Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901952

ABSTRACT

Mucopolysaccharidosis I-Hurler (MPS I-H) is caused by the loss of α-L-iduronidase, a lysosomal enzyme that degrades glycosaminoglycans. Current therapies cannot treat many MPS I-H manifestations. In this study, triamterene, an FDA-approved, antihypertensive diuretic, was found to suppress translation termination at a nonsense mutation associated with MPS I-H. Triamterene rescued enough α-L-iduronidase function to normalize glycosaminoglycan storage in cell and animal models. This new function of triamterene operates through premature termination codon (PTC) dependent mechanisms that are unaffected by epithelial sodium channel activity, the target of triamterene's diuretic function. Triamterene represents a potential non-invasive treatment for MPS I-H patients carrying a PTC.


Subject(s)
Mucopolysaccharidosis I , Animals , Mucopolysaccharidosis I/genetics , Iduronidase , Triamterene , Codon, Nonsense , Diuretics , Glycosaminoglycans/metabolism
2.
Bioorg Med Chem Lett ; 64: 128696, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35318165

ABSTRACT

Arsenicals belong to the class of chemical warfare agents known as vesicants, which are highly reactive, toxic and cause robust inflammatory response. Cutaneous exposure to arsenicals causes a wide range of systemic organ damage, beginning with cutaneous injuries, and later manifest multi-organ damage and death. Thus, the development of suitable antidotes that can effectively block injury following exposure to these agents is of great importance. Bromodomain 4 (BRD4), a member of the bromodomain and extra terminal domain (BET) family, plays crucial role in regulating transcription of inflammatory, proliferation and cell cycle genes. In this context, the development of potent small molecule inhibitors of BRD4 could serve as potential antidotes for arsenicals. Herein, we describe the synthesis and biological evaluation of a series of compounds.


Subject(s)
Arsenicals , Anti-Inflammatory Agents/chemistry , Antidotes/pharmacology , Arsenicals/pharmacology , Arsenicals/therapeutic use , Nuclear Proteins/metabolism , Transcription Factors/metabolism
3.
Antimicrob Agents Chemother ; 65(9): e0024421, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34152810

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is a reemerging alphavirus that can cause encephalitis resulting in severe human morbidity and mortality. Using a high-throughput cell-based screen, we identified a quinolinone compound that protected against VEEV-induced cytopathic effects. Analysis of viral replication in cells identified several quinolinone compounds with potent inhibitory activity against vaccine and virulent strains of VEEV. These quinolinones also displayed inhibitory activity against additional alphaviruses, such as Mayaro virus and Ross River virus, although the potency was greatly reduced. Time-of-addition studies indicated that these compounds inhibit the early-to-mid stage of viral replication. Deep sequencing and reverse genetics studies identified two unique resistance mutations in the nsP2 gene (Y102S/C; stalk domain) that conferred VEEV resistance on this chemical series. Moreover, introduction of a K102Y mutation into the nsP2 gene enhanced the sensitivity of chikungunya virus (CHIKV) to this chemical series. Computational modeling of CHIKV and VEEV nsP2 identified a highly probable docking alignment for the quinolinone compounds that require a tyrosine residue at position 102 within the helicase stalk domain. These studies identified a class of compounds with antiviral activity against VEEV and other alphaviruses and provide further evidence that therapeutics targeting nsP2 may be useful against alphavirus infection.


Subject(s)
Chikungunya virus , Encephalitis Virus, Venezuelan Equine , Quinolones , Animals , Antiviral Agents/pharmacology , Encephalitis Virus, Venezuelan Equine/genetics , Horses , Humans , Quinolones/pharmacology , Virus Replication
4.
Bioorg Med Chem Lett ; 30(4): 126950, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31928838

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rare and progressive neurodegenerative disease with unknown etiology. It is caused by the degeneration of motor neurons responsible for controlling voluntary muscles. It has been reported that mutations in the superoxide dismutase (SOD) 1 gene can lead to ALS. SOD1 abnormalities have been identified in both familial, as well as sporadic ALS cases. SOD2 is a highly inducible SOD that works in conjunction with SOD1. SOD2 can be induced through activation of NF-κBs. We previously reported that the novel small molecule, SRI-22818, increases NF-κB expression and activation and SOD2 levels in vitro and has activity in vivo in the SOD1-G93A reference model of ALS. We report herein the synthesis and biological evaluation of SRI-22818 analogs.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Small Molecule Libraries/chemistry , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Gene Expression Regulation/drug effects , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
5.
Nucleic Acids Res ; 46(4): 1601-1613, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29361039

ABSTRACT

The pharmacological effects of antisense and siRNA oligonucleotides are hindered by the tendency of these molecules to become entrapped in endomembrane compartments thus failing to reach their targets in the cytosol or nucleus. We have previously used high throughput screening to identify small molecules that enhance the escape of oligonucleotides from intracellular membrane compartments and have termed such molecules OECs (oligonucleotide enhancing compounds). Here, we report on the structure-activity relationships of a family of OECs that are analogs of a hit that emerged from our original screen. These studies demonstrate key roles for the lipophilic aromatic groups, the tertiary nitrogen, and the carbamate moiety of the parent compound. We have also investigated the intracellular site of action of the OECs and have shown that activity is due to the release of oligonucleotides from intermediate endosomal compartments rather than from early endosomes or from highly acidic downstream compartments. At high concentrations of OECs toxicity occurs in a manner that is independent of caspases or of lysosomal cathepsins but instead involves increased plasma membrane permeability. Thus, in addition to describing specific characteristics of this family of OECs, the current study provides insights into basic mechanisms of oligonucleotide trafficking and their implications for oligonucleotide delivery.


Subject(s)
Oligonucleotides/metabolism , Pyrazines/pharmacology , Pyridines/pharmacology , HeLa Cells , Humans , Intracellular Membranes/drug effects , Oligonucleotides/analysis , Pyrazines/chemistry , Pyridines/chemistry , Structure-Activity Relationship
6.
Int J Mol Sci ; 19(5)2018 May 20.
Article in English | MEDLINE | ID: mdl-29783777

ABSTRACT

Wnt/ß-catenin signaling is upregulated in triple-negative breast cancer (TNBC) compared to other breast cancer subtypes and normal tissues. Current Wnt/ß-catenin inhibitors, such as niclosamide, target the pathway nonspecifically and exhibit poor pharmacokinetics/pharmacodynamics in vivo. Niclosamide targets other pathways, including mTOR, STAT3 and Notch. Novel benzimidazoles have been developed to inhibit Wnt/ß-catenin signaling with greater specificity. The compounds SRI33576 and SRI35889 were discovered to produce more cytotoxicity in TNBC cell lines than in noncancerous cells. The agents also downregulated Wnt/ß-catenin signaling mediators LRP6, cyclin D1, survivin and nuclear active ß-catenin. In addition, SRI33576 did not affect mTOR, STAT3 and Notch signaling in TNBC and noncancerous cells. SRI35889 inhibited mTOR signaling less in noncancerous than in cancerous cells, while not affecting STAT3 and Notch pathways. Compounds SRI32529, SRI35357 and SRI35361 were not selectively cytotoxic against TNBC cell lines compared to MCF10A cells. While SRI32529 inhibited Wnt/ß-catenin signaling, the compound also mitigated mTOR, STAT3 and Notch signaling. SRI33576 and SRI35889 were identified as cytotoxic and selective inhibitors of Wnt/ß-catenin signaling with therapeutic potential to treat TNBC in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Triple Negative Breast Neoplasms/metabolism , Wnt Signaling Pathway/drug effects , Antineoplastic Agents/chemical synthesis , Benzimidazoles/chemical synthesis , Cell Line, Tumor , Humans , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Receptors, Notch/genetics , Receptors, Notch/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , beta Catenin/genetics , beta Catenin/metabolism
7.
J Biol Chem ; 291(46): 24188-24199, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27679486

ABSTRACT

The enzyme cytochrome c oxidase (CcO) or complex IV (EC 1.9.3.1) is a large transmembrane protein complex that serves as the last enzyme in the respiratory electron transport chain of eukaryotic mitochondria. CcO promotes the switch from glycolytic to oxidative phosphorylation (OXPHOS) metabolism and has been associated with increased self-renewal characteristics in gliomas. Increased CcO activity in tumors has been associated with tumor progression after chemotherapy failure, and patients with primary glioblastoma multiforme and high tumor CcO activity have worse clinical outcomes than those with low tumor CcO activity. Therefore, CcO is an attractive target for cancer therapy. We report here the characterization of a CcO inhibitor (ADDA 5) that was identified using a high throughput screening paradigm. ADDA 5 demonstrated specificity for CcO, with no inhibition of other mitochondrial complexes or other relevant enzymes, and biochemical characterization showed that this compound is a non-competitive inhibitor of cytochrome c When tested in cellular assays, ADDA 5 dose-dependently inhibited the proliferation of chemosensitive and chemoresistant glioma cells but did not display toxicity against non-cancer cells. Furthermore, treatment with ADDA 5 led to significant inhibition of tumor growth in flank xenograft mouse models. Importantly, ADDA 5 inhibited CcO activity and blocked cell proliferation and neurosphere formation in cultures of glioma stem cells, the cells implicated in tumor recurrence and resistance to therapy in patients with glioblastoma. In summary, we have identified ADDA 5 as a lead CcO inhibitor for further optimization as a novel approach for the treatment of glioblastoma and related cancers.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Electron Transport Complex IV/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Glioma , Neoplasm Proteins/antagonists & inhibitors , Animals , Cell Line, Tumor , Cytochromes c/metabolism , Electron Transport Complex IV/metabolism , Glioma/drug therapy , Glioma/enzymology , Humans , Mice , Neoplasm Proteins/metabolism , Xenograft Model Antitumor Assays
8.
Am J Pathol ; 186(3): 678-90, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26801735

ABSTRACT

Transforming growth factor (TGF)-ß supports multiple myeloma progression and associated osteolytic bone disease. Conversion of latent TGF-ß to its biologically active form is a major regulatory node controlling its activity. Thrombospondin1 (TSP1) binds and activates TGF-ß. TSP1 is increased in myeloma, and TSP1-TGF-ß activation inhibits osteoblast differentiation. We hypothesized that TSP1 regulates TGF-ß activity in myeloma and that antagonism of the TSP1-TGF-ß axis inhibits myeloma progression. Antagonists (LSKL peptide, SRI31277) derived from the LSKL sequence of latent TGF-ß that block TSP1-TGF-ß activation were used to determine the role of the TSP1-TGF-ß pathway in mouse models of myeloma. TSP1 binds to human myeloma cells and activates TGF-ß produced by cultured human and mouse myeloma cell lines. Antagonists delivered via osmotic pump in an intratibial severe combined immunodeficiency CAG myeloma model or in a systemic severe combined immunodeficiency CAG-heparanase model of aggressive myeloma reduced TGF-ß signaling (phospho-Smad 2) in bone sections, tumor burden, mouse IL-6, and osteoclasts, increased osteoblast number, and inhibited bone destruction as measured by microcomputed tomography. SRI31277 reduced tumor burden in the immune competent 5TGM1 myeloma model. SRI31277 was as effective as dexamethasone or bortezomib, and SRI31277 combined with bortezomib showed greater tumor reduction than either agent alone. These studies validate TSP1-regulated TGF-ß activation as a therapeutic strategy for targeted inhibition of TGF-ß in myeloma.


Subject(s)
Multiple Myeloma/drug therapy , Osteolysis/drug therapy , Peptides/pharmacology , Thrombospondin 1/drug effects , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Bortezomib/therapeutic use , Cell Differentiation/drug effects , Disease Models, Animal , Humans , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, SCID , Multiple Myeloma/pathology , Osteogenesis/drug effects , Osteolysis/pathology , Peptides/therapeutic use , Random Allocation , Signal Transduction/drug effects , Thrombospondin 1/metabolism , Transforming Growth Factor beta/metabolism , Tumor Microenvironment
9.
Am J Respir Crit Care Med ; 194(9): 1092-1103, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27104944

ABSTRACT

RATIONALE: Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic. OBJECTIVES: To determine whether there are clinically available agents that elicit translational readthrough and improve CFTR function sufficient to confer therapeutic benefit to patients with CF with PTCs. METHODS: Two independent screens, firefly luciferase and CFTR-mediated transepithelial chloride conductance assay, were performed on a library of 1,600 clinically approved compounds using fisher rat thyroid cells stably transfected with stop codons. Select agents were further evaluated using secondary screening assays including short circuit current analysis on primary cells from patients with CF. In addition, the effect of CFTR modulators (ivacaftor) was tested in combination with the most efficacious agents. MEASUREMENTS AND MAIN RESULTS: From the primary screen, 48 agents were selected as potentially active. Following confirmatory tests in the transepithelial chloride conductance assay and prioritizing agents based on favorable pharmacologic properties, eight agents were advanced for secondary screening. Ivacaftor significantly increased short circuit current following forskolin stimulation in cells treated with pyranoradine tetraphosphate, potassium p-aminobenzoate, and escin as compared with vehicle control. Escin, an herbal agent, consistently induced readthrough activity as demonstrated by enhanced CFTR expression and function in vitro. CONCLUSIONS: Clinically approved drugs identified as potential readthrough agents, in combination with ivacaftor, may induce nonsense suppression to restore therapeutic levels of CFTR function. One or more agents may be suitable to advance to human testing.


Subject(s)
Codon, Nonsense/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Drug Discovery/methods , Animals , Cell Line , Codon, Nonsense/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Drug Evaluation, Preclinical/methods , Humans , Luciferases/metabolism , Rats, Inbred F344 , Real-Time Polymerase Chain Reaction
10.
Biochem J ; 473(8): 1027-35, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26846349

ABSTRACT

Historically, drugs used in the treatment of cancers also tend to cause damage to healthy cells while affecting cancer cells. Therefore, the identification of novel agents that act specifically against cancer cells remains a high priority in the search for new therapies. In contrast with normal cells, most cancer cells contain multiple centrosomes which are associated with genome instability and tumorigenesis. Cancer cells can avoid multipolar mitosis, which can cause cell death, by clustering the extra centrosomes into two spindle poles, thereby enabling bipolar division. Kinesin-like protein KIFC1 plays a critical role in centrosome clustering in cancer cells, but is not essential for normal cells. Therefore, targeting KIFC1 may provide novel insight into selective killing of cancer cells. In the present study, we identified a small-molecule KIFC1 inhibitor, SR31527, which inhibited microtubule (MT)-stimulated KIFC1 ATPase activity with an IC50 value of 6.6 µM. By using bio layer interferometry technology, we further demonstrated that SR31527 bound directly to KIFC1 with high affinity (Kd=25.4 nM). Our results from computational modelling and saturation-transfer difference (STD)-NMR experiments suggest that SR31527 bound to a novel allosteric site of KIFC1 that appears suitable for developing selective inhibitors of KIFC1. Importantly, SR31527 prevented bipolar clustering of extra centrosomes in triple negative breast cancer (TNBC) cells and significantly reduced TNBC cell colony formation and viability, but was less toxic to normal fibroblasts. Therefore, SR31527 provides a valuable tool for studying the biological function of KIFC1 and serves as a potential lead for the development of novel therapeutic agents for breast cancer treatment.


Subject(s)
Drug Discovery , Kinesins/antagonists & inhibitors , Kinesins/metabolism , Thiadiazoles/chemistry , Thiadiazoles/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Drug Discovery/methods , Humans , Kinesins/chemistry , Protein Binding/physiology , Protein Structure, Secondary , Thiadiazoles/pharmacology
11.
J Biol Chem ; 289(47): 32937-51, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25228699

ABSTRACT

Pathogenic mutations in the LRRK2 gene can cause late-onset Parkinson disease. The most common mutation, G2019S, resides in the kinase domain and enhances activity. LRRK2 possesses the unique property of cis-autophosphorylation of its own GTPase domain. Because high-resolution structures of the human LRRK2 kinase domain are not available, we used novel high-throughput assays that measured both cis-autophosphorylation and trans-peptide phosphorylation to probe the ATP-binding pocket. We disclose hundreds of commercially available activity-selective LRRK2 kinase inhibitors. Some compounds inhibit cis-autophosphorylation more strongly than trans-peptide phosphorylation, and other compounds inhibit G2019S-LRRK2 more strongly than WT-LRRK2. Through exploitation of structure-activity relationships revealed through high-throughput analyses, we identified a useful probe inhibitor, SRI-29132 (11). SRI-29132 is exquisitely selective for LRRK2 kinase activity and is effective in attenuating proinflammatory responses in macrophages and rescuing neurite retraction phenotypes in neurons. Furthermore, the compound demonstrates excellent potency, is highly blood-brain barrier-permeant, but suffers from rapid first-pass metabolism. Despite the observed selectivity of SRI-29132, docking models highlighted critical interactions with residues conserved in many protein kinases, implying a unique structural configuration for the LRRK2 ATP-binding pocket. Although the human LRRK2 kinase domain is unstable and insoluble, we demonstrate that the LRRK2 homolog from ameba can be mutated to approximate some aspects of the human LRRK2 ATP-binding pocket. Our results provide a rich resource for LRRK2 small molecule inhibitor development. More broadly, our results provide a precedent for the functional interrogation of ATP-binding pockets when traditional approaches to ascertain structure prove difficult.


Subject(s)
Adenosine Triphosphate/chemistry , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Binding Sites/genetics , Biocatalysis/drug effects , Blotting, Western , Cell Line, Tumor , Cells, Cultured , Hep G2 Cells , Humans , Kinetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Models, Molecular , Molecular Sequence Data , Molecular Structure , Mutation , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/genetics , Pyridazines/chemistry , Pyridazines/metabolism , Pyridazines/pharmacology , Sequence Homology, Amino Acid , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology
12.
Neurotherapeutics ; 21(1): e00291, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38241154

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia and lacks highly effective treatments. Tau-based therapies hold promise. Tau reduction prevents amyloid-ß-induced dysfunction in preclinical models of AD and also prevents amyloid-ß-independent dysfunction in diverse disease models, especially those with network hyperexcitability, suggesting that strategies exploiting the mechanisms underlying Tau reduction may extend beyond AD. Tau binds several SH3 domain-containing proteins implicated in AD via its central proline-rich domain. We previously used a peptide inhibitor to demonstrate that blocking Tau interactions with SH3 domain-containing proteins ameliorates amyloid-ß-induced dysfunction. Here, we identify a top hit from high-throughput screening for small molecules that inhibit Tau-FynSH3 interactions and describe its optimization with medicinal chemistry. The resulting lead compound is a potent cell-permeable Tau-SH3 interaction inhibitor that binds Tau and prevents amyloid-ß-induced dysfunction, including network hyperexcitability. These data support the potential of using small molecule Tau-SH3 interaction inhibitors as a novel therapeutic approach to AD.


Subject(s)
Alzheimer Disease , tau Proteins , Humans , tau Proteins/metabolism , Amyloid beta-Peptides/toxicity , Amyloid beta-Peptides/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , High-Throughput Screening Assays
13.
J Cell Biochem ; 113(1): 13-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21898546

ABSTRACT

Breast cancer continues to be a serious health problem particularly in developed countries. Of particular concern is triple negative breast cancer (TNBC) which does not respond well to standard hormone therapy and is associated with poor overall patient prognosis. Recent studies indicate that Wnt/ß-catenin signaling is particularly activated in TNBC, such that the Wnt receptor frizzled-7 (FZD7) and the Wnt co-receptor LRP6 were found to be up regulated in TNBC. In addition, it has been demonstrated that transcriptional knockdown of LRP6 or FZD7 in TNBC cells suppressed tumor growth in vivo. Furthermore, salinomycin, a selective breast cancer stem cell killer, was recently demonstrated to be an inhibitor of Wnt/ß-catenin signaling by inducing LRP6 degradation. Therefore, the Wnt/ß-catenin signaling pathway and particularly the Wnt receptors on the cell surface may serve as novel therapeutic targets for the treatment of TNBC.


Subject(s)
Breast Neoplasms/metabolism , Frizzled Receptors/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Wnt Signaling Pathway/physiology , Breast Neoplasms/therapy , Cell Proliferation , Female , Frizzled Receptors/genetics , Humans , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Pyrans/pharmacology , Receptor, ErbB-2 , Receptors, Estrogen , Receptors, Progesterone , Wnt Signaling Pathway/drug effects
14.
Mol Cancer Ther ; 21(2): 347-358, 2022 02.
Article in English | MEDLINE | ID: mdl-34907087

ABSTRACT

Multiple myeloma is a plasma cell malignancy that thrives in the bone marrow (BM). The proteasome inhibitor bortezomib is one of the most effective first-line chemotherapeutic drugs for multiple myeloma; however, 15% to 20% of high-risk patients do not respond to or become resistant to this drug and the mechanisms of chemoresistance remain unclear. We previously demonstrated that multiple myeloma cells inhibit Runt-related transcription factor 2 (Runx2) in pre- and immature osteoblasts (OB), and that this OB-Runx2 deficiency induces a cytokine-rich and immunosuppressive microenvironment in the BM. In the current study, we assessed the impact of OB-Runx2 deficiency on the outcome of bortezomib treatment using OB-Runx2+/+ and OB-Runx2-/- mouse models of multiple myeloma. In vitro and in vivo experiments revealed that OB-Runx2 deficiency induces multiple myeloma cell resistance to bortezomib via the upregulation of immunosuppressive myeloid-derived suppressor cells (MDSCs), downregulation of cytotoxic T cells, and activation of TGFß1 in the BM. In multiple myeloma tumor-bearing OB-Runx2-/- mice, treatment with SRI31277, an antagonist of thrombospondin-1 (TSP-1)-mediated TGFß1 activation, reversed the BM immunosuppression and significantly reduced tumor burden. Furthermore, treatment with SRI31277 combined with bortezomib alleviated multiple myeloma cell resistance to bortezomib-induced apoptosis caused by OB-Runx2 deficiency in cocultured cells and produced a synergistic effect on tumor burden in OB-Runx2-/- mice. Depletion of MDSCs by 5-fluorouracil or gemcitabine similarly reversed the immunosuppressive effects and bortezomib resistance induced by OB-Runx2 deficiency in tumor-bearing mice, indicating the importance of the immune environment for drug resistance and suggesting new strategies to overcome bortezomib resistance in the treatment of multiple myeloma.


Subject(s)
Bone Marrow/metabolism , Bortezomib/therapeutic use , Core Binding Factor Alpha 1 Subunit/deficiency , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Osteoblasts/metabolism , Thrombospondin 1/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Bortezomib/pharmacology , Cell Line, Tumor , Disease Models, Animal , Humans , Mice , Multiple Myeloma/pathology
15.
Antioxidants (Basel) ; 11(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36290611

ABSTRACT

Acute kidney injury (AKI) is a major public health concern with significant morbidity and mortality and no current treatments beyond supportive care and dialysis. Preclinical studies have suggested that heme-oxygenase-1 (HO-1), an enzyme that catalyzes the breakdown of heme, has promise as a potential therapeutic target for AKI. Clinical trials involving HO-1 products (biliverdin, carbon monoxide, and iron), however, have not progressed beyond the Phase ½ level. We identified small-molecule inducers of HO-1 that enable us to exploit the full therapeutic potential of HO-1, the combination of its products, and yet-undefined effects of the enzyme system. Through cell-based, high-throughput screens for induction of HO-1 driven by the human HO-1 promoter/enhancer, we identified two novel small molecules and broxaldine (an FDA-approved drug) for further consideration as candidate compounds exhibiting an Emax ≥70% of 5 µM hemin and EC50 <10 µM. RNA sequencing identified shared binding motifs to NRF2, a transcription factor known to regulate antioxidant genes, including HMOX1. In vitro, the cytoprotective function of the candidates was assessed against cisplatin-induced cytotoxicity and apoptosis. In vivo, delivery of a candidate compound induced HO-1 expression in the kidneys of mice. This study serves as the basis for further development of small-molecule HO-1 inducers as preventative or therapeutic interventions for a variety of pathologies, including AKI.

16.
Eur J Med Chem ; 210: 112952, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33139114

ABSTRACT

ALS is a rare type of progressive neurological disease with unknown etiology. It results in the gradual degeneration and death of motor neurons responsible for controlling the voluntary muscles. Identification of mutations in the superoxide dismutase (SOD) 1 gene has been the most significant finding in ALS research. SOD1 abnormalities have been associated with both familial as well as sporadic ALS cases. SOD2 is a highly inducible SOD that performs in concurrence with SOD1 to detoxify ROS. Induction of SOD2 can be obtained through activation of NF-Ò¡Bs. We previously reported that SRI-22819 increases NF-Ò¡B expression and activation in vitro, but it has poor ADME properties in general and has no oral bioavailability. Our initial studies were focused on direct modifications of SRI-22819. There were active compounds identified but no improvement in microsomal stability was observed. In this context, we focused on making more significant structural changes in the core of the molecule. Ataluren, an oxadiazole compound that promotes read-through and expression of dystrophin in patients with Duchenne muscular dystrophy, bears some structural similarity to SRI-22819. Thus, we synthesized a series of SRI-22819 and Ataluren (PTC124) hybrid compounds. Several compounds from this series exhibited improved activity, microsomal stability and lower calculated polar surface area (PSA). This manuscript describes the synthesis and biological evaluation of SRI-22819 analogs and its hybrid combination with Ataluren.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , NF-kappa B/agonists , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cell Line , Humans , Mice , Molecular Docking Simulation , NF-kappa B/metabolism , Oxadiazoles/chemistry , Oxadiazoles/pharmacokinetics , Oxadiazoles/pharmacology , Structure-Activity Relationship , Superoxide Dismutase/metabolism
17.
Nat Commun ; 12(1): 4358, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34272367

ABSTRACT

Premature termination codons (PTCs) prevent translation of a full-length protein and trigger nonsense-mediated mRNA decay (NMD). Nonsense suppression (also termed readthrough) therapy restores protein function by selectively suppressing translation termination at PTCs. Poor efficacy of current readthrough agents prompted us to search for better compounds. An NMD-sensitive NanoLuc readthrough reporter was used to screen 771,345 compounds. Among the 180 compounds identified with readthrough activity, SRI-37240 and its more potent derivative SRI-41315, induce a prolonged pause at stop codons and suppress PTCs associated with cystic fibrosis in immortalized and primary human bronchial epithelial cells, restoring CFTR expression and function. SRI-41315 suppresses PTCs by reducing the abundance of the termination factor eRF1. SRI-41315 also potentiates aminoglycoside-mediated readthrough, leading to synergistic increases in CFTR activity. Combining readthrough agents that target distinct components of the translation machinery is a promising treatment strategy for diseases caused by PTCs.


Subject(s)
Codon, Nonsense/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/drug effects , Nonsense Mediated mRNA Decay , Peptide Chain Termination, Translational/drug effects , Peptide Termination Factors/metabolism , Aminoglycosides/metabolism , Codon, Nonsense/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Genes, Reporter , Gentamicins/pharmacology , HEK293 Cells , Humans , Microsomes, Liver/drug effects , Peptide Termination Factors/genetics , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , RNA Interference , Ribosomes/metabolism , Structure-Activity Relationship
18.
J Med Chem ; 64(8): 4762-4786, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33835811

ABSTRACT

A benzo[6]annulene, 4-(tert-butyl)-N-(3-methoxy-5,6,7,8-tetrahydronaphthalen-2-yl) benzamide (1a), was identified as an inhibitor against Chikungunya virus (CHIKV) with antiviral activity EC90 = 1.45 µM and viral titer reduction (VTR) of 2.5 log at 10 µM with no observed cytotoxicity (CC50 = 169 µM) in normal human dermal fibroblast cells. Chemistry efforts to improve potency, efficacy, and drug-like properties of 1a resulted in a novel lead compound 8q, which possessed excellent cellular antiviral activity (EC90 = 270 nM and VTR of 4.5 log at 10 µM) and improved liver microsomal stability. CHIKV resistance to an analog of 1a, compound 1c, tracked to a mutation in the nsP3 macrodomain. Further mechanism of action studies showed compounds working through inhibition of human dihydroorotate dehydrogenase in addition to CHIKV nsP3 macrodomain. Moderate efficacy was observed in an in vivo CHIKV challenge mouse model for compound 8q as viral replication was rescued from the pyrimidine salvage pathway.


Subject(s)
Antiviral Agents/pharmacology , Benzene Derivatives/chemistry , Chikungunya virus/physiology , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Benzene Derivatives/metabolism , Benzene Derivatives/pharmacology , Benzene Derivatives/therapeutic use , Binding Sites , Cell Line , Cell Survival/drug effects , Chikungunya Fever/drug therapy , Dihydroorotate Dehydrogenase , Disease Models, Animal , Female , Half-Life , Humans , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Docking Simulation , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Structure-Activity Relationship
19.
Adv Virol ; 2020: 8844061, 2020.
Article in English | MEDLINE | ID: mdl-33110426

ABSTRACT

Approximately 257 million people chronically infected with hepatitis B virus (HBV) worldwide are at risk of developing hepatocellular carcinoma (HCC). However, despite the availability of potent nucleoside/tide inhibitors, currently there are no curative therapies for chronic HBV infections. To identify potential new antiviral molecules, a select group of compounds previously evaluated in clinical studies were tested against 12 different viruses. Amongst the compounds tested, SRI-32007 (CYT997) demonstrated antiviral activity against HBV (genotype D) in HepG2.2.2.15 cell-based virus yield assay with 50% effective concentration (EC50) and selectivity index (SI) of 60.1 nM and 7.2, respectively. Anti-HBV activity of SRI-32007 was further confirmed against HBV genotype B in huh7 cells with secreted HBe antigen endpoint (EC50 40 nM and SI 250). To determine the stage of HBV life cycle inhibited by SRI-32007, time of addition experiment was conducted in HepG2-NTCP cell-based HBV infectious assay. Results indicated that SRI-32007 retained anti-HBV activity even when added 72 hours postinfection (72 h). Additional mechanism of action studies demonstrated potent inhibition of HBV core promoter activity by SRI-32007 with an EC50 of 40 nM and SI of >250. This study demonstrates anti-HBV activity of a repurposed compound SRI-32007 through inhibition of HBV core promoter activity. Further evaluation of SRI-32007 in HBV animal models is needed to confirm its activity in vivo. Our experiments illustrate the utility of repurposing strategy to identify novel antiviral chemical leads. HBV core promoter inhibitors such as SRI-32007 might enable the development of novel therapeutic strategies to combat HBV infections.

20.
ACS Med Chem Lett ; 11(6): 1130-1136, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32550992

ABSTRACT

TGF-ß has been a target of interest for the treatment of fibrotic diseases and certain cancers. Approaches to target TGF-ß include antagonists of the active ligand or TGF-ß receptor kinase activity. These approaches have failed in clinical trials due to a lack of effectiveness and a limited therapeutic window. In this context, newer and more selective approaches to target TGF-ß are needed. We previously reported that the matricellular protein, thrombospondin 1, activates the latent TGF-ß complex and that antagonism of this pathway using tri/tetrapeptides in various animal models reduces fibrosis. The tripeptide, SRI-31277 (1), is effective in vivo but has a short plasma half life (0.2 h). Herein we describe the design and synthesis SRI-31277 analogs, specifically smaller peptides that retain potency and have improved bioavailability. We identified SRI-35241 (36) with a single chiral center, which blocks TGF-ß activation (pIC50 = 8.12 nM) and has a plasma half life of 1.8 h (iv).

SELECTION OF CITATIONS
SEARCH DETAIL