Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Am Chem Soc ; 145(30): 16324-16329, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37487017

ABSTRACT

The torsion angle between donor and acceptor segments of a thermally activated delayed fluorescence (TADF) molecule is one of the most critical factors in determining the performance of TADF-based organic light-emitting diodes (OLEDs) because the torsion angle affects not only the energy gap between the singlet and triplet but also the oscillator strength and spin-orbit coupling. However, the torsion angle is difficult to analyze, because organic molecules are in an amorphous state in OLEDs. Here, we determined the torsion angle of a highly efficient TADF emitter, DACT-II, in an amorphous state by dynamic nuclear polarization enhanced solid-state NMR measurements. From the experimentally obtained chemical shift principal values of 15N on carbazole, we determined the average torsion angle to be 52°. Such quantification of the torsion angles in TADF molecules in amorphous solids will provide deep insight into the TADF mechanism in amorphous OLEDs.

2.
Mol Psychiatry ; 26(9): 4958-4967, 2021 09.
Article in English | MEDLINE | ID: mdl-32439845

ABSTRACT

Alterations in the cortical dopamine system and microglial activation have been implicated in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD), one of neurodevelopmental disorders that can be conventionally treated with a dopamine enhancer (methylphenidate) albeit unsatisfactorily. Here, we investigated the contributions of the dopamine D1 receptor (D1R) and activated microglia and their interactions to the clinical severities in ADHD individuals using positron emission tomography (PET). Twenty-four psychotropic-naïve ADHD individuals and 24 age- and sex-matched typically developing (TD) subjects underwent PET measurements with [11C]SCH23390 for the D1R and [11C](R)PK11195 for activated microglia as well as assessments of clinical symptoms and cognitive functions. The ADHD individuals showed decreased D1R in the anterior cingulate cortex (ACC) and increased activated microglia in the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal cortex (OFC) compared with the TD subjects. The decreased D1R in the ACC was associated with severe hyperactivity in the participants with ADHD. Microglial activation in the DLPFC were associated with deficits in processing speed and attentional ability, and that in the OFC was correlated with lower processing speed in the ADHD individuals. Furthermore, positive correlations between the D1R and activated microglia in both the DLPFC and the OFC were found to be significantly specific to the ADHD group and not to the TD group. The current findings suggest that microglial activation and the D1R reduction as well as their aberrant interactions underpin the neurophysiological mechanism of ADHD and indicate these biomolecular changes as a novel therapeutic target.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Dorsolateral Prefrontal Cortex , Humans , Magnetic Resonance Imaging , Microglia , Positron-Emission Tomography , Prefrontal Cortex , Receptors, Dopamine D1
3.
J Am Chem Soc ; 143(42): 17388-17394, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34647732

ABSTRACT

The conversion of a high-energy photon into two excitons using singlet fission (SF) has stimulated a variety of studies in fields from fundamental physics to device applications. However, efficient SF has only been achieved in limited systems, such as solid crystals and covalent dimers. Here, we established a novel system by assembling 4-(6,13-bis(2-(triisopropylsilyl)ethynyl)pentacen-2-yl)benzoic acid (Pc) chromophores on nanosized CdTe quantum dots (QDs). A near-unity SF (198 ± 5.7%) initiated by interfacial resonant energy transfer from CdTe to surface Pc was obtained. The unique arrangement of Pc determined by the surface atomic configuration of QDs is the key factor realizing unity SF. The triplet-triplet annihilation was remarkably suppressed due to the rapid dissociation of triplet pairs, leading to long-lived free triplets. In addition, the low light-harvesting ability of Pc in the visible region was promoted by the efficient energy transfer (99 ± 5.8%) from the QDs to Pc. The synergistically enhanced light-harvesting ability, high triplet yield, and long-lived triplet lifetime of the SF system on nanointerfaces could pave the way for an unmatched advantage of SF.

4.
J Org Chem ; 86(17): 11531-11544, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34323488

ABSTRACT

Three multichromophore thermally activated delayed fluorescence (TADF) molecules, p-di2CzPN, m-di2CzPN, and 1,3,5-tri2CzPN, were synthesized and characterized. These molecules were designed by connecting the TADF moiety 4,5-di(9H-carbazol-9-yl)phthalonitrile (2CzPN) to different positions of a central benzene ring scaffold. Three highly soluble emitters all exhibited near-quantitative photoluminescence quantum yields (ΦPL) in toluene. High ΦPLs were also achieved in doped films, 59 and 70% for p-di2CzPN and m-di2CzPN in 10 wt % DPEPO doped film, respectively, and 54% for 1,3,5-tri2CzPN in 20 wt % doped CBP films. The rate constant of reverse intersystem crossing (kRISC) for p-di2CzPN and m-di2CzPN in DPEPO films reached 1.1 × 105 and 0.7 × 105 s-1, respectively, and kRISC for 1,3,5-tri2CzPN in the CBP film reached 1.7 × 105 s-1. A solution-processed organic light-emitting diode based on 1,3,5-tri2CzPN exhibited a sky-blue emission with CIE coordinates of (0.22, 0.44) and achieved a maximum external quantum efficiency of 7.1%.

5.
Beilstein J Org Chem ; 17: 2894-2905, 2021.
Article in English | MEDLINE | ID: mdl-34956408

ABSTRACT

In this work we showcase the emitter DICzTRZ in which we employed a twin-emitter design of our previously reported material, ICzTRZ. This new system presented a red-shifted emission at 488 nm compared to that of ICzTRZ at 475 nm and showed a comparable photoluminescence quantum yield of 57.1% in a 20 wt % CzSi film versus 63.3% for ICzTRZ. The emitter was then incorporated within a solution-processed organic light-emitting diode that showed a maximum external quantum efficiency of 8.4%, with Commission Internationale de l'Éclairage coordinate of (0.22, 0.47), at 1 mA cm-2.

6.
J Am Chem Soc ; 142(21): 9752-9762, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32352795

ABSTRACT

Visible-light-driven hydrogen (H2) production from water is a promising strategy to convert and store solar energy as chemical energy. Covalent organic frameworks (COFs) are front runners among different classes of organic photocatalysts. The photocatalytic activity of COFs depends on numerous factors such as the electronic band gap, crystallinity, surface area, exciton migration, stability of transient species, charge separation and transport, etc. However, it is challenging to fine tune all of these factors simultaneously to enhance the photocatalytic activity. Hence, in this report, an effort has been made to understand the interplay of these factors and identify the key factors for efficient photocatalytic H2 production through a structure-property-activity relationship. Careful molecular engineering allowed us to optimize all of the above plausible factors impacting the overall catalytic activities of a series of isoreticular COFs. The present study determines three prime factors: light absorption, charge carrier generation, and its transport, which influence the photocatalytic H2 production of COFs to a much greater extent than the other factors.

7.
Chemistry ; 24(65): 17293-17302, 2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30378204

ABSTRACT

A unique superparamagnetic-like behavior and a large "positive magneto-LC effect" were observed in the solid phases and the hexagonal columnar (Colh ) liquid crystalline (LC) phase, respectively, of novel achiral non-π-delocalized nitroxide diradical compounds (R,S)-1, which showed polymorphism in the solid phases (solids I and II). The SQUID magnetization measurement revealed that (1) (R,S)-1 containing a small amount of racemic diastereomers (R*,R*)-1 possessed an unusual and large temperature-independent magnetic susceptibility (χTIM >0) component in the original nanocrystalline solid I that was responsible for the observed superparamagnetic-like behavior under low magnetic fields and did not arise from the contamination by extrinsic magnetic metal or metal ion impurities, besides ordinary temperature-dependent paramagnetic susceptibility (χpara >0) and temperature-independent diamagnetic susceptibility (χdia <0) components, (2) a large increase in molar magnetic susceptibility (χM ) (positive magneto-LC effect) that occurred at the solid I-to-liquid crystal transition upon heating was preserved as an additional χTIM increase in the resulting polymorphic nanocrystalline solid II by cooling, and (3) such unique magnetic phenomena were induced by thermal processing for (R,S)-1 or by adding a small amount of (R*,R*)-1 to (R,S)-1 as the impurity.

8.
J Am Chem Soc ; 139(51): 18480-18483, 2017 12 27.
Article in English | MEDLINE | ID: mdl-29185733

ABSTRACT

[10]Cycloparaphenylene ([10]CPP) and its tetraalkoxy derivatives were synthesized on the gram scale in 7 steps starting from 1,4-benzoquinone or 2,5-dialkoxy-1,4-benzoquinone. The key steps involve the highly cis-selective bis-addition of 4-bromo-4'-lithiobiphenyl to the quinones to produce a five-ring unit containing cyclohexa-1,4-diene-3,6-diol moiety, the platinum-mediated dimerization of the five-ring unit, and the H2SnCl4-mediated reductive aromatization of cyclohexadienediol. The tetraalkoxy substituents increased the solubility of [10]CPP in common organic solvents. The carrier-transport properties of thin films of [10]CPP and its derivatives were measured for the first time and indicated that [10]CPP derivatives could rival phenyl-C61-butyric acid methyl ester, which is used widely as an n-type active layer in bulk heterojunction photovoltaics.

9.
Am J Med Genet B Neuropsychiatr Genet ; 174(8): 798-807, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28990294

ABSTRACT

The synapse-associated protein 97/discs, large homolog 1 of Drosophila (DLG1) gene encodes synaptic scaffold PDZ proteins interacting with ionotropic glutamate receptors including the N-methyl-D-aspartate type glutamate receptor (NMDAR) that is presumed to be hypoactive in brains of patients with schizophrenia. The DLG1 gene resides in the chromosomal position 3q29, the microdeletion of which confers a 40-fold increase in the risk for schizophrenia. In the present study, we performed genetic association analyses for DLG1 gene using a Japanese cohort with 1808 schizophrenia patients and 2170 controls. We detected an association which remained significant after multiple comparison testing between schizophrenia and the single nucleotide polymorphism (SNP) rs3915512 that is located within the newly identified primate-specific exon (exon 3b) of the DLG1 gene and constitutes the exonic splicing enhancer sequence. When stratified by onset age, although it did not survive multiple comparisons, the association was observed in non-early onset schizophrenia, whose onset-age selectivity is consistent with our recent postmortem study demonstrating a decrease in the expression of the DLG1 variant in early-onset schizophrenia. Although the present study did not demonstrate the previously reported association of the SNP rs9843659 by itself, a meta-analysis revealed a significant association between DLG1 gene and schizophrenia. These findings provide a valuable clue for molecular mechanisms on how genetic variations in the primate-specific exon of the gene in the schizophrenia-associated 3q29 locus affect its regulation in the glutamate system and lead to the disease onset around a specific stage of brain development.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Chromosomes, Human, Pair 3 , Exons , Genetic Loci , Genetic Predisposition to Disease , Membrane Proteins/genetics , Schizophrenia/diagnosis , Adult , Age of Onset , Brain , Case-Control Studies , Discs Large Homolog 1 Protein , Female , Genetic Testing , Humans , Male , Middle Aged , Risk Factors , Schizophrenia/genetics
10.
Angew Chem Int Ed Engl ; 56(47): 14842-14846, 2017 11 20.
Article in English | MEDLINE | ID: mdl-28994190

ABSTRACT

Molecular orientation in amorphous organic semiconducting thin-film devices is an important issue affecting device performance. However, to date it has not been possible to analyze the "distribution" of the orientations. Although solid-state NMR (ssNMR) spectroscopy can provide information on the "distribution" of molecular orientations, the technique is limited because of the small amount of sample in the device and the low sensitivity of ssNMR. Here, we report the first application of dynamic nuclear polarization enhanced ssNMR (DNP-ssNMR) spectroscopy for the orientational analysis of amorphous phenyldi(pyren-1-yl)phosphine oxide (POPy2 ). The 31 P DNP-ssNMR spectra exhibited a sufficient signal-to-noise ratio to quantify the distribution of molecular orientations in amorphous films: the P=O axis of the vacuum-deposited and drop-cast POPy2 shows anisotropic and isotropic distribution, respectively. The different molecular orientations reflect the molecular origin of the different charge transport behaviors.

11.
Hum Mol Genet ; 23(24): 6495-511, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25027319

ABSTRACT

Disturbances of lipid metabolism have been implicated in psychiatric illnesses. We previously reported an association between the gene for fatty acid binding protein 7 (FABP7) and schizophrenia. Furthermore, we identified and reported several rare non-synonymous polymorphisms of the brain-expressed genes FABP3, FABP5 and FABP7 from schizophrenia and autism spectrum disorder (ASD), diseases known to part share genetic architecture. Here, we conducted further studies to better understand the contribution these genes make to the pathogenesis of schizophrenia and ASD. In postmortem brains, we detected altered mRNA expression levels of FABP5 in schizophrenia, and of FABP7 in ASD and altered FABP5 in peripheral lymphocytes. Using a patient cohort, comprehensive mutation screening identified six missense and two frameshift variants from the three FABP genes. The two frameshift proteins, FABP3 E132fs and FABP7 N80fs, formed cellular aggregates and were unstable when expressed in cultured cells. The four missense mutants with predicted possible damaging outcomes showed no changes in intracellular localization. Examining ligand binding properties, FABP7 S86G and FABP7 V126L lost their preference for docosahexaenoic acid to linoleic acid. Finally, mice deficient in Fabp3, Fabp5 and Fabp7 were evaluated in a systematic behavioral test battery. The Fabp3 knockout (KO) mice showed decreased social memory and novelty seeking, and Fabp7 KO mice displayed hyperactive and anxiety-related phenotypes, while Fabp5 KO mice showed no apparent phenotypes. In conclusion, disturbances in brain-expressed FABPs could represent an underlying disease mechanism in a proportion of schizophrenia and ASD sufferers.


Subject(s)
Behavior, Animal , Carrier Proteins/genetics , Child Development Disorders, Pervasive/genetics , Fatty Acid-Binding Proteins/genetics , Schizophrenia/genetics , Tumor Suppressor Proteins/genetics , Amino Acid Sequence , Animals , Anxiety/genetics , Anxiety/physiopathology , Brain/metabolism , Brain/pathology , Carrier Proteins/metabolism , Child Development Disorders, Pervasive/metabolism , Child Development Disorders, Pervasive/physiopathology , Docosahexaenoic Acids/metabolism , Exploratory Behavior , Fatty Acid Binding Protein 3 , Fatty Acid-Binding Protein 7 , Fatty Acid-Binding Proteins/metabolism , Frameshift Mutation , Humans , Linoleic Acid/metabolism , Lymphocytes/metabolism , Mice , Mice, Transgenic , Models, Molecular , Molecular Sequence Data , Mutation, Missense , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Schizophrenia/metabolism , Schizophrenia/physiopathology , Sequence Alignment , Tumor Suppressor Proteins/metabolism
12.
Acta Neuropsychiatr ; 28(6): 352-356, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27321482

ABSTRACT

OBJECTIVE: Neuroimaging studies of depression considered as a stress-related disorder have shown uncoupling in regional cerebral blood flow (rCBF) and regional cerebral metabolic rate for glucose (rCMRglc). We hypothesised that the mismatch change of rCBF and rCMRglc could be a stress-related phenomenon. METHODS: We exposed male rats to 15-min period of forced swim (FS), followed by the measurement of rCBF using N-isopropyl-4-[123I] iodoamphetamine (123I-IMP) and rCMRglc using 2-deoxy-2-[18F] fluoro-D-glucose (18F-FDG). RESULTS: The uptake rate of 18F-FDG in the FS group showed a significant decrease in the prefrontal cortex (0.86±0.20%ID/g, p<0.01) and thalamus (0.77±0.17%ID/g, p<0.05) and tended to be lower in the hippocampus (0.58±0.13%ID/g) and cerebellum (0.59±0.13%ID/g) without overt alteration in the uptake rate of 123I-IMP. CONCLUSIONS: The FS stress can cause mismatch change of rCBF and rCMRglc, which reflect a stress-related phenomenon.


Subject(s)
Brain/metabolism , Cerebrovascular Circulation , Glucose/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Animals , Brain/blood supply , Male , Rats , Rats, Sprague-Dawley , Swimming
13.
J Neural Transm (Vienna) ; 122(6): 915-23, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25392085

ABSTRACT

It is widely accepted that malfunction of the N-methyl-D-aspartate (NMDA)-type glutamate receptor may be involved in the pathophysiology of schizophrenia. Several recent microRNA (miRNA) studies have demonstrated that the expression of the glutamate system-related miR-132 and miR-212 is changed in postmortem schizophrenic brains. Here we attempted to obtain further insight into the relationships among schizophrenia, the NMDA receptor, the molecular cascades controlled by these miRNAs and commonly predicted target genes of the two miRNAs. We focused on the H2AFZ (encoding H2A histone family, member Z) gene, whose expression was shown in our screening study to be modified by a schizophrenomimetic NMDA antagonist, phencyclidine. By performing polymerase chain reaction with fluorescent signal detention using the TaqMan system, we examined four tag single nucleotide polymorphisms (SNPs; SNP01-04) located around and within the H2AFZ gene for their genetic association with schizophrenia. The subjects were a Japanese cohort (2,012 patients with schizophrenia and 2,170 control subjects). We did not detect any significant genetic association of these SNPs with schizophrenia in this cohort. However, we observed a significant association of SNP02 (rs2276939) in the male patients with schizophrenia (allelic P = 0.003, genotypic P = 0.008). A haplotype analysis revealed that haplotypes consisting of SNP02-SNP03 (rs10014424)-SNP04 (rs6854536) also showed a significant association in the male patients with schizophrenia (P = 0.018). These associations remained significant even after correction for multiple testing. The present findings suggest that the H2AFZ gene may be a susceptibility factor in male subjects with schizophrenia, and that modification of the H2AFZ signaling pathway warrants further study in terms of the pathophysiology of schizophrenia.


Subject(s)
Histones/genetics , Polymorphism, Single Nucleotide , Schizophrenia/genetics , Adult , Asian People/genetics , Case-Control Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genotyping Techniques , Haplotypes , Humans , Japan , Male , Middle Aged , Sex Characteristics
15.
J Neural Transm (Vienna) ; 122(3): 477-85, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25005592

ABSTRACT

Disruption of synaptic networks has been advocated in the pathogenesis of psychiatric diseases like schizophrenia. The majority of synaptic proteins involved in neuronal communications are localized in lipid rafts. These rafts form the platform for coordinating neuronal signal transduction, by clustering interacting partners. The PAG1 protein is a transmembrane adaptor protein in the lipid raft signaling cluster that regulates Src family kinases (SFKs), a convergent point for multiple pathways regulating N-methyl-D-aspartate (NMDA) receptors. Reports of de novo missense mutations in PAG1 and SFK mediated reductions in tyrosine phosphorylation of NMDA receptor subunit proteins in schizophrenia patients, point to a putative role in schizophrenia pathogenesis. To evaluate this, we resequenced the entire coding region of PAG1 in Japanese schizophrenia patients (n = 1,140) and controls (n = 1,140). We identified eight missense variants, of which four were previously unreported. Case-control genetic association analysis of these variants in a larger cohort (n = 4,182) showed neither a statistically significant association of the individual variants with schizophrenia, nor any increased burden of the rare alleles in the patient group. Expression levels of PAG1 in post-mortem brain samples from schizophrenia patients and controls also showed no significant differences. To assess the precise role of PAG1 in schizophrenia, future studies with larger sample sizes are needed.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Brain/metabolism , Gene Expression Regulation/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation, Missense/genetics , Schizophrenia , Adult , Aged , Case-Control Studies , Cohort Studies , Exons/genetics , Female , Genetic Association Studies , Genetic Predisposition to Disease , Haplotypes , Humans , Japan , Male , Middle Aged , RNA, Messenger/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism , Schizophrenia/pathology
16.
Soft Matter ; 11(27): 5563-70, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26073537

ABSTRACT

An optically active amphiphilic nitroxide radical compound [(S,S,R)-], which contains a paramagnetic (2S,5S)-2,5-dimethyl-2,5-diphenylpyrrolidine-N-oxyl radical group fixed in the inner position together with a hydrophobic long alkyl chain and a hydrophilic (R)-alanine residue in the opposite terminal positions, was found to serve as a low-molecular-weight gelator in H2O to give rise to a spin-labelled physical hydrogel. Characterization of the hydrogel was performed by microscopic (SEM, TEM and AFM) techniques, XRD and SAXS measurements, and IR, UV and CD spectroscopies. The gel-sol transition temperature was determined by EPR spectral line-width (ΔHpp) analysis. Measurement of the temperature dependence of relative paramagnetic susceptibility (χrel) for the hydrogel and sol phases was achieved by means of the double-integration of VT-EPR spectra.


Subject(s)
Hydrogels/chemical synthesis , Nitrogen Oxides/chemistry , Electron Spin Resonance Spectroscopy , Hydrophobic and Hydrophilic Interactions , Pyrrolidines/chemistry , Spin Labels , Stereoisomerism , Transition Temperature
17.
Angew Chem Int Ed Engl ; 54(50): 15231-5, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26563845

ABSTRACT

Triarylboron compounds have attracted much attention, and found wide use as functional materials because of their electron-accepting properties arising from the vacant p orbitals on the boron atoms. In this study, we design and synthesize new donor-acceptor triarylboron emitters that show thermally activated delayed fluorescence. These emitters display sky-blue to green emission and high photoluminescence quantum yields of 87-100 % in host matrices. Organic light-emitting diodes using these emitting molecules as dopants exhibit high external quantum efficiencies of 14.0-22.8 %, which originate from efficient up-conversion from triplet to singlet states and subsequent efficient radiative decay from singlet to ground states.

18.
Chemistry ; 20(33): 10343-50, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25042834

ABSTRACT

An excellent chiral symmetry-breaking spontaneous enantiomeric resolution phenomenon, denoted preferential enrichment, was observed on recrystallization of the 1:1 cocrystal of dl-arginine and fumaric acid, which is classified as a racemic compound crystal with a high eutectic ee value (>95 %), under non-equilibrium crystallization conditions. On the basis of temperature-controlled video microscopy and in situ time-resolved solid-state (13) C NMR spectroscopic studies on the crystallization process, a new mechanism of phase transition that can induce preferential enrichment is proposed.


Subject(s)
Arginine/chemistry , Crystallization , Crystallography, X-Ray , Models, Molecular , Phase Transition , Stereoisomerism
19.
J Psychiatry Neurosci ; 39(5): 294-303, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24866414

ABSTRACT

BACKGROUND: In a genome-wide association study of autism, zinc finger protein 804A (ZNF804A) single nucleotide polymorphisms (SNPs) were found to be nominally associated in verbally deficient individuals with autism. Zinc finger protein 804A copy number variations (CNVs) have also been observed in individuals with autism. In addition, ZNF804A is known to be involved in theory of mind (ToM) tasks, and ToM deficits are deemed responsible for the communication and social challenges faced by individuals with autism. We hypothesized that ZNF804A could be a risk gene for autism. METHODS: We examined the genetic association and CNVs of ZNF804A in 841 families in which 1 or more members had autism. We compared the expression of ZNF804A in the postmortem brains of individuals with autism (n = 8) and controls (n = 13). We also assessed in vitro the effect of ZNF804A silencing on the expression of several genes known to be involved in verbal efficiency and social cognition. RESULTS: We found that rs7603001 was nominally associated with autism (p = 0.018). The association was stronger (p = 0.008) in the families of individuals with autism who were verbally deficient (n = 761 families). We observed ZNF804A CNVs in 7 verbally deficient boys with autism. In ZNF804A knockdown cells, the expression of synaptosomal-associated protein, 25kDa (SNAP25) was reduced compared with controls (p = 0.009). The expression of ZNF804A (p = 0.009) and SNAP25 (p = 0.009) were reduced in the anterior cingulate gyrus (ACG) of individuals with autism. There was a strong positive correlation between the expression of ZNF804A and SNAP25 in the ACG (p < 0.001). LIMITATIONS: Study limitations include our small sample size of postmortem brains. CONCLUSION: Our results suggest that ZNF804A could be a potential candidate gene mediating the intermediate phenotypes associated with verbal traits in individuals with autism.


Subject(s)
Autistic Disorder/genetics , Autistic Disorder/metabolism , Brain/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Language , Adolescent , Adult , Cell Line, Tumor , Child , Child, Preschool , DNA Copy Number Variations , Family , Female , Gene Silencing , Genetic Association Studies , Genetic Predisposition to Disease , Genotyping Techniques , Gyrus Cinguli/metabolism , Humans , Male , Polymorphism, Single Nucleotide , Synaptosomal-Associated Protein 25/metabolism , Young Adult
20.
J Psychiatry Neurosci ; 38(3): 192-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23031252

ABSTRACT

BACKGROUND: Synaptic dysfunction has been shown to be involved in the pathogenesis of autism. We hypothesized that the protocadherin α gene cluster (PCDHA), which is involved in synaptic specificity and in serotonergic innervation of the brain, could be a suitable candidate gene for autism. METHODS: We examined 14 PCDHA single nucleotide polymorphisms (SNPs) for genetic association with autism in DNA samples of 3211 individuals (841 families, including 574 multiplex families) obtained from the Autism Genetic Resource Exchange. RESULTS: Five SNPs (rs251379, rs1119032, rs17119271, rs155806 and rs17119346) showed significant associations with autism. The strongest association (p < 0.001) was observed for rs1119032 (z score of risk allele G = 3.415) in multiplex families; SNP associations withstand multiple testing correction in multiplex families (p = 0.041). Haplotypes involving rs1119032 showed very strong associations with autism, withstanding multiple testing corrections. In quantitative transmission disequilibrium testing of multiplex fam - ilies, the G allele of rs1119032 showed a significant association (p = 0.033) with scores on the Autism Diagnostic Interview-Revised (ADI-R)_D (early developmental abnormalities). We also found a significant difference in the distribution of ADI-R_A (social interaction) scores between the A/A, A/G and G/G genotypes of rs17119346 (p = 0.002). LIMITATIONS: Our results should be replicated in an independent population and/or in samples of different racial backgrounds. CONCLUSION: Our study provides strong genetic evidence of PCDHA as a potential candidate gene for autism.


Subject(s)
Autistic Disorder/genetics , Cadherins/genetics , Polymorphism, Single Nucleotide/genetics , Cell Adhesion Molecules/genetics , Female , Genetic Predisposition to Disease , Genotype , Haplotypes , Humans , Linkage Disequilibrium , Male
SELECTION OF CITATIONS
SEARCH DETAIL