Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909502

ABSTRACT

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We have identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low levels of HA are present in healthy pancreatic islets. However, HA substantially accumulates in cadaveric islets of human T2D and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the major HA receptor CD44, preserve glycemic control and insulin levels in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserve glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we find that 4-MU increases the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation does not result in ß-cell apoptosis. These data indicate a role for HA accumulation in diabetes pathogenesis and suggest that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.

2.
Matrix Biol ; 123: 34-47, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783236

ABSTRACT

Pancreatic ß-cell dysfunction and death are central to the pathogenesis of type 2 diabetes (T2D). We identified a novel role for the inflammatory extracellular matrix polymer hyaluronan (HA) in this pathophysiology. Low concentrations of HA were present in healthy pancreatic islets. However, HA substantially accumulated in cadaveric islets of T2D patients and islets of the db/db mouse model of T2D in response to hyperglycemia. Treatment with 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis, or the deletion of the main HA receptor CD44, preserved glycemic control and insulin concentrations in db/db mice despite ongoing weight gain, indicating a critical role for this pathway in T2D pathogenesis. 4-MU treatment and the deletion of CD44 likewise preserved glycemic control in other settings of ß-cell injury including streptozotocin treatment and islet transplantation. Mechanistically, we found that 4-MU increased the expression of the apoptosis inhibitor survivin, a downstream transcriptional target of CD44 dependent on HA/CD44 signaling, on ß-cells such that caspase 3 activation did not result in ß-cell apoptosis. These data indicated a role for HA accumulation in diabetes pathogenesis and suggested that it may be a viable target to ameliorate ß-cell loss in T2D. These data are particularly exciting, because 4-MU is already an approved drug (also known as hymecromone), which could accelerate translation of these findings to clinical studies.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Mice , Animals , Humans , Hyaluronic Acid/metabolism , Diabetes Mellitus, Type 2/genetics , Hymecromone/pharmacology , Islets of Langerhans/metabolism , Obesity/genetics , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism
3.
Recent Pat Anticancer Drug Discov ; 18(2): 224-240, 2022.
Article in English | MEDLINE | ID: mdl-35593340

ABSTRACT

BACKGROUND: SV-BR-1-GM, derived from a patient with grade 2 (moderately differentiated) breast cancer, is a GM-CSF-secreting breast cancer cell line with properties of antigen-presenting cells. SV-BR-1-GM and next-generation versions are covered by several pending and granted patents. METHODS: We report findings from an open-label phase I, single-arm pilot study with irradiated SV-BR-1-GM cells in 3 breast and 1 ovarian cancer subjects. Inoculations were preceded by lowdose intravenous cyclophosphamide and followed by interferon-alpha2b injections into the SVBR- 1-GM inoculation sites. We assessed both cellular and humoral immune responses, and measured expression levels of SV-BR-1-GM HLA alleles. RESULTS: Treatment was generally safe and well tolerated. Immune responses were elicited universally. Overall survival was more than 33 months for three of the four patients. As previously reported, one patient had prompt regression of metastases in lung, breast, and soft tissue. Following cessation of treatment, the patient relapsed widely, including in the brain. Upon retreatment, rapid tumor response was again seen, including complete regression of brain metastases. Consistent with a role of Class II HLA in contributing to SV-BR-1-GM's mechanism of action, this patient allele-matched SV-BR-1-GM at the HLA-DRB1 and HLA-DRB3 loci. We are in the process of developing next-generation SV-BR-1-GM, expressing patient-specific HLAs. Patent applications were filed in various jurisdictions. Thus far, one is granted, in Japan. CONCLUSION: A whole-cell immunotherapy regimen with SV-BR-1-GM cells induced regression of metastatic breast cancer. We develop intellectual property based on SV-BR-1-GM's predicted mechanism of action to develop additional whole-cell immunotherapies for cancer patients.


Subject(s)
Breast Neoplasms , Cancer Vaccines , Neoplasms, Second Primary , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Pilot Projects , Patents as Topic , Biomarkers , Cell Line , Melanoma, Cutaneous Malignant
4.
Matrix Biol ; 80: 46-58, 2019 07.
Article in English | MEDLINE | ID: mdl-30196101

