimal policy in terms of average squared estimation error, and the proposed RL-based updating policy achieves a near-optimal performance without the advanced knowledge of the system model.

18.
BMC Cancer ; 19(1): 654, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31269911

ABSTRACT

BACKGROUND: Yes-associated protein (YAP) plays a crucial role in tumour development and it is the main effector of the Hippo signalling pathway. However, the mechanism underlying YAP downregulation in laryngeal cancer is still unclear. In our previous study, we found that YAP, compared with adjacent tissues, was expressed higher in laryngeal cancer and was also closely associated with histological differentiation, TNM stage and poor prognosis. METHODS: In this study, we attempted to determine whether silenced YAP could downregulate human laryngeal carcinoma Hep-2 cells progression. YAP was downregulated in Hep-2 cells by shRNA, and the malignant ability of Hep-2 was assessed in vitro and in vivo. RESULTS: In vitro, CCK-8, colony formation and wound healing assays showed that downregulation of YAP significantly reduced the rates of proliferation, migration, and invasion in Hep-2 cells. Downregulation of YAP distinctly induced G2/M cycle arrest and increased the rate of apoptosis. Accordingly, western blot assay suggested that the expression of DKK1, vimentin and ß-catenin was significantly decreased after YAP downregulated treatment, thereby indicating that YAP mediated the EMT programme and the Wnt/ß-catenin signalling pathway in carcinoma of the larynx. Furthermore, silencing of YAP suppressed Hep-2 cell tumourigenesis and metastasis in vivo. CONCLUSION: In summary, our findings demonstrated the proliferation of YAP downregulation and the invasion of Hep-2 cells via downregulating the Wnt/ß-catenin pathway in vitro and in vivo, suggesting that YAP may provide a potential therapeutic strategy for the treatment of laryngeal cancer.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Laryngeal Neoplasms/metabolism , Laryngeal Neoplasms/pathology , Phosphoproteins/metabolism , beta Catenin/metabolism , Animals , Apoptosis , Cell Movement , Cell Proliferation , Down-Regulation , G2 Phase Cell Cycle Checkpoints , Gene Knockdown Techniques , M Phase Cell Cycle Checkpoints , Male , Mice , Mice, Inbred BALB C , Neoplasm Invasiveness , Neoplasm Staging , RNA, Small Interfering , Sincalide , Transcription Factors , Tumor Stem Cell Assay , Vimentin/metabolism , Wnt Signaling Pathway , Wound Healing , YAP-Signaling Proteins
19.
Article in English | MEDLINE | ID: mdl-29193252

ABSTRACT

The Rab-family GTPases mainly regulate intracellular vesicle transport, and play important roles in the innate immune response in invertebrates. However, the function and signal transduction of Rab proteins in immune reactions remain unclear in silkworms. In this study, we analyzed a Rab-related protein of silkworm Bombyx mori (BmRABRP) by raising antibodies against its bacterially expressed recombinant form. Tissue distribution analysis showed that BmRABRP mRNA and protein were high expressed in the Malpighian tubule and fat body, respectively. However, among the different stages, only the fourth instar larvae and pupae showed significant BmRABRP levels. After challenge with four pathogenic microorganisms (Escherichia coli, BmNPV, Beauveria bassiana, Micrococcus luteus), the expression of BmRABRP mRNA in the fat body was significantly upregulated. In contrast, the BmRABRP protein was significantly upregulated after infection with BmNPV, while it was downregulated by E. coli, B. bassiana, and M. luteus. A specific dsRNA was used to explore the immune function and relationship between BmRABRP and the JAK-STAT signaling pathway. After BmRABRP gene interference, significant reduction in the number of nodules and increased mortality suggested that BmRABRP plays an important role in silkworm's response to bacterial challenge. In addition, four key genes (BmHOP, BmSTAT, BmSOCS2, and BmSOCS6) of the JAK-STAT signaling pathway showed significantly altered expressions after BmRABRP silencing. BmHOP and BmSOCS6 expressions were significantly decreased, while BmSTAT and BmSOCS2 were significantly upregulated. Our results suggested that BmRABRP is involved in the innate immune response against pathogenic microorganisms through the JAK-STAT signaling pathway in silkworm.


Subject(s)
Bombyx/genetics , Bombyx/immunology , Gene Expression Regulation , Immunity, Innate , Insect Proteins/genetics , Animals , Bacterial Physiological Phenomena , Beauveria/physiology , Bombyx/growth & development , Insect Proteins/metabolism , Larva/genetics , Larva/growth & development , Larva/immunology , Nucleopolyhedroviruses/physiology , Pupa/genetics , Pupa/growth & development , Pupa/immunology , Sequence Analysis, DNA , Signal Transduction
20.
J Invertebr Pathol ; 151: 14-20, 2018 01.
Article in English | MEDLINE | ID: mdl-29079530

ABSTRACT

Cyclic AMP response element binding (CREB) proteins participate in the regulation of many biological processes. However, little is known about their role in immune regulation in the Oak silkworm (Antheraea pernyi). In this study, a CREB gene was identified in A. pernyi and its role in immune regulation was investigated. ApCREB shares conserved signature motifs with other CREB proteins, and includes a typical leucine zipper domain, specific DNA-binding site, nuclear localisation signal (NLS) and cAMP-dependent protein kinase phosphorylation site. Recombinant ApCREB was expressed in Escherichia coli and used to raise rabbit anti-ApCREB polyclonal antibodies. ApCREB mRNA was detected in all examined tissues, with maximum expression in the midgut and integument. Following exposure to four pathogenic microorganisms (Beauveria bassiana, Escherichia coli, Micrococcus luteus, and Antheraea pernyi nuclear polyhedrosis virus), expression of ApCREB was up-regulated by B. bassiana, E. coli and ApNPV, down-regulated by M. luteus. RNA interference of ApCREB affected mRNA expression levels of antimicrobial peptide genes attacin-1, cecropin B, defensin-1, gloverin, and lebocin-2. These findings demonstrate that ApCREB is a CREB homologue that may be involved in innate immunity in A. pernyi.


Subject(s)
Bombyx/genetics , Bombyx/immunology , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/immunology , Animals , Immunity, Innate/genetics , Immunity, Innate/immunology
SELECTION OF CITATIONS
SEARCH DETAIL