Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Bioorg Med Chem Lett ; 26(11): 2631-5, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27106707

ABSTRACT

Familial Parkinson's disease cases have recently been associated with the leucine rich repeat kinase 2 (LRRK2) gene. It has been hypothesized that inhibition of the LRRK2 protein may have the potential to alter disease pathogenesis. A dihydrobenzothiophene series of potent, selective, orally bioavailable LRRK2 inhibitors were identified from a high-throughput screen of the internal Merck sample collection. Initial SAR studies around the core established the series as a tractable small molecule lead series of LRRK2 inhibitors for potential treatment of Parkinson's disease. It was also found that incorporation of a lactam into the core drastically improved the CNS and DMPK properties of these small molecules.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Thiophenes/pharmacology , Administration, Oral , Biological Availability , Dose-Response Relationship, Drug , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry
2.
Mol Pharmacol ; 81(4): 567-77, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22241372

ABSTRACT

High-conductance calcium-activated potassium (Maxi-K) channels are present in smooth muscle where they regulate tone. Activation of Maxi-K channels causes smooth muscle hyperpolarization and shortening of action-potential duration, which would limit calcium entry through voltage-dependent calcium channels leading to relaxation. Although Maxi-K channels appear to indirectly mediate the relaxant effects of a number of agents, activators that bind directly to the channel with appropriate potency and pharmacological properties useful for proof-of-concept studies are not available. Most agents identified to date display significant polypharmacy that severely compromises interpretation of experimental data. In the present study, a high-throughput, functional, cell-based assay for identifying Maxi-K channel agonists was established and used to screen a large sample collection (>1.6 million compounds). On the basis of potency and selectivity, a family of tetrahydroquinolines was further characterized. Medicinal chemistry efforts afforded identification of compound X, from which its two enantiomers, Y and Z, were resolved. In in vitro assays, Z is more potent than Y as a channel activator. The same profile is observed in tissues where the ability of either agent to relax precontracted smooth muscles, via a potassium channel-dependent mechanism, is demonstrated. These data, taken together, suggest that direct activation of Maxi-K channels represents a mechanism to be explored for the potential treatment of a number of diseases associated with smooth muscle hyperexcitability.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels/physiology , Muscle, Smooth/physiology , Animals , CHO Cells , Chromatography, Liquid , Cricetinae , Cricetulus , Large-Conductance Calcium-Activated Potassium Channels/agonists , Magnetic Resonance Spectroscopy , Mass Spectrometry , Muscle Relaxation
3.
Bioorg Med Chem Lett ; 20(10): 3129-33, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20409708

ABSTRACT

Hit to lead optimization of (5R)-5-hexyl-3-phenyl-1,3-oxazolidin-2-one as a positive allosteric modulator of mGluR2 is described. Improvements in potency and metabolic stability were achieved through SAR on both ends of the oxazolidinone. An optimized lead compound was found to be brain penetrant and active in a rat ketamine-induced hyperlocomotion model for antipsychotic activity.


Subject(s)
Oxazolidinones/chemistry , Receptors, Metabotropic Glutamate/metabolism , Schizophrenia/drug therapy , Allosteric Regulation , Animals , Antipsychotic Agents , Ketamine/toxicity , Oxazolidinones/chemical synthesis , Oxazolidinones/pharmacology , Rats , Receptors, Metabotropic Glutamate/agonists , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 19(4): 1240-4, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19155174

ABSTRACT

A high throughput screening campaign was designed to identify allosteric inhibitors of Chk1 kinase by testing compounds at high concentration. Activity was then observed at K(m) for ATP and at near-physiological concentrations of ATP. This strategy led to the discovery of a non-ATP competitive thioquinazolinone series which was optimized for potency and stability. An X-ray crystal structure for the complex of our best inhibitor bound to Chk1 was solved, indicating that it binds to an allosteric site approximately 13A from the ATP binding site. Preliminary data is presented for several of these compounds.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinases/drug effects , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Binding Sites , Checkpoint Kinase 1 , Combinatorial Chemistry Techniques , Crystallography, X-Ray , Humans , Molecular Conformation , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Protein Kinases/metabolism , Quinazolines/chemistry
5.
SLAS Discov ; 24(10): 978-986, 2019 12.
Article in English | MEDLINE | ID: mdl-31491347

ABSTRACT

Interactions between transmembrane receptors and their ligands play important roles in normal biological processes and pathological conditions. However, the binding partners for many transmembrane-like proteins remain elusive. To identify potential ligands of these orphan receptors, we developed a screening platform using a homogenous nonwash binding assay in live cells. A collection of ~1900 cDNA clones, encoding full-length membrane proteins, was assembled. As a proof of concept, cDNA clones were individually transfected into CHO-K1 cells in a high-throughput format, and soluble PD-L1-Fc fusion protein was used as bait. The interaction between the putative receptor and PD-L1-Fc was then detected by Alexa Fluor 647 conjugated anti-human immunoglobulin G Fc antibody and visualized using the Mirrorball fluorescence plate cytometer. As expected, PDCD1, the gene encoding programmed cell death protein 1 (PD-1), was revealed as the predominant hit. In addition, three genes that encode Fc receptors (FCGR1A, FCGR1B, and FCGR2A) were also identified as screen hits as the result of the Fc-tag fused to PD-L1, which has provided a reliable internal control for the screen. Furthermore, the potential of using a biotinylated ligand was explored and established to expand the versatility of the cDNA platform. This novel screening platform not only provides a powerful tool for the identification of ligands for orphan receptors but also has the potential for small-molecule target deconvolution.


Subject(s)
Biological Assay , DNA, Complementary , Drug Discovery/methods , Membrane Proteins/genetics , Animals , Biotinylation , CHO Cells , Cricetulus , Flow Cytometry , Gene Library , High-Throughput Screening Assays , Humans , Ligands , Membrane Proteins/metabolism , Protein Binding , Recombinant Fusion Proteins
6.
SLAS Technol ; 22(2): 195-205, 2017 04.
Article in English | MEDLINE | ID: mdl-27864339

ABSTRACT

In the triage of hits from a high-throughput screening campaign or during the optimization of a lead compound, it is relatively routine to test compounds at multiple concentrations to determine potency and maximal effect. Additional follow-up experiments, such as agonist shift, can be quite valuable in ascertaining compound mechanism of action (MOA). However, these experiments require cross-titration of a test compound with the activating ligand of the receptor requiring 100-200 data points, severely limiting the number tested in MOA assays in a screening triage. We describe a process to enhance the throughput of such cross-titration experiments through the integration of Hewlett Packard's D300 digital dispenser onto one of our robotics platforms to enable on-the-fly cross-titration of compounds in a 1536-well plate format. The process handles all the compound management and data tracking, as well as the biological assay. The process relies heavily on in-house-built software and hardware, and uses our proprietary control software for the platform. Using this system, we were able to automate the cross-titration of compounds for both positive and negative allosteric modulators of two different G protein-coupled receptors (GPCRs) using two distinct assay detection formats, IP1 and Ca2+ detection, on nearly 100 compounds for each target.


Subject(s)
Automation, Laboratory/methods , Drug Evaluation, Preclinical/methods , Titrimetry/methods , Automation, Laboratory/instrumentation , Cells, Cultured , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/instrumentation , High-Throughput Screening Assays , Humans , Receptors, G-Protein-Coupled/agonists , Titrimetry/instrumentation
7.
J Med Chem ; 60(7): 2983-2992, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28245354

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson's disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis. A high throughput screen of our compound collection afforded a number of promising indazole leads which were truncated in order to identify a minimum pharmacophore. Further optimization of these indazoles led to the development of MLi-2 (1): a potent, highly selective, orally available, brain-penetrant inhibitor of LRRK2.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Indazoles/chemistry , Indazoles/pharmacology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Animals , Brain/metabolism , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , Indazoles/administration & dosage , Indazoles/pharmacokinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Molecular Docking Simulation , Parkinson Disease/drug therapy , Parkinson Disease/enzymology , Rats , Rats, Wistar
8.
Anal Biochem ; 368(2): 239-49, 2007 Sep 15.
Article in English | MEDLINE | ID: mdl-17601482

ABSTRACT

Cholesteryl ester transfer protein (CETP) is a serum component responsible for both cholesteryl ester and triglyceride trafficking between high-density lipoprotein (HDL) and the apolipoprotein B (apoB)-containing very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL). Several fluorescence-based assays that monitor these transfers have been reported, but to date such assays have suffered from a low signal/background (S/B) ratio and have been described for use only in relatively purified in vitro systems. We have modified the more advanced of these assays to incorporate a noninterfering, nondiffusable fluorescence quencher into previously described cosonicate particles, often referred to as microemulsions. This simple improvement resulted in particles that had an average threefold enhanced S/B window over particles without quenchers but that continued to show the essential properties of a catalytic assay, including catalysis to a single endpoint, excellent linearity with protein and particle concentration, and an appropriate sensitivity to inhibition. This reduced assay noise allowed the subsequent development of protocols for the direct measure of cholesteryl ester (CE) transfer activity resident in human and animal serum as well as the development of 384- and 3456-well screening protocols with good precision and accuracy. Thus, by expanding the dynamic response window of the assay, we have created an assay generalizable to many settings.


Subject(s)
Biological Assay/methods , Cholesterol Ester Transfer Proteins/blood , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Animals , CHO Cells , Cholesterol Ester Transfer Proteins/metabolism , Cholesterol Esters/metabolism , Cricetinae , Cricetulus , Fluorescence Resonance Energy Transfer , Humans , Models, Biological , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL