Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Publication year range
1.
Cell ; 179(7): 1647-1660.e19, 2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31835037

ABSTRACT

The process of cardiac morphogenesis in humans is incompletely understood. Its full characterization requires a deep exploration of the organ-wide orchestration of gene expression with a single-cell spatial resolution. Here, we present a molecular approach that reveals the comprehensive transcriptional landscape of cell types populating the embryonic heart at three developmental stages and that maps cell-type-specific gene expression to specific anatomical domains. Spatial transcriptomics identified unique gene profiles that correspond to distinct anatomical regions in each developmental stage. Human embryonic cardiac cell types identified by single-cell RNA sequencing confirmed and enriched the spatial annotation of embryonic cardiac gene expression. In situ sequencing was then used to refine these results and create a spatial subcellular map for the three developmental phases. Finally, we generated a publicly available web resource of the human developing heart to facilitate future studies on human cardiogenesis.


Subject(s)
Gene Expression Regulation, Developmental , Heart/embryology , Myocytes, Cardiac/metabolism , Single-Cell Analysis , Transcriptome , Female , Humans , Male , Morphogenesis , Myocytes, Cardiac/cytology , RNA-Seq
2.
Nature ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693260

ABSTRACT

The human brain develops through a tightly organized cascade of patterning events, induced by transcription factor expression and changes in chromatin accessibility. Although gene expression across the developing brain has been described at single-cell resolution1, similar atlases of chromatin accessibility have been primarily focused on the forebrain2-4. Here we describe chromatin accessibility and paired gene expression across the entire developing human brain during the first trimester (6-13 weeks after conception). We defined 135 clusters and used multiomic measurements to link candidate cis-regulatory elements to gene expression. The number of accessible regions increased both with age and along neuronal differentiation. Using a convolutional neural network, we identified putative functional transcription factor-binding sites in enhancers characterizing neuronal subtypes. We applied this model to cis-regulatory elements linked to ESRRB to elucidate its activation mechanism in the Purkinje cell lineage. Finally, by linking disease-associated single nucleotide polymorphisms to cis-regulatory elements, we validated putative pathogenic mechanisms in several diseases and identified midbrain-derived GABAergic neurons as being the most vulnerable to major depressive disorder-related mutations. Our findings provide a more detailed view of key gene regulatory mechanisms underlying the emergence of brain cell types during the first trimester and a comprehensive reference for future studies related to human neurodevelopment.

3.
Nature ; 560(7719): 494-498, 2018 08.
Article in English | MEDLINE | ID: mdl-30089906

ABSTRACT

RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and throughput1. However, this approach captures only a static snapshot at a point in time, posing a challenge for the analysis of time-resolved phenomena such as embryogenesis or tissue regeneration. Here we show that RNA velocity-the time derivative of the gene expression state-can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of hours. We validate its accuracy in the neural crest lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the branching lineage tree of the developing mouse hippocampus, and examine the kinetics of transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.


Subject(s)
Brain/cytology , Neural Crest/metabolism , Neurons/cytology , RNA Splicing/genetics , RNA/analysis , RNA/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Animals , Brain/embryology , Brain/metabolism , Cell Lineage/genetics , Chromaffin Cells/cytology , Chromaffin Cells/metabolism , Datasets as Topic , Female , Glutamic Acid/metabolism , Hippocampus/cytology , Hippocampus/embryology , Hippocampus/metabolism , Kinetics , Male , Mice , Neural Crest/cytology , Neurons/metabolism , Reproducibility of Results , Time Factors , Transcription, Genetic/genetics
4.
PLoS Biol ; 18(11): e3000675, 2020 11.
Article in English | MEDLINE | ID: mdl-33216742

ABSTRACT

Changes in cell identities and positions underlie tissue development and disease progression. Although single-cell mRNA sequencing (scRNA-Seq) methods rapidly generate extensive lists of cell states, spatially resolved single-cell mapping presents a challenging task. We developed SCRINSHOT (Single-Cell Resolution IN Situ Hybridization On Tissues), a sensitive, multiplex RNA mapping approach. Direct hybridization of padlock probes on mRNA is followed by circularization with SplintR ligase and rolling circle amplification (RCA) of the hybridized padlock probes. Sequential detection of RCA-products using fluorophore-labeled oligonucleotides profiles thousands of cells in tissue sections. We evaluated SCRINSHOT specificity and sensitivity on murine and human organs. SCRINSHOT quantification of marker gene expression shows high correlation with published scRNA-Seq data over a broad range of gene expression levels. We demonstrate the utility of SCRINSHOT by mapping the locations of abundant and rare cell types along the murine airways. The amenability, multiplexity, and quantitative qualities of SCRINSHOT facilitate single-cell mRNA profiling of cell-state alterations in tissues under a variety of native and experimental conditions.


Subject(s)
In Situ Hybridization/methods , Nucleic Acid Amplification Techniques/methods , Single-Cell Analysis/methods , Animals , Cell Line , Fluorescent Dyes , Humans , Mice , Nucleic Acid Hybridization/methods , Oligonucleotides , RNA/chemistry , RNA, Messenger/metabolism
5.
Development ; 145(18)2018 09 25.
Article in English | MEDLINE | ID: mdl-30126905

ABSTRACT

Touch and mechanical sensations require the development of several different kinds of sensory neurons dedicated to respond to certain types of mechanical stimuli. The transcription factor Shox2 (short stature homeobox 2) is involved in the generation of TRKB+ low-threshold mechanoreceptors (LTMRs), but mechanisms terminating this program and allowing alternative fates are unknown. Here, we show that the conditional loss of the miR-183-96-182 cluster in mouse leads to a failure of extinction of Shox2 during development and an increase in the proportion of Aδ LTMRs (TRKB+/NECAB2+) neurons at the expense of Aß slowly adapting (SA)-LTMRs (TRKC+/Runx3-) neurons. Conversely, overexpression of miR-183 cluster that represses Shox2 expression, or loss of Shox2, both increase the Aß SA-LTMRs population at the expense of Aδ LTMRs. Our results suggest that the miR-183 cluster determines the timing of Shox2 expression by direct targeting during development, and through this determines the population sizes of Aδ LTMRs and Aß SA-LTMRs.


Subject(s)
Homeodomain Proteins/metabolism , Mechanoreceptors/metabolism , MicroRNAs/genetics , Sensory Receptor Cells/cytology , Animals , Calcium-Binding Proteins/metabolism , Cell Differentiation/genetics , Eye Proteins/metabolism , Female , Humans , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Pregnancy , Protein-Tyrosine Kinases/metabolism
6.
Eur J Neurosci ; 50(9): 3487-3501, 2019 11.
Article in English | MEDLINE | ID: mdl-31301255

ABSTRACT

Nerve growth factor (NGF) is an essential neurotrophic factor for the development and maintenance of the central and the peripheral nervous system. NGF deficiency in the basal forebrain precedes degeneration of basal forebrain cholinergic neurons in Alzheimer's disease, contributing to memory decline. NGF mediates neurotrophic support via its high-affinity receptor, the tropomyosin-related kinase A (TrkA) receptor, and mediates mitogenic and differentiation signals via the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). However, the molecular mechanisms underlying the different NGF/TrkA/ERK signalling pathways are far from clear. In this study, we have investigated the role of human NGF and three NGF mutants, R100E, W99A and K95A/Q96A, their ability to activate TrkA or ERK1/2, and their ability to induce proliferation or differentiation in human foetal dorsal root ganglion (DRG) neurons or in PC12 cells. We show that the R100E mutant was significantly more potent than NGF itself to induce proliferation and differentiation, and significantly more potent in activation of ERK1/2 in DRG neurons. The W99A and K95A/Q96A mutants, on the other hand, were less effective than the wild-type protein. An unexpected finding was the high efficacy of the K95A/Q96A mutant to activate TrkA and to induce differentiation of DRG neurons at elevated concentrations. These data demonstrate an NGF mutant with improved neurotrophic properties in primary human neuronal cells. The R100E mutant represents an interesting candidate for further drug development in Alzheimer's disease and other neurodegenerative disorders.


