Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 313(4): H732-H743, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28667054

ABSTRACT

The actions of hydrogen sulfide (H2S) on the heart and vasculature have been extensively reported. However, the mechanisms underlying the effects of H2S are unclear in the anesthetized rat. The objective of the present study was to investigate the effect of H2S on the electrocardiogram and examine the relationship between H2S-induced changes in heart rate (HR), mean arterial pressure (MAP), and respiratory function. Intravenous administration of the H2S donor Na2S in the anesthetized Sprague-Dawley rat decreased MAP and HR and produced changes in respiratory function. The administration of Na2S significantly increased the RR interval at some doses but had no effect on PR or corrected QT(n)-B intervals. In experiments where respiration was maintained with a mechanical ventilator, we observed that Na2S-induced decreases in MAP and HR were independent of respiration. In experiments where respiration was maintained by mechanical ventilation and HR was maintained by cardiac pacing, Na2S-induced changes in MAP were not significantly altered, whereas changes in HR were abolished. Coadministration of glybenclamide significantly increased MAP and HR responses at some doses, but methylene blue, diltiazem, and ivabradine had no significant effect compared with control. The decreases in MAP and HR in response to Na2S could be dissociated and were independent of changes in respiratory function, ATP-sensitive K+ channels, methylene blue-sensitive mechanism involving L-type voltage-sensitive Ca2+ channels, or hyperpolarization-activated cyclic nucleotide-gated channels. Cardiovascular responses observed in spontaneously hypertensive rats were more robust than those in Sprague-Dawley rats.NEW & NOTEWORTHY H2S is a gasotransmitter capable of producing a decrease in mean arterial pressure and heart rate. The hypotensive and bradycardic effects of H2S can be dissociated, as shown with cardiac pacing experiments. Responses were not blocked by diltiazem, ivabradine, methylene blue, or glybenclamide.


Subject(s)
Arterial Pressure/drug effects , Heart Rate/drug effects , Hydrogen Sulfide/pharmacology , Sulfides/pharmacology , Animals , Calcium Channels, L-Type/drug effects , Cardiac Pacing, Artificial , Electrocardiography/drug effects , Glyburide/pharmacology , Hypoglycemic Agents/pharmacology , KATP Channels/drug effects , Male , Potassium Channel Blockers/pharmacology , Rats , Rats, Inbred SHR , Rats, Sprague-Dawley , Respiration, Artificial
2.
Can J Physiol Pharmacol ; 94(7): 758-68, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27172427

ABSTRACT

Pulmonary hypertension is a rare disorder that, without treatment, is progressive and fatal within 3-4 years. Current treatment involves a diverse group of drugs that target the pulmonary vascular bed. In addition, strategies that increase nitric oxide (NO) formation have a beneficial effect in rodents and patients. Nebivolol, a selective ß1 adrenergic receptor-blocking agent reported to increase NO production and stimulate ß3 receptors, has vasodilator properties suggesting that it may be beneficial in the treatment of pulmonary hypertension. The present study was undertaken to determine whether nebivolol has a beneficial effect in monocrotaline-induced (60 mg/kg) pulmonary hypertension in the rat. These results show that nebivolol treatment (10 mg/kg, once or twice daily) attenuates pulmonary hypertension, reduces right ventricular hypertrophy, and improves pulmonary artery remodeling in monocrotaline-induced pulmonary hypertension. This study demonstrates the presence of ß3 adrenergic receptor immunoreactivity in pulmonary arteries and airways and that nebivolol has pulmonary vasodilator activity. Studies with ß3 receptor agonists (mirabegron, BRL 37344) and antagonists suggest that ß3 receptor-mediated decreases in systemic arterial pressure occur independent of NO release. Our results suggest that nebivolol, a selective vasodilating ß1 receptor antagonist that stimulates ß3 adrenergic receptors and induces vasodilation by increasing NO production, may be beneficial in treating pulmonary hypertensive disorders.


Subject(s)
Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Monocrotaline/toxicity , Nebivolol/therapeutic use , Vasodilator Agents/therapeutic use , Animals , Blood Pressure/drug effects , Blood Pressure/physiology , Cardiac Output/drug effects , Cardiac Output/physiology , Hypertension, Pulmonary/pathology , Rats , Rats, Sprague-Dawley , Treatment Outcome
3.
Am J Physiol Heart Circ Physiol ; 309(4): H605-14, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26071540

ABSTRACT

Hydrogen sulfide (H2S) is an endogenous gaseous molecule formed from L-cysteine in vascular tissue. In the present study, cardiovascular responses to the H2S donors Na2S and NaHS were investigated in the anesthetized rat. The intravenous injections of Na2S and NaHS 0.03-0.5 mg/kg produced dose-related decreases in systemic arterial pressure and heart rate, and at higher doses decreases in cardiac output, pulmonary arterial pressure, and systemic vascular resistance. H2S infusion studies show that decreases in systemic arterial pressure, heart rate, cardiac output, and systemic vascular resistance are well-maintained, and responses to Na2S are reversible. Decreases in heart rate were not blocked by atropine, suggesting that the bradycardia was independent of parasympathetic activation and was mediated by an effect on the sinus node. The decreases in systemic arterial pressure were not attenuated by hexamethonium, glybenclamide, N(w)-nitro-L-arginine methyl ester hydrochloride, sodium meclofenamate, ODQ, miconazole, 5-hydroxydecanoate, or tetraethylammonium, suggesting that ATP-sensitive potassium channels, nitric oxide, arachidonic acid metabolites, cyclic GMP, p450 epoxygenase metabolites, or large conductance calcium-activated potassium channels are not involved in mediating hypotensive responses to the H2S donors in the rat and that responses are not centrally mediated. The present data indicate that decreases in systemic arterial pressure in response to the H2S donors can be mediated by decreases in vascular resistance and cardiac output and that the donors have an effect on the sinus node independent of the parasympathetic system. The present data indicate that the mechanism of the peripherally mediated hypotensive response to the H2S donors is uncertain in the intact rat.


Subject(s)
Blood Pressure/drug effects , Cardiac Output/drug effects , Heart Rate/drug effects , Hydrogen Sulfide/pharmacology , Sulfides/pharmacology , Vascular Resistance/drug effects , Animals , Arachidonic Acid/metabolism , Cyclic GMP/metabolism , Male , Nitric Oxide/metabolism , Potassium Channels/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL