Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 24(10): e56475, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37603128

ABSTRACT

Drosophila ovarian germline stem cells (GSCs) are a powerful model for stem cell research. In this study, we use single-cell RNA sequencing (scRNA-seq), an RNAi screen and bioinformatic analysis, to identify genes involved in germ cell differentiation, including 34 genes with upregulated expression during early germ cell development and 19 genes that may regulate germ cell differentiation. Among these, a gene we have named eggplant (eggpl) is highly expressed in GSCs and downregulated in early daughter cells. RNAi knockdown of eggpl causes germ cell proliferation and differentiation defects. In flies fed a rich yeast diet, the expression of eggpl is significantly lower and knockdown or knockout of eggpl phenocopies a rich diet. In addition, eggpl knockdown suppresses the reduction in germ cell proliferation caused by inhibition of the insulin effector PI3K. These findings suggest that downregulation of eggpl links nutritional status to germ cell proliferation and differentiation. Collectively, this study provides new insights into the signaling networks that regulate early germ cell development and identifies eggpl as a key player in this process.


Subject(s)
Drosophila Proteins , Solanum melongena , Animals , Drosophila/genetics , Solanum melongena/genetics , Solanum melongena/metabolism , Drosophila Proteins/metabolism , Cell Differentiation/genetics , Germ Cells/metabolism , Sequence Analysis, RNA , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism
2.
Chemistry ; 30(13): e202303243, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38116883

ABSTRACT

In the continuation of previous studies on carbon-rich meso-tetraarylporphyrins featuring 2,7-fluorene units at their periphery, the effect of changing the peripheral dendritic arms for linear arms on their oxygen-photosensitizing ability, their fluorescence and their two-photon absorption (2PA) properties is now analyzed. Thus, starburst porphyrins possessing up to twenty conjugated fluorenyl units were isolated and studied. More precisely, a series of five new free-base porphyrins featuring fully conjugated arms incorporating an increasing number of fluorenyl groups connected via 1,2-alkenyl spacers were synthesized, along with their Zn(II) complexes. Upon excitation in the arm-centred π-π* absorption band, an efficient energy transfer takes place from the peripheral fluorenyl units to the central porphyrin core, leading to intense red-light emission and oxygen photosensitization by the latter. More interestingly, while the linear optical properties of these porphyrins were only slightly improved compared to those of their dendrimer analogues for photodynamic therapy (PDT) or fluorescence imaging, their 2PA cross-sections were much more significantly boosted, evidencing the key role played by different structures on nonlinear optical properties. Finally, by comparison with other porphyrin-based two-photon photosensitizers reported in the literature, we show that these new "semi-disconnected" starburst systems exhibit a remarkable trade-off between intrinsic 2PA, fluorescence and oxygen photosensitization.

3.
Oral Dis ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813877

ABSTRACT

OBJECTIVE: In this study, our aim was to develop and validate the effectiveness of diverse radiomic models for distinguishing between gnathic fibrous dysplasia (FD) and ossifying fibroma (OF) before surgery. MATERIALS AND METHODS: We enrolled 220 patients with confirmed FD or OF. We extracted radiomic features from nonenhanced CT images. Following dimensionality reduction and feature selection, we constructed radiomic models using logistic regression, support vector machine, random forest, light gradient boosting machine, and eXtreme gradient boosting. We then identified the best radiomic model using receiver operating characteristic (ROC) curve analysis. After combining radiomics features with clinical features, we developed a comprehensive model. ROC curve and decision curve analysis (DCA) demonstrated the models' robustness and clinical value. RESULTS: We extracted 1834 radiomic features from CT images, reduced them to eight valuable features, and achieved high predictive efficiency, with area under curves (AUC) exceeding 0.95 for all the models. Ultimately, our combined model, which integrates radiomic and clinical data, displayed superior discriminatory ability (AUC: training cohort 0.970; test cohort 0.967). DCA highlighted its optimal clinical efficacy. CONCLUSION: Our combined model effectively differentiates between FD and OF, offering a noninvasive and efficient approach to clinical decision-making.