Subject(s)
Ganglia, Spinal/physiology , Nerve Growth Factor/physiology , Neuronal Outgrowth/physiology , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Cells, Cultured , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mutation/genetics , Nerve Growth Factor/genetics , Neurons/physiology , Rats , Receptor, trkA/metabolism
7.
Gastroenterology ; 154(3): 624-636, 2018 02.
Article in English | MEDLINE | ID: mdl-29031500

ABSTRACT

BACKGROUND & AIMS: The enteric nervous system (ENS) regulates gastrointestinal function via different subtypes of neurons, organized into fine-tuned neural circuits. It is not clear how cell diversity is created within the embryonic ENS; information required for development of cell-based therapies and models of enteric neuropathies. We aimed to identify proteins that regulate ENS differentiation and network formation. METHODS: We generated and compared RNA expression profiles of the entire ENS, ENS progenitor cells, and non-ENS gut cells of mice, collected at embryonic days 11.5 and 15.5, when different subtypes of neurons are formed. Gastrointestinal tissues from R26ReYFP reporter mice crossed to Sox10-CreERT2 or Wnt1-Cre mice were dissected and the 6 populations of cells were isolated by flow cytometry. We used histochemistry to map differentially expressed proteins in mouse and human gut tissues at different stages of development, in different regions. We examined enteric neuronal diversity and gastric function in Wnt1-Cre x Sox6fl/fl mice, which do not express the Sox6 gene in the ENS. RESULTS: We identified 147 transcription and signaling factors that varied in spatial and temporal expression during development of the mouse ENS. Of the factors also analyzed in human ENS, most were conserved. We uncovered 16 signaling pathways (such as fibroblast growth factor and Eph/ephrin pathways). Transcription factors were grouped according to their specific expression in enteric progenitor cells (such as MEF2C), enteric neurons (such as SOX4), or neuron subpopulations (such as SATB1 and SOX6). Lack of SOX6 in the ENS reduced the numbers of gastric dopamine neurons and delayed gastric emptying. CONCLUSIONS: Using transcriptome and histochemical analyses of the developing mouse and human ENS, we mapped expression patterns of transcription and signaling factors. Further studies of these candidate determinants might elucidate the mechanisms by which enteric stem cells differentiate into neuronal subtypes and form distinct connectivity patterns during ENS development. We found expression of SOX6 to be required for development of gastric dopamine neurons.


Subject(s)
Dopaminergic Neurons/metabolism , Enteric Nervous System/metabolism , Signal Transduction , Stomach/innervation , Transcription Factors/metabolism , Transcription, Genetic , Animals , Autocrine Communication , Enteric Nervous System/embryology , Gastric Emptying , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genotype , Gestational Age , Humans , Mice, Knockout , Paracrine Communication , Phenotype , SOXD Transcription Factors/genetics , SOXD Transcription Factors/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Species Specificity , Transcription Factors/genetics
8.
J Cell Mol Med ; 22(6): 3016-3024, 2018 06.
Article in English | MEDLINE | ID: mdl-29536621

ABSTRACT

Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a familial fatal progressive degenerative disorder. One of the pathological hallmarks of CADASIL is a dramatic reduction of vascular smooth muscle cells (VSMCs) in cerebral arteries. Using VSMCs from the vasculature of the human umbilical cord, placenta and cerebrum of CADASIL patients, we found that CADASIL VSMCs had a lower proliferation rate compared to control VSMCs. Exposure of control VSMCs and endothelial cells (ECs) to media derived from CADASIL VSMCs lowered the proliferation rate of all cells examined. By quantitative RT-PCR analysis, we observed increased Transforming growth factor-ß (TGFß) gene expression in CADASIL VSMCs. Adding TGFß-neutralizing antibody restored the proliferation rate of CADASIL VSMCs. We assessed proliferation differences in the presence or absence of TGFß-neutralizing antibody in ECs co-cultured with VSMCs. ECs co-cultured with CADASIL VSMCs exhibited a lower proliferation rate than those co-cultured with control VSMCs, and neutralization of TGFß normalized the proliferation rate of ECs co-cultured with CADASIL VSMCs. We suggest that increased TGFß expression in CADASIL VSMCs is involved in the reduced VSMC proliferation in CADASIL and may play a role in situ in altered proliferation of neighbouring cells in the vasculature.


Subject(s)
CADASIL/genetics , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Transforming Growth Factor beta/genetics , Antibodies, Neutralizing/pharmacology , CADASIL/metabolism , CADASIL/pathology , Cell Proliferation/genetics , Coculture Techniques , Endothelial Cells/metabolism , Gene Expression Regulation/genetics , Humans , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Transforming Growth Factor beta/antagonists & inhibitors
9.
J Immunol ; 197(8): 3069-3075, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27591320

ABSTRACT

Amniotic fluid (AF) surrounds the growing fetus, and cells derived from AF are commonly used for diagnosis of genetic diseases. Intra-amniotic infections are strongly linked to preterm birth, which is the leading cause of perinatal mortality worldwide. Surprisingly little is known, however, about mature hematopoietic cells in AF, which could potentially be involved in immune responses during pregnancy. In this study, we show that the dominating population of viable CD45+ cells in AF is represented by a subset of fetal CD103+ group 3 innate lymphoid cells (ILCs) producing high levels of IL-17 and TNF. Fetal CD103+ ILC3s could also be detected at high frequency in second-trimester mucosal tissues (e.g., the intestine and lung). Taken together, our data indicate that CD103+ ILC3s accumulate with gestation in the fetal intestine and subsequently egress to the AF. The dominance of ILC3s producing IL-17 and TNF in AF suggests that they could be involved in controlling intra-amniotic infections and inflammation and as such could be important players in regulating subsequent premature birth.


Subject(s)
Amniotic Fluid/immunology , Intestinal Mucosa/immunology , Lymphocyte Subsets/immunology , Lymphocytes/immunology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Respiratory Mucosa/immunology , Antigens, CD/metabolism , Cells, Cultured , Female , Fetus , Humans , Immunity, Innate , Infant, Newborn , Integrin alpha Chains/metabolism , Interleukin-17/metabolism , Leukocyte Common Antigens/metabolism , Pregnancy , Pregnancy Trimester, Second , Tumor Necrosis Factor-alpha/metabolism
10.
J Neurosci ; 36(15): 4339-50, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27076429

ABSTRACT

The enteric nervous system (ENS) is organized into neural circuits within the gastrointestinal wall where it controls the peristaltic movements, secretion, and blood flow. Although proper gut function relies on the complex neuronal composition of the ENS, little is known about the transcriptional networks that regulate the diversification into different classes of enteric neurons and glia during development. Here we redefine the role of Ascl1 (Mash1), one of the few regulatory transcription factors described during ENS development. We show that enteric glia and all enteric neuronal subtypes appear to be derived from Ascl1-expressing progenitor cells. In the gut of Ascl1(-/-) mutant mice, neurogenesis is delayed and reduced, and posterior gliogenesis impaired. The ratio of neurons expressing Calbindin, TH, and VIP is selectively decreased while, for instance, 5-HT(+) neurons, which previously were believed to be Ascl1-dependent, are formed in normal numbers. Essentially the same differentiation defects are observed in Ascl1(KINgn2) transgenic mutants, where the proneural activity of Ngn2 replaces Ascl1, demonstrating that Ascl1 is required for the acquisition of specific enteric neuronal subtype features independent of its role in neurogenesis. In this study, we provide novel insights into the expression and function of Ascl1 in the differentiation process of specific neuronal subtypes during ENS development. SIGNIFICANCE STATEMENT: The molecular mechanisms underlying the generation of different neuronal subtypes during development of the enteric nervous system are poorly understood despite its pivotal function in gut motility and involvement in gastrointestinal pathology. This report identifies novel roles for the transcription factor Ascl1 in enteric gliogenesis and neurogenesis. Moreover, independent of its proneurogenic activity, Ascl1 is required for the normal expression of specific enteric neuronal subtype characteristics. Distinct enteric neuronal subtypes are formed in a temporally defined order, and we observe that the early-born 5-HT(+) neurons are generated in Ascl1(-/-) mutants, despite the delayed neurogenesis. Enteric nervous system progenitor cells may therefore possess strong intrinsic control over their specification at the initial waves of neurogenesis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/physiology , Enteric Nervous System/growth & development , Neurons/physiology , Animals , Calbindins/metabolism , Cell Differentiation/genetics , Female , Humans , Mice , Mice, Knockout , Mice, Transgenic , Mutation/genetics , Neural Stem Cells/physiology , Neurogenesis/genetics , Neurogenesis/physiology , Neuroglia/physiology , Pregnancy , Serotonergic Neurons/physiology , Tyrosine 3-Monooxygenase/metabolism , Vasoactive Intestinal Peptide/metabolism
11.
Scand J Psychol ; 58(6): 497-503, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29105128

ABSTRACT

Medical decision-making capacity (MDC) is known to decline in individuals with Alzheimer's disease (AD). The vignette method uses hypothetical information as a prerequisite for measuring the capacity to make well-informed decisions to clinical trials. Our aim was to investigate if adapted vignettes can help individuals with mild AD to assimilate information, make decisions and express them in an understandable way, compared to corresponding decisions based on linguistically more demanding vignettes, as measured by the Swedish Linguistic Instrument for Medical Decision-making (LIMD). Two vignettes from LIMD were altered linguistically with the aim to facilitate understanding for individuals with AD. An experimental within-subject design was used to study the influence on MDC of readability (original/adapted vignettes) and content (two different clinical trials). We included 24 patients with mild AD in this prospective study, which read all four vignettes along with a few other tests. This allowed us to investigate the association between MDC and cognitive function. Adapted vignettes did not yield significant differences regarding MDC as compared with original vignettes using a two-way repeated measures analysis of variance. A difference was found between the two clinical trials where LIMD score was significantly higher for Kidney disease than hypertension vignettes. Our results indicate that adapted vignettes may not improve MDC for individuals with mild AD. MDC was affected by which clinical trial the vignettes regarded, which implies that other factors affecting MDC need to be investigated, like length of text and vocabulary used.


Subject(s)
Alzheimer Disease/physiopathology , Decision Making/physiology , Health Literacy/methods , Mental Competency , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prospective Studies
12.
Int J Geriatr Psychiatry ; 29(12): 1304-11, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24737535

ABSTRACT

OBJECTIVE: Impaired capacity to make decisions in everyday life and situations of medical treatment is an inevitable consequence of the cognitive decline in Alzheimer's disease (AD). The objective of this study was to identify the most powerful cognitive component(s) that best predicted medical decision-making capacity (MDMC) in patients with AD and mild cognitive impairment. METHOD: Three groups of subjects participated in the study: patients with AD (n = 20), mild cognitive impairment (n = 21), and healthy control subjects (n = 33). MDMC was assessed by the linguistic instrument for medical decision-making (LIMD) and related to demographics and 27 cognitive test measures. RESULTS: The cognitive tests were found to aggregate into four components using a principle component analysis. The four components, which correspond to verbal knowledge, episodic memory, cognitive speed, and working memory, accounted for 73% of the variance in LIMD according to a stepwise regression analysis. Verbal knowledge was the most powerful predictor of LIMD (beta = 0.66) followed by episodic memory (beta = 0.43), cognitive speed (beta = 0.32), and working memory (beta = 0.23). The best single test as shown by the highest correlation with LIMD was Reading speed (R = 0.77). CONCLUSION: Multiple factors are involved in MDMC in subjects with cognitive impairment. The component of verbal knowledge was the best predictor of MDMC and Reading speed was the most important single cognitive test measurement, which assessed both rapid Reading and understanding of text.


Subject(s)
Alzheimer Disease/psychology , Cognitive Dysfunction/psychology , Decision Making , Mental Competency/psychology , Aged , Case-Control Studies , Female , Humans , Male , Memory, Short-Term/physiology , Middle Aged , Multivariate Analysis , Neuropsychological Tests , Predictive Value of Tests , Regression Analysis
13.
Exp Cell Res ; 319(3): 134-43, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23036509

ABSTRACT

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ(m)) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology.


Subject(s)
CADASIL/physiopathology , Mitochondria, Muscle/physiology , Muscle, Smooth, Vascular/ultrastructure , CADASIL/genetics , CADASIL/pathology , Case-Control Studies , Cell Proliferation , Cell Survival/genetics , Cell Survival/physiology , Cells, Cultured , Female , Humans , Infant, Newborn , Membrane Potential, Mitochondrial/genetics , Membrane Potential, Mitochondrial/physiology , Mitochondria, Muscle/metabolism , Mitochondria, Muscle/pathology , Models, Theoretical , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiology , Mutation, Missense/physiology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/physiology , Myocytes, Smooth Muscle/ultrastructure , Receptor, Notch3 , Receptors, Notch/genetics , Receptors, Notch/metabolism
14.
Development ; 137(3): 437-45, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20081190

ABSTRACT

Homeodomain (HD) transcription factors and components of the Notch pathway [Delta1 (Dll1), Jagged1 (Jag1) and the Fringe (Fng) proteins] are expressed in distinct progenitor domains along the dorsoventral (DV) axis of the developing spinal cord. However, the internal relationship between these two regulatory pathways has not been established. In this report we show that HD proteins act upstream of Notch signalling. Thus, HD proteins control the spatial distribution of Notch ligands and Fng proteins, whereas perturbation of the Notch pathway does not affect the regional expression of HD proteins. Loss of Dll1 or Jag1 leads to a domain-specific increase of neuronal differentiation but does not affect the establishment of progenitor domain boundaries. Moreover, gain-of-function experiments indicate that the ability of Dll1 and Jag1 to activate Notch is limited to progenitors endogenously expressing the respective ligand. Fng proteins enhance Dll1-activated Notch signalling and block Notch activation mediated by Jag1. This finding, combined with the overlapping expression of Fng with Dll1 but not with Jag1, is likely to explain the domain-specific activity of the Notch ligands. This outcome is opposite to the local regulation of Notch activity in most other systems, including the Drosophila wing, where Fng co-localizes with Jagged/Serrate rather than Dll/Delta, which facilitates Notch signalling at regional boundaries instead of within domains. The regulation of Notch activation in the spinal cord therefore appears to endow specific progenitor populations with a domain-wide autonomy in the control of neurogenesis and prevents any inadequate activation of Notch across progenitor domain boundaries.


Subject(s)
Gene Expression Regulation, Developmental , Neurogenesis , Receptors, Notch/metabolism , Animals , Body Patterning/genetics , Chick Embryo , Intercellular Signaling Peptides and Proteins , Ligands , Mice , Spinal Cord , Transcription Factors
15.
Scand J Psychol ; 54(5): 386-92, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23841467

ABSTRACT

A critical question is whether cognitively impaired patients have the competence for autonomous decisions regarding participation in clinical trials. The present study aimed to investigate medical decision-making capacity by use of a Swedish linguistic instrument for medical decision-making (LIMD) in hypothetical clinical trials in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). Three comparable groups (age, education) participated in the study: AD (n = 20; MMSE: 24.1 ± 3.3) and MCI (n = 22; MMSE: 26.7 ± 2.4) patients and healthy controls (n = 37; MMSE: 29.1 ± 1.0). Medical decision-making capacity was operationalized as answers to questions regarding participation in three hypothetical clinical trials. Answers were scored regarding comprehension, evaluation and intelligibility of decisions, and a total LIMD score was used as the measure of medical decision-making ability. Groups differed significantly in LIMD with AD patients performing worst and MCI poorer than the control group. A strong association was found between all LIMD scores and diagnosis which supported the assertion that LIMD as it is designed is a one-dimensional instrument of medical decision-making capacity (MDMC). The results indicate that a fundamental communicative ability has an impact on the competence for autonomous decisions in cognitive impairment.


Subject(s)
Alzheimer Disease/psychology , Cognitive Dysfunction/psychology , Decision Making , Informed Consent/psychology , Language , Mental Competency/psychology , Aged , Aged, 80 and over , Case-Control Studies , Clinical Trials as Topic , Communication , Female , Humans , Male , Middle Aged , Patient Selection
16.
Science ; 382(6667): eadf1226, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37824650

ABSTRACT

The adult human brain comprises more than a thousand distinct neuronal and glial cell types, a diversity that emerges during early brain development. To reveal the precise sequence of events during early brain development, we used single-cell RNA sequencing and spatial transcriptomics and uncovered cell states and trajectories in human brains at 5 to 14 postconceptional weeks (pcw). We identified 12 major classes that are organized as ~600 distinct cell states, which map to precise spatial anatomical domains at 5 pcw. We described detailed differentiation trajectories of the human forebrain and midbrain and found a large number of region-specific glioblasts that mature into distinct pre-astrocytes and pre-oligodendrocyte precursor cells. Our findings reveal the establishment of cell types during the first trimester of human brain development.


Subject(s)
Brain , Neurogenesis , Pregnancy Trimester, First , Female , Humans , Pregnancy , Astrocytes/cytology , Brain/cytology , Brain/embryology , Neuroglia , Neurons/cytology , Atlases as Topic , Single-Cell Gene Expression Analysis
17.
Nat Neurosci ; 26(5): 891-901, 2023 05.
Article in English | MEDLINE | ID: mdl-37095395

ABSTRACT

The spatiotemporal regulation of cell fate specification in the human developing spinal cord remains largely unknown. In this study, by performing integrated analysis of single-cell and spatial multi-omics data, we used 16 prenatal human samples to create a comprehensive developmental cell atlas of the spinal cord during post-conceptional weeks 5-12. This revealed how the cell fate commitment of neural progenitor cells and their spatial positioning are spatiotemporally regulated by specific gene sets. We identified unique events in human spinal cord development relative to rodents, including earlier quiescence of active neural stem cells, differential regulation of cell differentiation and distinct spatiotemporal genetic regulation of cell fate choices. In addition, by integrating our atlas with pediatric ependymomas data, we identified specific molecular signatures and lineage-specific genes of cancer stem cells during progression. Thus, we delineate spatiotemporal genetic regulation of human spinal cord development and leverage these data to gain disease insight.


