Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5239, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937448

ABSTRACT

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - is a mechanism-based reporter of Mycobacteria-selective enzyme activity in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-mediated processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-selective candidate for clinical evaluation. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either custom-made radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.


Subject(s)
Mycobacterium tuberculosis , Positron-Emission Tomography , Trehalose , Tuberculosis , Animals , Mycobacterium tuberculosis/metabolism , Positron-Emission Tomography/methods , Trehalose/metabolism , Tuberculosis/diagnostic imaging , Tuberculosis/microbiology , Tuberculosis/metabolism , Humans , Mice , Fluorine Radioisotopes , Fluorodeoxyglucose F18/metabolism , Fluorodeoxyglucose F18/chemistry , Radiopharmaceuticals/metabolism , Disease Models, Animal , Female
2.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37333343

ABSTRACT

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - can act as a mechanism-based enzyme reporter in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-specific processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-specific, clinical diagnostic candidate. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either bespoke radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.

3.
Nat Commun ; 10(1): 4970, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672993

ABSTRACT

The viability of Mycobacterium tuberculosis (Mtb) depends on energy generated by its respiratory chain. Cytochrome bc1-aa3 oxidase and type-2 NADH dehydrogenase (NDH-2) are respiratory chain components predicted to be essential, and are currently targeted for drug development. Here we demonstrate that an Mtb cytochrome bc1-aa3 oxidase deletion mutant is viable and only partially attenuated in mice. Moreover, treatment of Mtb-infected marmosets with a cytochrome bc1-aa3 oxidase inhibitor controls disease progression and reduces lesion-associated inflammation, but most lesions become cavitary. Deletion of both NDH-2 encoding genes (Δndh-2 mutant) reveals that the essentiality of NDH-2 as shown in standard growth media is due to the presence of fatty acids. The Δndh-2 mutant is only mildly attenuated in mice and not differently susceptible to clofazimine, a drug in clinical use proposed to engage NDH-2. These results demonstrate the intrinsic plasticity of Mtb's respiratory chain, and highlight the challenges associated with targeting the pathogen's respiratory enzymes for tuberculosis drug development.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Development , Electron Transport Complex III/genetics , Electron Transport Complex IV/genetics , Mycobacterium tuberculosis/genetics , NADH Dehydrogenase/genetics , Tuberculosis/drug therapy , Adaptation, Physiological/genetics , Animals , Callithrix , Electron Transport , Electron Transport Complex III/antagonists & inhibitors , Electron Transport Complex IV/antagonists & inhibitors , Gene Knockdown Techniques , Imidazoles/pharmacology , In Vitro Techniques , Lung/drug effects , Lung/pathology , Mice , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , NADH Dehydrogenase/antagonists & inhibitors , Piperidines/pharmacology , Pyridines/pharmacology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL