Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Biotechnol Prog ; 18(1): 72-7, 2002.
Article in English | MEDLINE | ID: mdl-11822902

ABSTRACT

A recirculation loop added to a large-scale roller bottle reactor resulted in high cell densities as compared to standard roller bottles. Four different mammalian cell lines reached an average maximum density equal to 5.4 x 10(6) cells /mL (sigma = 0.263), which was between 2.13 and 2.95 times greater than the densities in roller bottles without recirculation using the same cell lines. The high densities were maintained over long durations (>25 days) while the reactor operated with continuous perfusion. The increased densities are attributed to enhanced liquid mixing and oxygen transfer that occur as a result of the recirculation loop. Models were developed that describe axial liquid flow and oxygen transfer in both the sample loop and the reactor growth chamber. Axial dispersion and oxygen transfer coefficients are presented for a variety of operating conditions. The increased oxygen transfer characteristics of the reactor allow for easy scale-up of roller bottle cultures by operating at larger volumes with greater liquid depths than conventional roller bottles permit. The surface-area-to-volume ratio in the tests performed was 0.206 versus 1.16 cm(-1) in a standard roller bottle.


Subject(s)
Biomass , Bioreactors , Animals , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Division , Electrodes , Equipment Design , Humans , Oxygen/pharmacokinetics , Rheology , Rotation , Stress, Mechanical , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL