Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
PLoS Genet ; 19(9): e1010944, 2023 09.
Article in English | MEDLINE | ID: mdl-37721936

ABSTRACT

Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular puncta. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and the control of matrix assembly in vivo. Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Subtilisin , Animals , Amino Acid Sequence , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Collagen/genetics , Collagen/metabolism , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Subtilisin/genetics , Subtilisin/metabolism
2.
EMBO J ; 40(9): e106163, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33792936

ABSTRACT

Transcytosis is a form of specialized transport through which an extracellular cargo is endocytosed, shuttled across the cytoplasm in membrane-bound vesicles, and secreted at a different plasma membrane surface. This important process allows membrane-impermeable macromolecules to pass through a cell and become accessible to adjacent cells and tissue compartments. Transcytosis also promotes redistribution of plasma membrane proteins and lipids to different regions of the cell surface. Here we review transcytosis and highlight in vivo studies showing how developing epithelial cells use it to change shape, to migrate, and to relocalize signaling molecules.


Subject(s)
Epithelium/physiology , Membrane Proteins/metabolism , Animals , Cytoplasm/metabolism , Humans , Lipid Metabolism , Morphogenesis , Transcytosis
3.
PLoS Genet ; 18(8): e1010348, 2022 08.
Article in English | MEDLINE | ID: mdl-35960773

ABSTRACT

Epithelial cells secrete apical extracellular matrices to form protruding structures such as denticles, ridges, scales, or teeth. The mechanisms that shape these structures remain poorly understood. Here, we show how the actin cytoskeleton and a provisional matrix work together to sculpt acellular longitudinal alae ridges in the cuticle of adult C. elegans. Transient assembly of longitudinal actomyosin filaments in the underlying lateral epidermis accompanies deposition of the provisional matrix at the earliest stages of alae formation. Actin is required to pattern the provisional matrix into longitudinal bands that are initially offset from the pattern of longitudinal actin filaments. These bands appear ultrastructurally as alternating regions of adhesion and separation within laminated provisional matrix layers. The provisional matrix is required to establish these demarcated zones of adhesion and separation, which ultimately give rise to alae ridges and their intervening valleys, respectively. Provisional matrix proteins shape the alae ridges and valleys but are not present within the final structure. We propose a morphogenetic mechanism wherein cortical actin patterns are relayed to the laminated provisional matrix to set up distinct zones of matrix layer separation and accretion that shape a permanent and acellular matrix structure.


Subject(s)
Actins , Caenorhabditis elegans , Actins/metabolism , Animals , Caenorhabditis elegans/metabolism , Cytoskeleton/genetics , Extracellular Matrix/metabolism , Morphogenesis
4.
PLoS Genet ; 16(11): e1009188, 2020 11.
Article in English | MEDLINE | ID: mdl-33141826

ABSTRACT

Zona Pellucida domain (ZP) proteins are critical components of the body's external-most protective layers, apical extracellular matrices (aECMs). Although their loss or dysfunction is associated with many diseases, it remains unclear how ZP proteins assemble in aECMs. Current models suggest that ZP proteins polymerize via their ZPn subdomains, while ZPc subdomains modulate ZPn behavior. Using the model organism C. elegans, we investigated the aECM assembly of one ZP protein, LET-653, which shapes several tubes. Contrary to prevailing models, we find that LET-653 localizes and functions via its ZPc domain. Furthermore, we show that ZPc domain function requires cleavage at the LET-653 C-terminus, likely in part to relieve inhibition of the ZPc by the ZPn domain, but also to promote some other aspect of ZPc domain function. In vitro, the ZPc, but not ZPn, domain bound crystalline aggregates. These data offer a new model for ZP function whereby the ZPc domain is primarily responsible for matrix incorporation and tissue shaping.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Extracellular Matrix/metabolism , Mucins/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Cell Line , Drosophila , Embryo, Nonmammalian , Models, Animal , Mucins/genetics , Mutation , Protein Aggregates/genetics , Protein Domains/genetics
5.
Semin Cell Dev Biol ; 67: 123-131, 2017 07.
Article in English | MEDLINE | ID: mdl-27178486

ABSTRACT

A seamless tube is a very narrow-bore tube that is composed of a single cell with an intracellular lumen and no adherens or tight junctions along its length. Many capillaries in the vertebrate vascular system are seamless tubes. Seamless tubes also are found in invertebrate organs, including the Drosophila trachea and the Caenorhabditis elegans excretory system. Seamless tube cells can be less than a micron in diameter, and they can adopt very simple "doughnut-like" shapes or very complex, branched shapes comparable to those of neurons. The unusual topology and varied shapes of seamless tubes raise many basic cell biological questions about how cells form and maintain such structures. The prevalence of seamless tubes in the vascular system means that answering such questions has significant relevance to human health. In this review, we describe selected examples of seamless tubes in animals and discuss current models for how seamless tubes develop and are shaped, focusing particularly on insights that have come from recent studies in Drosophila and C. elegans.


Subject(s)
Capillaries/cytology , Endothelial Cells/ultrastructure , Epithelial Cells/ultrastructure , Morphogenesis/genetics , Trachea/cytology , Vascular Diseases/pathology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Capillaries/anatomy & histology , Capillaries/metabolism , Cell Polarity , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Endothelial Cells/metabolism , Epithelial Cells/metabolism , Exocytosis , Gene Expression Regulation , Humans , Models, Biological , Pinocytosis , Trachea/anatomy & histology , Trachea/metabolism , Vascular Diseases/genetics , Vascular Diseases/metabolism
6.
PLoS Genet ; 12(8): e1006205, 2016 08.
Article in English | MEDLINE | ID: mdl-27482894

ABSTRACT

Most epithelial cells secrete a glycoprotein-rich apical extracellular matrix that can have diverse but still poorly understood roles in development and physiology. Zona Pellucida (ZP) domain glycoproteins are common constituents of these matrices, and their loss in humans is associated with a number of diseases. Understanding of the functions, organization and regulation of apical matrices has been hampered by difficulties in imaging them both in vivo and ex vivo. We identified the PAN-Apple, mucin and ZP domain glycoprotein LET-653 as an early and transient apical matrix component that shapes developing epithelia in C. elegans. LET-653 has modest effects on shaping of the vulva and epidermis, but is essential to prevent lumen fragmentation in the very narrow, unicellular excretory duct tube. We were able to image the transient LET-653 matrix by both live confocal imaging and transmission electron microscopy. Structure/function and fluorescence recovery after photobleaching studies revealed that LET-653 exists in two separate luminal matrix pools, a loose fibrillar matrix in the central core of the lumen, to which it binds dynamically via its PAN domains, and an apical-membrane-associated matrix, to which it binds stably via its ZP domain. The PAN domains are both necessary and sufficient to confer a cyclic pattern of duct lumen localization that precedes each molt, while the ZP domain is required for lumen integrity. Ectopic expression of full-length LET-653, but not the PAN domains alone, could expand lumen diameter in the developing gut tube, where LET-653 is not normally expressed. Together, these data support a model in which the PAN domains regulate the ability of the LET-653 ZP domain to interact with other factors at the apical membrane, and this ZP domain interaction promotes expansion and maintenance of lumen diameter. These data identify a transient apical matrix component present prior to cuticle secretion in C. elegans, demonstrate critical roles for this matrix component in supporting lumen integrity within narrow bore tubes such as those found in the mammalian microvasculature, and reveal functional importance of the evolutionarily conserved ZP domain in this tube protecting activity.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Extracellular Matrix/genetics , Glycoproteins/genetics , Mucins/genetics , Animals , Caenorhabditis elegans/chemistry , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/biosynthesis , Caenorhabditis elegans Proteins/chemistry , Epithelial Cells/chemistry , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Gene Expression Regulation , Glycoproteins/biosynthesis , Glycoproteins/chemistry , Microscopy, Electron, Transmission , Mucins/biosynthesis , Mucins/chemistry , Protein Domains/genetics , Structure-Activity Relationship , Zona Pellucida/chemistry , Zona Pellucida/metabolism , Zona Pellucida/ultrastructure
7.
Semin Cell Dev Biol ; 60: 136-145, 2016 12.
Article in English | MEDLINE | ID: mdl-27436685

ABSTRACT

Cells adopt specific shapes that are necessary for specific functions. For example, some neurons extend elaborate arborized dendrites that can contact multiple targets. Epithelial and endothelial cells can form tiny seamless unicellular tubes with an intracellular lumen. Recent advances showed that cells can auto-fuse to acquire those specific shapes. During auto-fusion, a cell merges two parts of its own plasma membrane. In contrast to cell-cell fusion or macropinocytic fission, which result in the merging or formation of two separate membrane bound compartments, auto-fusion preserves one compartment, but changes its shape. The discovery of auto-fusion in C. elegans was enabled by identification of specific protein fusogens, EFF-1 and AFF-1, that mediate cell-cell fusion. Phenotypic characterization of eff-1 and aff-1 mutants revealed that fusogen-mediated fusion of two parts of the same cell can be used to sculpt dendritic arbors, reconnect two parts of an axon after injury, or form a hollow unicellular tube. Similar auto-fusion events recently were detected in vertebrate cells, suggesting that auto-fusion could be a widely used mechanism for shaping neurons and tubes.