4.
Sensors (Basel) ; 24(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39066073

ABSTRACT

Most visual simultaneous localization and mapping (SLAM) systems are based on the assumption of a static environment in autonomous vehicles. However, when dynamic objects, particularly vehicles, occupy a large portion of the image, the localization accuracy of the system decreases significantly. To mitigate this challenge, this paper unveils DOT-SLAM, a novel stereo visual SLAM system that integrates dynamic object tracking through graph optimization. By integrating dynamic object pose estimation into the SLAM system, the system can effectively utilize both foreground and background points for ego vehicle localization and obtain a static feature points map. To rectify the inaccuracies in depth estimation from stereo disparity directly on the foreground points of dynamic objects due to their self-similarity characteristics, a coarse-to-fine depth estimation method based on camera-road plane geometry is presented. This method uses rough depth to guide fine stereo matching, thereby obtaining the 3 dimensions (3D)spatial positions of feature points on dynamic objects. Subsequently, by establishing constraints on the dynamic object's pose using the road plane and non-holonomic constraints (NHCs) of the vehicle, reducing the initial pose uncertainty of dynamic objects leads to more accurate dynamic object initialization. Finally, by considering foreground points, background points, the local road plane, the ego vehicle pose, and dynamic object poses as optimization nodes, through the establishment and joint optimization of a nonlinear model based on graph optimization, accurate six degrees of freedom (DoFs) pose estimations are obtained for both the ego vehicle and dynamic objects. Experimental validation on the KITTI-360 dataset demonstrates that DOT-SLAM effectively utilizes features from the background and dynamic objects in the environment, resulting in more accurate vehicle trajectory estimation and a static environment map. Results obtained from a real-world dataset test reinforce the effectiveness.

5.
Sensors (Basel) ; 24(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257549

ABSTRACT

The recognition technology of coal and gangue is one of the key technologies of intelligent mine construction. Aiming at the problems of the low accuracy of coal and gangue recognition models and the difficult recognition of small-target coal and gangue caused by low-illumination and high-dust environments in the coal mine working face, a coal and gangue recognition model based on the improved YOLOv7-tiny target detection algorithm is proposed. This paper proposes three model improvement methods. The coordinate attention mechanism is introduced to improve the feature expression ability of the model. The contextual transformer module is added after the spatial pyramid pooling structure to improve the feature extraction ability of the model. Based on the idea of the weighted bidirectional feature pyramid, the four branch modules in the high-efficiency layer aggregation network are weighted and cascaded to improve the recognition ability of the model for useful features. The experimental results show that the average precision mean of the improved YOLOv7-tiny model is 97.54%, and the FPS is 24.73 f·s-1. Compared with the Faster-RCNN, YOLOv3, YOLOv4, YOLOv4-VGG, YOLOv5s, YOLOv7, and YOLOv7-tiny models, the improved YOLOv7-tiny model has the highest recognition rate and the fastest recognition speed. Finally, the improved YOLOv7-tiny model is verified by field tests in coal mines, which provides an effective technical means for the accurate identification of coal and gangue.

6.
Dentomaxillofac Radiol ; 53(5): 289-295, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38547394

ABSTRACT

OBJECTIVES: To investigate the imaging and anatomic features of the anterior lobe (AL) of the superficial parotid gland (SPG). METHODS: Computed tomographic sialography examinations were undertaken for 142 parotid glands in 77 patients. Whole computer tomography (CT) data were analyzed using multi-planar reformation and maximum intensity projection to generate sialographic CT images. The tributary ducts of the SPG were analyzed to classify the parotid morphology. Three-dimensional analyses were used to investigate the AL and its relationship with adjacent anatomic landmarks. RESULTS: Four major types (I-IV) and 2 minor types (V-VI) of the AL and the superficial parotid gland were observed. Type I AL (83/142) was contiguous and not separated from the retromandibular parotid gland. Type II AL (16/142) was detached from the retromandibular parotid gland with 1-4 tributary ducts. Type III AL (12/142) showed a small isolated lobe above the Stensen duct around the anterior edge of the masseter. Type IV (28/142) showed the absence of the AL. Type V (3/142) shows the absence of the retromandibular parotid gland. Type VI (3/142) showed the presence of ectopic salivary gland beneath the Stensen duct anterior to the retromandibular parotid gland. CONCLUSIONS: The AL gives rise to the morphological variations of the superficial parotid gland. AL also gives rise to the accessory parotid gland when it is detached from the retromandibular parotid gland.


Subject(s)
Imaging, Three-Dimensional , Parotid Gland , Sialography , Tomography, X-Ray Computed , Humans , Parotid Gland/diagnostic imaging , Parotid Gland/anatomy & histology , Sialography/methods , Adult , Female , Male , Tomography, X-Ray Computed/methods , Middle Aged , Aged , Imaging, Three-Dimensional/methods , Adolescent , Aged, 80 and over , Anatomic Landmarks/diagnostic imaging , Salivary Ducts/diagnostic imaging , Salivary Ducts/anatomy & histology , Contrast Media
7.
Small ; 19(15): e2207148, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36599684

ABSTRACT

Aqueous zinc ion batteries (AZIBs) have attracted much interest in the next generation of energy storage devices because of their elevated safety and inexpensive price. Polyanionic materials have been considered as underlying cathodes owing to the high voltage, large ionic channels and fast ionic kinetics. However, the low electronic conductivity limits their cycling stability and rate performance. Herein, mesoporous Na3 V2 (PO4 )2 F3 (N3VPF) nanocuboids with the size of 80-220 nm cladded by reduced graphene oxide (rGO) have been successfully prepared to form 3D composite (N3VPF@rGO) by a novel and fast microwave hydrothermal with subsequent calcination strategy. The enhanced conductivity, strengthened pseudocapacitive behaviors, enlarged DZn 2+ , and stable structure guarantee N3VPF@rGO with splendid Zn2+ storage performance, such as high capacity of 126.9 mAh g-1 at 0.5 C (1 C = 128 mA g-1 ), high redox potentials at 1.48/1.57 V, high rate capacity of 93.9 mAh g-1 at 20 C (short charging time of 3 mins) and extreme cycling stability with capacity decay of 0.0074% per cycle after 5000 cycles at 15 C. The soft package batteries also present preeminent performance, demonstrating the practical application values. In situ X-ray diffraction, ex situ transmission electron microscopy and X-ray photoelectron spectroscopy reveal a reversible Zn2+ insertion/extraction mechanism.

8.
Phys Chem Chem Phys ; 25(20): 13966-13977, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37191141

ABSTRACT

Interfacial electronic characteristics are crucial for the hydrogen evolution reaction (HER), especially in nanoscale heterogeneous catalysts. In this work, we found that the synergistic activation of CoS2 and MoS2 (2H-MoS2 and 1T-MoS2) greatly enhances the HER activity in a wide pH range compared to those of each component. The Gibbs free energies for hydrogen adsorption at interfacial Co sites are as low as -0.08 (-0.25) eV and -0.20 (0.01) eV for 2H-MoS2/CoS2 and 1T-MoS2/CoS2 heterostructures in acidic (alkaline) media, respectively, which are even superior to that of Pt(111) (-0.09 eV). Moreover, the theoretical exchange current density of MoS2/CoS2 can reach ∼1.98 × 10-18 A site-1 (∼8.43 A mg-1). Experimentally, MoS2/CoS2 exhibits a greatly reduced overpotential of 54 (46) mV and a Tafel slope of 42 (50) mV dec-1 under acidic (alkaline) conditions. The improved performance mainly originates from the synergistically activated interfacial Co atoms with better electron localization and local bonding. The interfacial effect enhances the electron conductivity and improves the H adsorption characteristics, making MoS2/CoS2 highly valuable as efficient HER electrocatalysts.

9.
Pestic Biochem Physiol ; 196: 105611, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37945250

ABSTRACT

The female reproductive potential plays a crucial role in reproduction, population dynamics and population maintenance. However, the function of endogenous genes in undifferentiated germ cells has been largely unknown in Bactrocera dorsalis. In this study, the conservative analysis showed that α-Spectrin shared a similarity in B. dorsalis and other dipteral flies. Further, the differential expression of α-Spectrin was examined in B. dorsalis by RT-qPCR, and the expression pattern of α-Spectrin protein was identified in female adult ovaries by using immunostaining. During the development of ovary, the change on the number of undifferentiated germ cells was also characterized and analyzed. To understand the function of α-Spectrin in B. dorsalis ovary, the RNAi-based knockdown was conducted, and the RNAi efficiency was examined by RT-qPCR, western blot and bioassay. The results revealed that the α-Spectrin dsRNA could strikingly decrease the expression level of α-Spectrin in ovaries and diminish oviposition and ovary size as a consequence of downregulation of α-Spectrin. Overall, our study facilitates reproductive research on the function of conservative genes in B. dorsalis ovary, which may provide a new insight into seeking novel target genes for pest management control.


Subject(s)
Spectrin , Tephritidae , Animals , Female , RNA Interference , Spectrin/genetics , Spectrin/metabolism , Reproduction , Tephritidae/genetics
10.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675143

ABSTRACT

Camptothecin (CPT), first isolated from Chinese tree Camptotheca acuminate, produces rapid and prolonged inhibition of DNA synthesis and induction of DNA damage by targeting topoisomerase I (top1), which is highly activated in cancer cells. CPT thus exhibits remarkable anticancer activities in various cancer types, and is a promising therapeutic agent for the treatment of cancers. However, it remains to be uncovered underlying its cytotoxicity toward germ cells. In this study we found that CPT, a cell cycle-specific anticancer agent, reduced fecundity and exhibited significant cytotoxicity toward GSCs and two-cell cysts. We showed that CPT induced GSC loss and retarded two-cell cysts differentiation in a niche- or apoptosis-independent manner. Instead, CPT induced ectopic expression of a differentiation factor, bag of marbles (Bam), and regulated the expression of cyclin A, which contributed to GSC loss. In addition, CPT compromised two-cell cysts differentiation by decreasing the expression of Bam and inducing cell arrest at G1/S phase via cyclin A, eventually resulting in two-cell accumulation. Collectively, this study demonstrates, for the first time in vivo, that the Bam-cyclin A axis is involved in CPT-mediated germline stem cell loss and two-cell cysts differentiation defects via inducing cell cycle arrest, which could provide information underlying toxicological effects of CPT in the productive system, and feature its potential to develop as a pharmacology-based germline stem cell regulation agent.


Subject(s)
Cysts , Drosophila Proteins , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Cyclins/metabolism , Drosophila Proteins/metabolism , Cell Differentiation , Cyclin A/metabolism , Camptothecin/pharmacology , Camptothecin/metabolism , Cell Cycle Checkpoints , Germ Cells/metabolism , Cysts/metabolism
11.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(1): 47-53, 2023 Jan 30.
Article in Zh | MEDLINE | ID: mdl-36752006

ABSTRACT

OBJECTIVE: Current mainstream PET scattering correction methods are introduced and evaluated horizontally, and finally, the existing problems and development direction of scattering correction are discussed. METHODS: Based on NeuWise Pro PET/CT products of Neusoft Medical System Co. Ltd. , the simulation experiment is carried out to evaluate the influence of radionuclide distribution out of FOV (field of view) on the scattering estimation accuracy of each method. RESULTS: The scattering events produced by radionuclide out of FOV have an obvious impact on the spatial distribution of scattering, which should be considered in the model. The scattering estimation accuracy of Monte Carlo method is higher than single scatter simulation (SSS). CONCLUSIONS: Clinically, if the activity of the adjacent parts out of the FOV is high, such as brain, liver, kidney and bladder, it is likely to lead to the deviation of scattering estimation. Considering the Monte Carlo scattering estimation of the distribution of radionuclide out of FOV, it's helpful to improve the accuracy of scattering distribution estimation.


Subject(s)
Brain , Positron Emission Tomography Computed Tomography , Scattering, Radiation , Computer Simulation , Monte Carlo Method , Phantoms, Imaging , Image Processing, Computer-Assisted
12.
Circulation ; 144(10): 788-804, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34162222

ABSTRACT

BACKGROUND: Calsequestrins (Casqs), comprising the Casq1 and Casq2 isoforms, buffer Ca2+ and regulate its release in the sarcoplasmic reticulum of skeletal and cardiac muscle, respectively. Human inherited diseases associated with mutations in CASQ1 or CASQ2 include malignant hyperthermia/environmental heat stroke (MH/EHS) and catecholaminergic polymorphic ventricular tachycardia. However, patients with an MH/EHS event often experience arrhythmia for which the underlying mechanism remains unknown. METHODS: Working hearts from conventional (Casq1-KO) and cardiac-specific (Casq1-CKO) Casq1 knockout mice were monitored in vivo and ex vivo by ECG and electric mapping, respectively. MH was induced by 2% isoflurane and treated intraperitoneally with dantrolene. Time-lapse imaging was used to monitor intracellular Ca2+ activity in isolated mouse cardiomyocytes or neonatal rat ventricular myocytes with knockdown, overexpression, or truncation of the Casq1 gene. Conformational change in both Casqs was determined by cross-linking Western blot analysis. RESULTS: Like patients with MH/EHS, Casq1-KO and Casq1-CKO mice had faster basal heart rate and ventricular tachycardia on exposure to 2% isoflurane, which could be relieved by dantrolene. Basal sinus tachycardia and ventricular ectopic electric triggering also occurred in Casq1-KO hearts ex vivo. Accordingly, the ventricular cardiomyocytes from Casq1-CKO mice displayed dantrolene-sensitive increased Ca2+ waves and diastole premature Ca2+ transients/oscillations on isoflurane. Neonatal rat ventricular myocytes with Casq1-knockdown had enhanced spontaneous Ca2+ sparks/transients on isoflurane, whereas cells overexpressing Casq1 exhibited decreased Ca2+ sparks/transients that were absent in cells with truncation of 9 amino acids at the C terminus of Casq1. Structural evaluation showed that most of the Casq1 protein was present as a polymer and physically interacted with ryanodine receptor-2 in the ventricular sarcoplasmic reticulum. The Casq1 isoform was also expressed in human myocardium. Mechanistically, exposure to 2% isoflurane or heating at 41 °C induced Casq1 oligomerization in mouse ventricular and skeletal muscle tissues, leading to a reduced Casq1/ryanodine receptor-2 interaction and increased ryanodine receptor-2 activity in the ventricle. CONCLUSIONS: Casq1 is expressed in the heart, where it regulates sarcoplasmic reticulum Ca2+ release and heart rate. Casq1 deficiency independently causes MH/EHS-like ventricular arrhythmia by trigger-induced Casq1 oligomerization and a relief of its inhibitory effect on ryanodine receptor-2-mediated Ca2+ release, thus revealing a new inherited arrhythmia and a novel mechanism for MH/EHS arrhythmogenesis.


Subject(s)
Calsequestrin/genetics , Malignant Hyperthermia/etiology , Myocardium/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Heart Rate/physiology , Heart Ventricles/physiopathology , Malignant Hyperthermia/diagnosis , Mice , Mice, Knockout , Ryanodine Receptor Calcium Release Channel , Sarcoplasmic Reticulum/physiology , Tachycardia, Ventricular , Thorax
13.
Sensors (Basel) ; 22(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35746369

ABSTRACT

Advances in automotive technology require networks to support a variety of communication requirements, such as reliability, real-time performance, low jitter, and strict delay limits. Time-Sensitive Network (TSN) is a keyframe transmission delay-guaranteed solution based on the IEEE 802 architecture of the automotive Ethernet. However, most of the existing studies on automotive TSN performance are based on a single mechanism, lacking a complete and systematic research tool. At the same time, the design method should be considered from a global perspective when designing an automotive TSN system, rather than only considering a single mechanism that TSN applies to. This paper discusses the correspondence between traffic types and automotive scenarios and proposes a methodology to target the delay constraint of traffic types as the design goal of automotive TSN networks. To study the performance of automotive TSN under different mechanisms such as time-aware shaper (TAS), credit-based shaper (CBS), cyclic queuing and forwarding (CQF), etc., this paper also develops a systematic automotive TSN simulation system based on OMNeT++. The simulation system plays a crucial role in the whole methodology, including all applicable TSN standards for the automotive field. Lastly, a complex automotive scenario based on zonal architecture provided by a major motor company in Shanghai is analyzed in the simulated system; verifying TSN can guarantee real-time performance and reliability of the in-vehicle network.

14.
Int J Mol Sci ; 23(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36499219

ABSTRACT

The oviduct is a dynamic reproductive organ for mammalian reproduction and is required for gamete storage, maturation, fertilization, and early embryonic development, and it directly affects fecundity. However, the molecular regulation of prolificacy occurring in estrous periods remain poorly understood. This study aims to gain a better understanding of the genes involved in regulating goat fecundity in the proteome and transcriptome levels of the oviducts. Twenty female Yunshang black goats (between 2 and 3 years old, weight 52.22 ± 0.43 kg) were divided into high- and low-fecundity groups in the follicular (FH and FL, five individuals per group) and luteal (LH and LL, five individuals per group) phases, respectively. The DIA-based high-resolution mass spectrometry (MS) method was used to quantify proteins in twenty oviducts. A total of 5409 proteins were quantified, and Weighted gene co-expression network analysis (WGCNA) determined that the tan module was highly associated with the high-fecundity trait in the luteal phase, and identified NUP107, ANXA11, COX2, AKP13, and ITF140 as hub proteins. Subsequently, 98 and 167 differentially abundant proteins (DAPs) were identified in the FH vs. FL and LH vs. LL comparison groups, respectively. Parallel reaction monitoring (PRM) was used to validate the results of the proteomics data, and the hub proteins were analyzed with Western blot (WB). In addition, biological adhesion and transporter activity processes were associated with oviductal function, and several proteins that play roles in oviductal communication with gametes or embryos were identified, including CAMSAP3, ITGAM, SYVN1, EMG1, ND5, RING1, CBS, PES1, ELP3, SEC24C, SPP1, and HSPA8. Correlation analysis of proteomics and transcriptomic revealed that the DAPs and differentially expressed genes (DEGs) are commonly involved in the metabolic processes at the follicular phase; they may prepare the oviductal microenvironment for gamete reception; and the MAP kinase activity, estrogen receptor binding, and angiotensin receptor binding terms were enriched in the luteal phase, which may be actively involved in reproductive processes. By generating the proteome data of the oviduct at two critical phases and integrating transcriptome analysis, we uncovered novel aspects of oviductal gene regulation of fecundity and provided a reference for other mammals.


Subject(s)
Goats , Proteomics , Humans , Animals , Female , Proteomics/methods , Goats/genetics , Goats/metabolism , Oviducts/metabolism , Fallopian Tubes/metabolism , Proteome/genetics , Proteome/metabolism , RNA-Binding Proteins/metabolism
15.
BMC Oral Health ; 22(1): 659, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36585636

ABSTRACT

BACKGROUND: Ensuring high accuracy in multimodal image fusion for oral and maxillofacial tumors is crucial before further application. The aim of this study was to explore the factors influencing the accuracy of multimodal image fusion for oral and maxillofacial tumors. METHODS: Pairs of single-modality images were obtained from oral and maxillofacial tumor patients, and were fused using a proprietary navigation system by using three algorithms (automatic fusion, manual fusion, and registration point-based fusion). Fusion accuracy was evaluated including two aspects-overall fusion accuracy and tumor volume fusion accuracy-and were indicated by mean deviation and fusion index, respectively. Image modality, fusion algorithm, and other characteristics of multimodal images that may have potential influence on fusion accuracy were recorded. Univariate and multivariate analysis were used to identify relevant affecting factors. RESULTS: Ninety-three multimodal images were generated by fusing 31 pairs of single-modality images. The interaction effect of image modality and fusion algorithm (P = 0.02, P = 0.003) and thinner slice thickness (P = 0.006) were shown to significantly influence the overall fusion accuracy. The tumor volume (P < 0.001), tumor location (P = 0.007), and image modality (P = 0.01) were significant influencing factors for tumor volume fusion accuracy. CONCLUSIONS: To ensure high overall fusion accuracy, manual fusion was not preferred in CT/MRI image fusion, and neither was automatic fusion in image fusion containing PET modality. Using image sets with thinner slice thickness could increase overall fusion accuracy. CT/MRI fusion yielded higher tumor volume fusion accuracy than fusion containing PET modality. The tumor volume fusion accuracy should be taken into consideration during image fusion when the tumor volume is small and the tumor is located in the mandible.


Subject(s)
Neoplasms , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Retrospective Studies , Algorithms , Magnetic Resonance Imaging
16.
J Recept Signal Transduct Res ; 41(4): 401-407, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32924718

ABSTRACT

OBJECTIVES: Neuropathic pain, with lots of clinical conditions in various diseases, whose physiopathology is implicated in inflammation. MicroRNAs (miRNAs) have largely been shown to exert anti-inflammatory effects against chronic diseases. We then evaluated the effects and regulatory mechanism of miR-140 on neuropathic pain. METHODS: Rats model with neuropathic pain were established via chronic constriction injury (CCI) and verified by determination of mechanical withdrawal threshold (MWT) and paw withdrawal latency (PWL). The expression level of miR-140 was determined via qRT-PCR (quantitative real-time polymerase chain reaction). Intrathecal injection of miR-140 agomiR was conducted to evaluate the influence of miR-140 on CCI rats via evaluation of MWT, PWL and inflammatory factors secretion. The binding target of miR-140 was predicted and characterized via dual luciferase activity assay. RESULTS: Decreased MWT and PWL, as well as increased inflammatory factor secretion, including IL (interleukin)-1ß, IL-6 and interferon-γ (IFN-γ), were found in rats under CCI compared with sham rats. MiR-140 was decreased in rats under CCI. Intrathecal injection of miR-140 agomiR increased MWT and PWL, thus attenuating mechanical and thermal hyperalgesia in CCI rats. Moreover, decreased inflammatory factor secretion in rats under CCI injected with miR-140 agomiR, suggesting a negatively regulatory role of miR-140 on neuroinflammation. MiR-140 could bind with Sphingosine-1-phosphate receptor 1 (S1PR1). S1PR1 agonist, SEW2871, could reverse the suppression of miR-140 on neuropathic pain. CONCLUSIONS: MiR-140 could mollify CCI-stimulated neuropathic pain via targeting S1PR1, suggesting a potential therapeutic target in the treatment of neuropathic pain.


Subject(s)
MicroRNAs/physiology , Neuralgia/drug therapy , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Behavior, Animal , Disease Models, Animal , Gene Expression Profiling , HEK293 Cells , Humans , Inflammation , Male , Neuroinflammatory Diseases , Oxadiazoles/chemistry , Rats , Rats, Wistar , Stress, Mechanical , Thiophenes/chemistry
17.
Inorg Chem ; 60(17): 13736-13747, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34436878

ABSTRACT

As an environmentally friendly energy technology, direct methanol fuel cells (DMFCs) meet the needs of sustainable development. Herein, novel dicyanamide anion-based (N(CN)2-) ionic liquid (IL)-functionalized reduced graphene oxide (rGO)-supported Pt catalysts are synthesized via a facile one-pot room temperature reduction method, which show a boost in methanol oxidation performance compared with Pt/rGO. The mass activities of the as-prepared Pt/emimN(CN)2/rGO (863.6 mA mg-1Pt) and Pt/epyN(CN)2/rGO (524.9 mA mg-1Pt) are about five and three times higher than that of Pt/rGO (178.6 mA mg-1Pt), and about six and four times higher than that of Pt/C (140.2 mA mg-1Pt), respectively. The participation of ILs significantly improves the CO poisoning resistance, stability, and activity for methanol oxidation of catalysts. The relationship between the structures and conductivities of diverse ILs and the performance of Pt catalysts are studied systematically. These findings may offer a promising prospect of ILs in DMFCs.

18.
Nanotechnology ; 32(29)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33836514

ABSTRACT

An integrated electrode of core-shell coaxially structured NiCo2S4@TiO2nanorod arrays/carbon cloth (NiCo2S4@TiO2@CC) have been fabricated, via a two-step hydrothermal method. Comprehensive structural and compositional analyzes are performed to understand the effects of the NiCo2S4shell on the TiO2core. Such core-shell arrays structure can significantly provide abundant electroactive sites for redox reactions, convenient ion transport paths, and favorable structure stability. The NiCo2S4@TiO2@CC electrode represents a splendid specific capacitance (650 F g-1at 1 A g-1) and enhanced cycling stability (capacitance retention of 97% over 10 000 cycles at 5 A g-1). Additionally, the assembled NiCo2S4@TiO2@CC//CNT@CC solid-state asymmetric supercapacitors exhibit a maximal energy density of 0.6 mWh cm-3at 32.4 W cm-3, and topping cycling stability (85% capacitance retention after 5000 cycles at 5 mA cm-2). The results demonstrate that the well-designed NiCo2S4@TiO2@CC presented in this work are applicable for the development of electrode materials in energy storage devices.

19.
Pestic Biochem Physiol ; 173: 104801, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33771250

ABSTRACT

Rotenone, a selective inhibitor of mitochondrial complex I, has been extensively studied on kinds of neuron and neuroblast in Parkinson's disease. However, little is known about the potential mechanism of this promising botanical insecticide upon insect cells. In the article, cell proliferation of two Lepidoptera cell lines, Spodoptera litura SL-1 cells and Spodoptera frugiperda Sf9 cells, were all inhibited by rotenone in a time- and dose-dependent manner. Typical necrotic characteristics of cell morphology and ultrastructure, such as plasma membrane collapses and organelle lyses, were all observed by transmission electron microscope and scanning electron microscope. Moreover, irregular DNA degradation was also detected by DNA gel electrophoresis and Hoechst 33258 staining, while the typical apoptotic feature, DNA ladder, hadn't been observed. Flow cytometric analysis showed that rotenone-induced cell death of Sf9 and SL-1 cells accompanied with the plasma membrane potential depolarization and mitochondrial membrane potential reduction. Furthermore, the activity of Na+-K+-ATPase was detected in our study. In conclusion, rotenone could cause necrosis but not apoptosis in insect cells through a mitochondrial- and plasmic membrane-dependent pattern, which shed a light on the rotenone-induced cytotoxicity on insects.


Subject(s)
Apoptosis , Rotenone , Animals , Cell Membrane , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Necrosis/chemically induced , Rotenone/toxicity
20.
J Synchrotron Radiat ; 27(Pt 6): 1494-1498, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33147174

ABSTRACT

Constructing vacuum-ultraviolet beamlines at synchrotron radiation facilities with giga-electron volt storage ring results in serious heat load on the beamlines which can reduce their performance. To solve this problem, an APPLE-Knot undulator with eight magnet rows has been built at the Shanghai Synchrotron Radiation Facility and has achieved very good performance. However, its performance in vertical polarization mode is imperfect. Here, a new configuration of a magnet-merged APPLE-Knot undulator that has achieved a better performance is reported.

SELECTION OF CITATIONS
SEARCH DETAIL