Subject(s)
Ependymoma , Neural Stem Cells , Child , Female , Pregnancy , Humans , Spinal Cord , Ependymoma/genetics , Ependymoma/metabolism , Cell Differentiation/genetics , Neural Stem Cells/physiology , Gene Expression , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics
18.
Nat Cell Biol ; 25(2): 351-365, 2023 02.
Article in English | MEDLINE | ID: mdl-36646791

ABSTRACT

The lung contains numerous specialized cell types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here we report 83 cell states and several spatially resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated single-cell RNA sequencing and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programmes, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.


Subject(s)
Embryo, Mammalian , Gene Expression Profiling , Humans , Cell Differentiation/genetics , Lung , Stem Cells
19.
Dement Geriatr Cogn Disord ; 33(1): 18-28, 2012.
Article in English | MEDLINE | ID: mdl-22377499

ABSTRACT

BACKGROUND/AIMS: Degeneration of cholinergic neurons in the basal forebrain correlates with cognitive decline in patients with Alzheimer's disease (AD). Targeted delivery of exogenous nerve growth factor (NGF) has emerged as a potential AD therapy due to its regenerative effects on the basal forebrain cholinergic neurons in AD animal models. Here we report the results of a first-in-man study of encapsulated cell (EC) biodelivery of NGF to the basal forebrain of AD patients with the primary objective to explore safety and tolerability. METHODS: This was an open-label, 12-month study in 6 AD patients. Patients were implanted stereotactically with EC-NGF biodelivery devices targeting the basal forebrain. Patients were monitored with respect to safety, tolerability, disease progression and implant functionality. RESULTS: All patients were implanted successfully with bilateral single or double implants without complications or signs of toxicity. No adverse events were related to NGF or the device. All patients completed the study, including removal of implants at 12 months. Positive findings in cognition, EEG and nicotinic receptor binding in 2 of 6 patients were detected. CONCLUSIONS: This study demonstrates that surgical implantation and removal of EC-NGF biodelivery to the basal forebrain in AD patients is safe, well tolerated and feasible.


Subject(s)
Alzheimer Disease/drug therapy , Nerve Growth Factors/administration & dosage , Prosencephalon/physiology , Aged , Aged, 80 and over , Autopsy , Biopsy , Cell Line , Cerebral Cortex/pathology , Cognition/physiology , Dose-Response Relationship, Drug , Electroencephalography , Feasibility Studies , Female , Humans , Infusion Pumps, Implantable/adverse effects , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Growth Factors/pharmacokinetics , Nerve Growth Factors/therapeutic use , Neuropsychological Tests , Neurosurgical Procedures , Nicotine/pharmacokinetics , Positron-Emission Tomography , Receptors, Nicotinic/metabolism , Treatment Outcome
20.
Stem Cells Transl Med ; 11(1): 14-25, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35641168

ABSTRACT

Traumatic injury of the central nervous system (CNS) is a worldwide health problem affecting millions of people. Trauma of the CNS, that is, traumatic brain injury (TBI) and spinal cord injury (SCI), lead to massive and progressive cell loss and axonal degeneration, usually with very limited regeneration. At present, there are no treatments to protect injured CNS tissue or to replace the lost tissue. Stem cells are a cell type that by definition can self-renew and give rise to multiple cell lineages. In recent years, therapies using stem and progenitor cells have shown promising effects in experimental CNS trauma, particularly in the acute-subacute stage, but also in chronic injuries. However, the therapeutic mechanisms by which transplanted cells achieve the structural and/or functional improvements are often not clear. Stem cell therapies for CNS trauma can be categorized into 2 main concepts, transplantation of exogenous neural stem cells and neural progenitor cells and recruitment of endogenous stem and progenitor cells. In this review, focusing on the advances during the last decade, we will discuss the major cell therapies, the pros and cons of these 2 concepts for TBI and SCI, and the treatment strategies we believe will be successful.


Subject(s)
Neural Stem Cells , Spinal Cord Injuries , Central Nervous System , Humans , Neural Stem Cells/transplantation , Spinal Cord Injuries/therapy , Stem Cell Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL