ABSTRACT
Since 1988, when World Health Organization (WHO) Member States and partners launched the Global Polio Eradication Initiative, the number of wild poliovirus (WPV) cases has declined from 350,000 in 125 countries to 176 in only two countries in 2019 (1). The Global Commission for the Certification of Poliomyelitis Eradication (GCC) declared two of the three WPV types, type 2 (WPV2) and type 3 (WPV3), eradicated globally in 2015 and 2019, respectively (1). Wild poliovirus type 1 (WPV1) remains endemic in Afghanistan and Pakistan (1). Containment under strict biorisk management measures is vital to prevent reintroduction of eradicated polioviruses into communities from poliovirus facilities. In 2015, Member States committed to contain type 2 polioviruses (PV2) in poliovirus-essential facilities (PEFs) certified in accordance with a global standard (2). Member states agreed to report national PV2 inventories annually, destroy unneeded PV2 materials, and, if retaining PV2 materials, establish national authorities for containment (NACs) and a PEF auditing process. Since declaration of WPV3 eradication in October 2019, these activities are also required with WPV3 materials. Despite challenges faced during 2019-2020, including the coronavirus disease 2019 (COVID-19) pandemic, the global poliovirus containment program continues to work toward important milestones. To maintain progress, all WHO Member States are urged to adhere to the agreed containment resolutions, including officially establishing legally empowered NACs and submission of PEF Certificates of Participation.
Subject(s)
Disease Eradication , Global Health/statistics & numerical data , Poliomyelitis/prevention & control , Humans , Poliomyelitis/epidemiology , Poliovirus Vaccine, Oral/administration & dosageABSTRACT
Among the three wild poliovirus (WPV) types, type 2 (WPV2) was declared eradicated globally by the Global Commission for the Certification of Poliomyelitis Eradication (GCC) in 2015. Subsequently, in 2016, a global withdrawal of Sabin type 2 oral poliovirus vaccine (OPV2) from routine use, through a synchronized switch from the trivalent formulation of oral poliovirus vaccine (tOPV, containing vaccine virus types 1, 2, and 3) to the bivalent form (bOPV, containing types 1 and 3), was implemented. WPV type 3 (WPV3), last detected in 2012 (1), will possibly be declared eradicated in late 2019.* To ensure that polioviruses are not reintroduced to the human population after eradication, World Health Organization (WHO) Member States committed in 2015 to containing all polioviruses in poliovirus-essential facilities (PEFs) that are certified to meet stringent containment criteria; implementation of containment activities began that year for facilities retaining type 2 polioviruses (PV2), including type 2 oral poliovirus vaccine (OPV) materials (2). As of August 1, 2019, 26 countries have nominated 74 PEFs to retain PV2 materials. Twenty-five of these countries have established national authorities for containment (NACs), which are institutions nominated by ministries of health or equivalent bodies to be responsible for poliovirus containment certification. All designated PEFs are required to be enrolled in the certification process by December 31, 2019 (3). When GCC certifies WPV3 eradication, WPV3 and vaccine-derived poliovirus (VDPV) type 3 materials will also be required to be contained, leading to a temporary increase in the number of designated PEFs. When safer alternatives to wild and OPV/Sabin strains that do not require containment conditions are available for diagnostic and serologic testing, the number of PEFs will decrease. Facilities continuing to work with polioviruses after global eradication must minimize the risk for reintroduction into communities by adopting effective biorisk management practices.
Subject(s)
Disease Eradication , Global Health/statistics & numerical data , Poliomyelitis/prevention & control , Humans , Poliomyelitis/epidemiologyABSTRACT
Substantial progress has been made since the World Health Assembly (WHA) resolved to eradicate poliomyelitis in 1988 (1). Among the three wild poliovirus (WPV) types, type 2 (WPV2) was declared eradicated in 2015, and type 3 (WPV3) has not been reported since 2012 (1). In 2017 and 2018, only Afghanistan and Pakistan have reported WPV type 1 (WPV1) transmission (1). When global eradication of poliomyelitis is achieved, facilities retaining poliovirus materials need to minimize the risk for reintroduction of poliovirus into communities and reestablishment of transmission. Poliovirus containment includes biorisk management requirements for laboratories, vaccine production sites, and other facilities that retain polioviruses after eradication; the initial milestones are for containment of type 2 polioviruses (PV2s). At the 71st WHA in 2018, World Health Organization (WHO) Member States adopted a resolution urging acceleration of poliovirus containment activities globally, including establishment by the end of 2018 of national authorities for containment (NACs) to oversee poliovirus containment (2). This report summarizes containment progress since the previous report (3) and outlines remaining challenges. As of August 2018, 29 countries had designated 81 facilities to retain PV2 materials; 22 of these countries had established NACs. Although there has been substantial progress, intensification of containment measures is needed.
Subject(s)
Disease Eradication , Global Health/statistics & numerical data , Poliomyelitis/prevention & control , Humans , Poliomyelitis/epidemiologyABSTRACT
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder involving the abnormal communication of vascular structures. HHT typically presents with recurrent epistaxis and telangiectasis of the nasal and buccal mucosa, tongue, and lips. More serious manifestations of this disease include cerebral, pulmonary, gastrointestinal, and hepatic arteriovenous malformations. This case report details a 55-year-old male with HHT undergoing a five-box maze procedure for curative treatment of atrial fibrillation. Particular anesthetic considerations are described to reduce morbidity and mortality in this patient population.