ABSTRACT

Hyaluronan (HA), an extracellular matrix glycosaminoglycan, is implicated in the pathogenesis of both type 1 diabetes (T1D) as well as type 2 diabetes (T2D) and has been postulated to be increased in these diseases due to hyperglycemia. We have examined the serum and tissue distribution of HA in human subjects with T1D and T2D and in mouse models of these diseases and evaluated the relationship between HA levels and glycemic control. We found that serum HA levels are increased in T2D but not T1D independently of hemoglobin-A1c, C-peptide, body mass index, or time since diabetes diagnosis. HA is likewise increased in skeletal muscle in T2D subjects relative to non-diabetic controls. Analogous increases in serum and muscle HA are seen in diabetic db/db mice (T2D), but not in diabetic DORmO mice (T1D). Diabetes induced by the ß-cell toxin streptozotozin (STZ) lead to an increase in blood glucose but not to an increase in serum HA. These data indicate that HA levels are increased in multiple tissue compartments in T2D but not T1D independently of glycemic control. Given that T2D but not T1D is associated with systemic inflammation, these patterns are consistent with inflammatory factors and not hyperglycemia driving increased HA. Serum HA may have value as a biomarker of systemic inflammation in T2D.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Hyaluronic Acid/blood , Muscle, Skeletal/metabolism , Adult , Animals , Body Mass Index , C-Peptide/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 2/blood , Female , Glycated Hemoglobin/metabolism , Humans , Hyaluronic Acid/metabolism , Male , Mice , Streptozocin , Young Adult
5.
Nat Metab ; 1(5): 546-559, 2019 05.
Article in English | MEDLINE | ID: mdl-31602424

ABSTRACT

Therapeutic increase of brown adipose tissue (BAT) thermogenesis is of great interest as BAT activation counteracts obesity and insulin resistance. Hyaluronan (HA) is a glycosaminoglycan, found in the extracellular matrix, which is synthesized by HA synthases (Has1/Has2/Has3) from sugar precursors and accumulates in diabetic conditions. Its synthesis can be inhibited by the small molecule 4-methylumbelliferone (4-MU). Here, we show that the inhibition of HA-synthesis by 4-MU or genetic deletion of Has2/Has3 improves BAT`s thermogenic capacity, reduces body weight gain, and improves glucose homeostasis independently from adrenergic stimulation in mice on diabetogenic diet, as shown by a magnetic resonance T2 mapping approach. Inhibition of HA synthesis increases glycolysis, BAT respiration and uncoupling protein 1 expression. In addition, we show that 4-MU increases BAT capacity without inducing chronic stimulation and propose that 4-MU, a clinically approved prescription-free drug, could be repurposed to treat obesity and diabetes.


Subject(s)
Adipose Tissue, Brown/drug effects , Hymecromone/pharmacology , Thermogenesis/drug effects , Animals , Energy Metabolism , Insulin Resistance , Male , Mice , Mice, Inbred C57BL
6.
J Clin Invest ; 125(10): 3928-40, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26368307

ABSTRACT

We recently reported that abundant deposits of the extracellular matrix polysaccharide hyaluronan (HA) are characteristic of autoimmune insulitis in patients with type 1 diabetes (T1D), but the relevance of these deposits to disease was unclear. Here, we have demonstrated that HA is critical for the pathogenesis of autoimmune diabetes. Using the DO11.10xRIPmOVA mouse model of T1D, we determined that HA deposits are temporally and anatomically associated with the development of insulitis. Moreover, treatment with an inhibitor of HA synthesis, 4-methylumbelliferone (4-MU), halted progression to diabetes even after the onset of insulitis. Similar effects were seen in the NOD mouse model, and in these mice, 1 week of treatment was sufficient to prevent subsequent diabetes. 4-MU reduced HA accumulation, constrained effector T cells to nondestructive insulitis, and increased numbers of intraislet FOXP3+ Tregs. Consistent with the observed effects of 4-MU treatment, Treg differentiation was inhibited by HA and anti-CD44 antibodies and rescued by 4-MU in an ERK1/2-dependent manner. These data may explain how peripheral immune tolerance is impaired in tissues under autoimmune attack, including islets in T1D. We propose that 4-MU, already an approved drug used to treat biliary spasm, could be repurposed to prevent, and possibly treat, T1D in at-risk individuals.


Subject(s)
Diabetes Mellitus, Type 1/immunology , Extracellular Matrix/metabolism , Hyaluronic Acid/metabolism , Hymecromone/therapeutic use , Immune Tolerance/drug effects , Prediabetic State/drug therapy , Animals , Cell Differentiation/drug effects , Cells, Cultured , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/prevention & control , Disease Models, Animal , Disease Progression , Extracellular Matrix/pathology , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/immunology , Hyaluronic Acid/analysis , Hyaluronic Acid/antagonists & inhibitors , Hyaluronic Acid/pharmacology , Hymecromone/pharmacology , Hyperglycemia/metabolism , Hyperglycemia/pathology , Insulin/biosynthesis , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , MAP Kinase Signaling System/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Transgenic , Prediabetic State/genetics , Prediabetic State/metabolism , Prediabetic State/pathology , Receptors, Leptin/deficiency , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology
SELECTION OF CITATIONS
SEARCH DETAIL