Subject(s)
Endothelial Cells/physiology , Epithelial Cells/physiology , Neurons/cytology , Animals , Caenorhabditis elegans/cytology , Cell Fusion , Morphogenesis , Nerve Regeneration
8.
Development ; 141(22): 4279-84, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25371363

ABSTRACT

Receptor tyrosine kinase (RTK) signaling through Ras influences many aspects of normal cell behavior, including epithelial-to-mesenchymal transition, and aberrant signaling promotes both tumorigenesis and metastasis. Although many such effects are cell-autonomous, here we show a non-cell-autonomous role for RTK-Ras signaling in the delamination of a neuroblast from an epithelial organ. The C. elegans renal-like excretory organ is initially composed of three unicellular epithelial tubes, namely the canal, duct and G1 pore cells; however, the G1 cell later delaminates from the excretory system to become a neuroblast and is replaced by the G2 cell. G1 delamination and G2 intercalation involve cytoskeletal remodeling, interconversion of autocellular and intercellular junctions and migration over a luminal extracellular matrix, followed by G1 junction loss. LET-23/EGFR and SOS-1, an exchange factor for Ras, are required for G1 junction loss but not for initial cytoskeletal or junction remodeling. Surprisingly, expression of activated LET-60/Ras in the neighboring duct cell, but not in the G1 or G2 cells, is sufficient to rescue sos-1 delamination defects, revealing that Ras acts non-cell-autonomously to permit G1 delamination. We suggest that, similarly, oncogenic mutations in cells within a tumor might help create a microenvironment that is permissive for other cells to detach and ultimately metastasize.


Subject(s)
Caenorhabditis elegans/embryology , Epithelial Cells/cytology , Kidney/cytology , Neurons/cytology , Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology , ras Proteins/metabolism , Animals , Caenorhabditis elegans Proteins/metabolism , Cell Differentiation/physiology , Cell Movement/physiology , Cellular Microenvironment/physiology , ErbB Receptors/metabolism , Intercellular Junctions/physiology , Kidney/embryology , Microscopy, Confocal
9.
Development ; 139(5): 979-90, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22278925

ABSTRACT

Epithelial cells are linked by apicolateral junctions that are essential for tissue integrity. Epithelial cells also secrete a specialized apical extracellular matrix (ECM) that serves as a protective barrier. Some components of the apical ECM, such as mucins, can influence epithelial junction remodeling and disassembly during epithelial-to-mesenchymal transition (EMT). However, the molecular composition and biological roles of the apical ECM are not well understood. We identified a set of extracellular leucine-rich repeat only (eLRRon) proteins in C. elegans (LET-4 and EGG-6) that are expressed on the apical surfaces of epidermal cells and some tubular epithelia, including the excretory duct and pore. A previously characterized paralog, SYM-1, is also expressed in epidermal cells and secreted into the apical ECM. Related mammalian eLRRon proteins, such as decorin or LRRTM1-3, influence stromal ECM or synaptic junction organization, respectively. Mutants lacking one or more of the C. elegans epithelial eLRRon proteins show multiple defects in apical ECM organization, consistent with these proteins contributing to the embryonic sheath and cuticular ECM. Furthermore, epithelial junctions initially form in the correct locations, but then rupture at the time of cuticle secretion and remodeling of cell-matrix interactions. This work identifies epithelial eLRRon proteins as important components and organizers of the pre-cuticular and cuticular apical ECM, and adds to the small but growing body of evidence linking the apical ECM to epithelial junction stability. We propose that eLRRon-dependent apical ECM organization contributes to cell-cell adhesion and may modulate epithelial junction dynamics in both normal and disease situations.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , Caenorhabditis elegans/ultrastructure , Epithelial Cells/ultrastructure , Extracellular Matrix/chemistry , Intercellular Junctions/metabolism , Proteins/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Cell Polarity , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/ultrastructure , Genotype , Leucine-Rich Repeat Proteins , Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
10.
Development ; 138(16): 3545-55, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21771815

ABSTRACT

Receptor tyrosine kinases and Notch are crucial for tube formation and branching morphogenesis in many systems, but the specific cellular processes that require signaling are poorly understood. Here we describe sequential roles for Notch and Epidermal growth factor (EGF)-Ras-ERK signaling in the development of epithelial tube cells in the C. elegans excretory (renal-like) organ. This simple organ consists of three tandemly connected unicellular tubes: the excretory canal cell, duct and G1 pore. lin-12 and glp-1/Notch are required to generate the canal cell, which is a source of LIN-3/EGF ligand and physically attaches to the duct during de novo epithelialization and tubulogenesis. Canal cell asymmetry and let-60/Ras signaling influence which of two equivalent precursors will attach to the canal cell. Ras then specifies duct identity, inducing auto-fusion and a permanent epithelial character; the remaining precursor becomes the G1 pore, which eventually loses epithelial character and withdraws from the organ to become a neuroblast. Ras continues to promote subsequent aspects of duct morphogenesis and differentiation, and acts primarily through Raf-ERK and the transcriptional effectors LIN-1/Ets and EOR-1. These results reveal multiple genetically separable roles for Ras signaling in tube development, as well as similarities to Ras-mediated control of branching morphogenesis in more complex organs, including the mammalian kidney. The relative simplicity of the excretory system makes it an attractive model for addressing basic questions about how cells gain or lose epithelial character and organize into tubular networks.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Receptors, Notch/metabolism , ras Proteins/metabolism , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans Proteins/genetics , Cell Lineage , Gene Expression Regulation, Developmental , MAP Kinase Signaling System , SOS1 Protein/genetics , SOS1 Protein/metabolism , ras Proteins/genetics
11.
Nature ; 451(7178): 569-72, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-18185515

ABSTRACT

There are fundamental similarities between sleep in mammals and quiescence in the arthropod Drosophila melanogaster, suggesting that sleep-like states are evolutionarily ancient. The nematode Caenorhabditis elegans also has a quiescent behavioural state during a period called lethargus, which occurs before each of the four moults. Like sleep, lethargus maintains a constant temporal relationship with the expression of the C. elegans Period homologue LIN-42 (ref. 5). Here we show that quiescence associated with lethargus has the additional sleep-like properties of reversibility, reduced responsiveness and homeostasis. We identify the cGMP-dependent protein kinase (PKG) gene egl-4 as a regulator of sleep-like behaviour, and show that egl-4 functions in sensory neurons to promote the C. elegans sleep-like state. Conserved effects on sleep-like behaviour of homologous genes in C. elegans and Drosophila suggest a common genetic regulation of sleep-like states in arthropods and nematodes. Our results indicate that C. elegans is a suitable model system for the study of sleep regulation. The association of this C. elegans sleep-like state with developmental changes that occur with larval moults suggests that sleep may have evolved to allow for developmental changes.


Subject(s)
Caenorhabditis elegans/physiology , Sleep/physiology , Animals , Arousal/genetics , Arousal/physiology , Biological Evolution , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Conserved Sequence/genetics , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Homeostasis/physiology , Larva/physiology , Lethargy , Molting/physiology , Sleep/genetics
12.
Genetics ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995735

ABSTRACT

Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.

13.
Genetics ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739761

ABSTRACT

In C. elegans, expanded families of divergent Hedgehog-related and Patched-related proteins promote numerous processes ranging from epithelial and sense organ development to pathogen responses to cuticle shedding during the molt cycle. The molecular functions of these proteins have been mysterious since nematodes lack a canonical Hedgehog signaling pathway. Here we show that Hedgehog-related proteins are components of the cuticle and pre-cuticle apical extracellular matrices that coat, shape, and protect external epithelia. Of four Hedgehog-related proteins imaged, two (GRL-2 and GRL-18) stably associated with the cuticles of specific tubes and two (GRL-7 and WRT-10) labelled pre-cuticle substructures such as furrows or alae. We found that wrt-10 mutations disrupt cuticle alae ridges, consistent with a structural role in matrix organization. We hypothesize that most nematode Hedgehog-related proteins are apical extracellular matrix components, a model that could explain many of the reported functions for this family. These results highlight ancient connections between Hedgehog proteins and the extracellular matrix and suggest that any signaling roles of C. elegans Hedgehog-related proteins will be intimately related to their matrix association.

14.
Life Sci Alliance ; 7(10)2024 Oct.
Article in English | MEDLINE | ID: mdl-39009411

ABSTRACT

In humans, a neomorphic isocitrate dehydrogenase mutation (idh-1neo) causes increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a Caenorhabditis elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to ∆dhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen, we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. In addition, supplementation with alternate sources of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding of how this oncogenic mutation rewires cellular metabolism.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Isocitrate Dehydrogenase , Mutation , Vitamin B 12 , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Vitamin B 12/metabolism , Vitamin B 12/pharmacology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Phenotype , Glutarates/metabolism
15.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559246

ABSTRACT

The isocitrate dehydrogenase neomorphic mutation ( idh-1neo ) generates increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a C. elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to Δdhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. Additionally, supplementation with an alternate source of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding how this oncogenic mutation rewires cellular metabolism.

16.
Dev Biol ; 366(2): 298-307, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22537498

ABSTRACT

Cells perform wide varieties of functions that are facilitated, in part, by adopting unique shapes. Many of the genes and pathways that promote cell fate specification have been elucidated. However, relatively few transcription factors have been identified that promote shape acquisition after fate specification. Here we show that the Nkx5/HMX homeodomain protein MLS-2 is required for cellular elongation and shape maintenance of two tubular epithelial cells in the C. elegans excretory system, the duct and pore cells. The Nkx5/HMX family is highly conserved from sea urchins to humans, with known roles in neuronal and glial development. MLS-2 is expressed in the duct and pore, and defects in mls-2 mutants first arise when the duct and pore normally adopt unique shapes. MLS-2 cooperates with the EGF-Ras-ERK pathway to turn on the LIN-48/Ovo transcription factor in the duct cell during morphogenesis. These results reveal a novel interaction between the Nkx5/HMX family and the EGF-Ras pathway and implicate a transcription factor, MLS-2, as a regulator of cell shape.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Cell Shape , Epithelial Cells/cytology , Homeodomain Proteins/physiology , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Cell Differentiation , Epithelial Cells/physiology , Gene Expression Regulation, Developmental , Morphogenesis , Signal Transduction , Transcription Factors/physiology
17.
bioRxiv ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38234847

ABSTRACT

In C. elegans, divergent Hedgehog-related (Hh-r) and Patched-related (PTR) proteins promote numerous processes ranging from epithelial and sense organ development to pathogen responses to cuticle shedding during the molt cycle. Here we show that Hh-r proteins are actual components of the cuticle and pre-cuticle apical extracellular matrices (aECMs) that coat, shape, and protect external epithelia. Different Hh-r proteins stably associate with the aECMs of specific tissues and with specific substructures such as furrows and alae. Hh-r mutations can disrupt matrix structure. These results provide a unifying model for the function of nematode Hh-r proteins and highlight ancient connections between Hh proteins and the extracellular matrix.

18.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37396793

ABSTRACT

The C. elegans vulva is a polarized epithelial tube that has been studied extensively as a model for cell-cell signaling, cell fate specification, and tubulogenesis. Here we used endogenous fusions to show that the spectrin cytoskeleton is polarized in this organ, with conventional beta-spectrin ( UNC-70 ) found only at basolateral membranes and beta heavy spectrin ( SMA-1 ) found only at apical membranes. The sole alpha-spectrin ( SPC-1 ) is present at both locations but requires SMA-1 for its apical localization. Thus, beta spectrins are excellent markers for vulva cell membranes and polarity.

19.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333289

ABSTRACT

Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular aggregates. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and in the spatial and temporal restriction of matrix assembly in vivo . Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.

20.
MicroPubl Biol ; 20222022.
Article in English | MEDLINE | ID: mdl-35800971

ABSTRACT

The LIM homeodomain transcription factor LIN-11 is a key regulator of vulva, uterine, and neuron development in C. elegans. Multiple alleles of lin-11 are available, but none had been sequenced. We found that the reference allele, n389, is a 15900 bp deletion that also affects two other protein-coding genes, ZC247.1 and ZC247.2. The frequently used n566 allele is a 288bp deletion located in an intron and affecting the splice acceptor site.

SELECTION OF CITATIONS
SEARCH DETAIL