Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Immunol ; 21(4): 442-454, 2020 04.
Article in English | MEDLINE | ID: mdl-32152508

ABSTRACT

Programmed cell death protein 1 (PD-1) ligation delimits immunogenic responses in T cells. However, the consequences of programmed cell death 1 ligand 1 (PD-L1) ligation in T cells are uncertain. We found that T cell expression of PD-L1 in cancer was regulated by tumor antigen and sterile inflammatory cues. PD-L1+ T cells exerted tumor-promoting tolerance via three distinct mechanisms: (1) binding of PD-L1 induced STAT3-dependent 'back-signaling' in CD4+ T cells, which prevented activation, reduced TH1-polarization and directed TH17-differentiation. PD-L1 signaling also induced an anergic T-bet-IFN-γ- phenotype in CD8+ T cells and was equally suppressive compared to PD-1 signaling; (2) PD-L1+ T cells restrained effector T cells via the canonical PD-L1-PD-1 axis and were sufficient to accelerate tumorigenesis, even in the absence of endogenous PD-L1; (3) PD-L1+ T cells engaged PD-1+ macrophages, inducing an alternative M2-like program, which had crippling effects on adaptive antitumor immunity. Collectively, we demonstrate that PD-L1+ T cells have diverse tolerogenic effects on tumor immunity.


Subject(s)
B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immune Tolerance/immunology , Macrophages/immunology , Self Tolerance/immunology , Animals , Cell Differentiation/immunology , Cell Line, Tumor , Female , Humans , Interferon-gamma/immunology , Male , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology , Signal Transduction/immunology , Tumor Microenvironment/immunology
2.
Mol Cell ; 82(16): 3045-3060.e11, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35752173

ABSTRACT

Cancer mortality is primarily a consequence of its metastatic spread. Here, we report that methionine sulfoxide reductase A (MSRA), which can reduce oxidized methionine residues, acts as a suppressor of pancreatic ductal adenocarcinoma (PDA) metastasis. MSRA expression is decreased in the metastatic tumors of PDA patients, whereas MSRA loss in primary PDA cells promotes migration and invasion. Chemoproteomic profiling of pancreatic organoids revealed that MSRA loss results in the selective oxidation of a methionine residue (M239) in pyruvate kinase M2 (PKM2). Moreover, M239 oxidation sustains PKM2 in an active tetrameric state to promote respiration, migration, and metastasis, whereas pharmacological activation of PKM2 increases cell migration and metastasis in vivo. These results demonstrate that methionine residues can act as reversible redox switches governing distinct signaling outcomes and that the MSRA-PKM2 axis serves as a regulatory nexus between redox biology and cancer metabolism to control tumor metastasis.


Subject(s)
Carcinoma, Pancreatic Ductal , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Pancreatic Neoplasms , Thyroid Hormones/metabolism , Carcinoma, Pancreatic Ductal/genetics , Humans , Methionine , Methionine Sulfoxide Reductases/chemistry , Methionine Sulfoxide Reductases/metabolism , Oxidation-Reduction , Pancreatic Neoplasms/genetics , Pyruvate Kinase/metabolism , Thyroid Hormone-Binding Proteins , Pancreatic Neoplasms
3.
Oncogene ; 41(38): 4349-4360, 2022 09.
Article in English | MEDLINE | ID: mdl-35948648

ABSTRACT

Response to cancer immunotherapy in primary versus metastatic disease has not been well-studied. We found primary pancreatic ductal adenocarcinoma (PDA) is responsive to diverse immunotherapies whereas liver metastases are resistant. We discovered divergent immune landscapes in each compartment. Compared to primary tumor, liver metastases in both mice and humans are infiltrated by highly anergic T cells and MHCIIloIL10+ macrophages that are unable to present tumor-antigen. Moreover, a distinctive population of CD24+CD44-CD40- B cells dominate liver metastases. These B cells are recruited to the metastatic milieu by Muc1hiIL18hi tumor cells, which are enriched >10-fold in liver metastases. Recruited B cells drive macrophage-mediated adaptive immune-tolerance via CD200 and BTLA. Depleting B cells or targeting CD200/BTLA enhanced macrophage and T-cell immunogenicity and enabled immunotherapeutic efficacy of liver metastases. Our data detail the mechanistic underpinnings for compartment-specific immunotherapy-responsiveness and suggest that primary PDA models are poor surrogates for evaluating immunity in advanced disease.


Subject(s)
Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Humans , Immunotherapy , Interleukin-10 , Interleukin-18/therapeutic use , Liver Neoplasms/therapy , Mice , Pancreatic Neoplasms/drug therapy , Receptors, Immunologic , Pancreatic Neoplasms
4.
Cancer Cell ; 37(1): 37-54.e9, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31883968

ABSTRACT

Cyclin-dependent kinase 7 (CDK7) is a central regulator of the cell cycle and gene transcription. However, little is known about its impact on genomic instability and cancer immunity. Using a selective CDK7 inhibitor, YKL-5-124, we demonstrated that CDK7 inhibition predominately disrupts cell-cycle progression and induces DNA replication stress and genome instability in small cell lung cancer (SCLC) while simultaneously triggering immune-response signaling. These tumor-intrinsic events provoke a robust immune surveillance program elicited by T cells, which is further enhanced by the addition of immune-checkpoint blockade. Combining YKL-5-124 with anti-PD-1 offers significant survival benefit in multiple highly aggressive murine models of SCLC, providing a rationale for new combination regimens consisting of CDK7 inhibitors and immunotherapies.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/genetics , Genomic Instability , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/genetics , Animals , Antineoplastic Agents/pharmacology , CD4-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/cytology , Chemokine CXCL9/metabolism , DNA Damage , Female , Humans , Immune System , Inflammation , Interferon-gamma/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Male , Mice , Micronucleus Tests , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Pyrazoles/pharmacology , Pyrroles/pharmacology , Signal Transduction , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/immunology , Tumor Necrosis Factor-alpha/metabolism , Cyclin-Dependent Kinase-Activating Kinase
5.
Nat Commun ; 10(1): 1424, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926808

ABSTRACT

The drivers and the specification of CD4+ T cell differentiation in the tumor microenvironment and their contributions to tumor immunity or tolerance are incompletely understood. Using models of pancreatic ductal adenocarcinoma (PDA), we show that a distinct subset of tumor-infiltrating dendritic cells (DC) promotes PDA growth by directing a unique TH-program. Specifically, CD11b+CD103- DC predominate in PDA, express high IL-23 and TGF-ß, and induce FoxP3neg tumor-promoting IL-10+IL-17+IFNγ+ regulatory CD4+ T cells. The balance between this distinctive TH program and canonical FoxP3+ TREGS is unaffected by pattern recognition receptor ligation and is modulated by DC expression of retinoic acid. This TH-signature is mimicked in human PDA where it is associated with immune-tolerance and diminished patient survival. Our data suggest that CD11b+CD103- DC promote CD4+ T cell tolerance in PDA which may underscore its resistance to immunotherapy.


Subject(s)
Dendritic Cells/immunology , Interleukin-10/metabolism , Interleukin-17/metabolism , Pancreatic Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Cell Differentiation , Disease Progression , Forkhead Transcription Factors , Gene Expression Regulation, Neoplastic , Humans , Lectins, C-Type/metabolism , Mice, Inbred C57BL , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phenotype , Signal Transduction , Th17 Cells/immunology , Toll-Like Receptor 2/metabolism , Tretinoin/metabolism , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL