Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 312
Filter
Add more filters

Publication year range
1.
Trends Genet ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38782642

ABSTRACT

Intimate links between epigenome modifications and metabolites allude to a crucial role of cellular metabolism in transcriptional regulation. Retina, being a highly metabolic tissue, adapts by integrating inputs from genetic, epigenetic, and extracellular signals. Precise global epigenomic signatures guide development and homeostasis of the intricate retinal structure and function. Epigenomic and metabolic realignment are hallmarks of aging and highlight a link of the epigenome-metabolism nexus with aging-associated multifactorial traits affecting the retina, including age-related macular degeneration and glaucoma. Here, we focus on emerging principles of epigenomic and metabolic control of retinal gene regulation, with emphasis on their contribution to human disease. In addition, we discuss potential mitigation strategies involving lifestyle changes that target the epigenome-metabolome relationship for maintaining retinal function.

2.
Hum Mol Genet ; 33(4): 374-385, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37934784

ABSTRACT

Genome-wide association studies have contributed extensively to the discovery of disease-associated common variants. However, the genetic contribution to complex traits is still largely difficult to interpret. We report a genome-wide association study of 2394 cases and 2393 controls for age-related macular degeneration (AMD) via whole-genome sequencing, with 46.9 million genetic variants. Our study reveals significant single-variant association signals at four loci and independent gene-based signals in CFH, C2, C3, and NRTN. Using data from the Exome Aggregation Consortium (ExAC) for a gene-based test, we demonstrate an enrichment of predicted rare loss-of-function variants in CFH, CFI, and an as-yet unreported gene in AMD, ORMDL2. Our method of using a large variant list without individual-level genotypes as an external reference provides a flexible and convenient approach to leverage the publicly available variant datasets to augment the search for rare variant associations, which can explain additional disease risk in AMD.


Subject(s)
Genome-Wide Association Study , Macular Degeneration , Humans , Genome-Wide Association Study/methods , Macular Degeneration/genetics , Genotype , Genetic Testing , Whole Genome Sequencing , Polymorphism, Single Nucleotide/genetics , Genetic Predisposition to Disease , Complement Factor H/genetics
3.
Nature ; 581(7806): 83-88, 2020 05.
Article in English | MEDLINE | ID: mdl-32376950

ABSTRACT

Photoreceptor loss is the final common endpoint in most retinopathies that lead to irreversible blindness, and there are no effective treatments to restore vision1,2. Chemical reprogramming of fibroblasts offers an opportunity to reverse vision loss; however, the generation of sensory neuronal subtypes such as photoreceptors remains a challenge. Here we report that the administration of a set of five small molecules can chemically induce the transformation of fibroblasts into rod photoreceptor-like cells. The transplantation of these chemically induced photoreceptor-like cells (CiPCs) into the subretinal space of rod degeneration mice (homozygous for rd1, also known as Pde6b) leads to partial restoration of the pupil reflex and visual function. We show that mitonuclear communication is a key determining factor for the reprogramming of fibroblasts into CiPCs. Specifically, treatment with these five compounds leads to the translocation of AXIN2 to the mitochondria, which results in the production of reactive oxygen species, the activation of NF-κB and the upregulation of Ascl1. We anticipate that CiPCs could have therapeutic potential for restoring vision.


Subject(s)
Cellular Reprogramming/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Retinal Degeneration/therapy , Retinal Rod Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/transplantation , Vision, Ocular/drug effects , Animals , Axin Protein/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Disease Models, Animal , Flow Cytometry , Mice , Mitochondria/drug effects , Mitochondria/metabolism , NF-kappa B/metabolism , Protein Transport/drug effects , Reactive Oxygen Species/metabolism , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/drug effects , Signal Transduction/drug effects , Vision, Ocular/physiology
4.
Hum Mol Genet ; 32(6): 948-958, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36226585

ABSTRACT

Maf-family basic motif leucine zipper protein NRL specifies rod photoreceptor cell fate during retinal development and, in concert with homeodomain protein CRX and other regulatory factors, controls the expression of most rod-expressed genes including the visual pigment gene Rhodopsin (Rho). Transcriptional regulatory activity of NRL is modulated by post-translational modifications, especially phosphorylation, and mutations at specific phosphosites can lead to retinal degeneration. During our studies to elucidate NRL-mediated transcriptional regulation, we identified protein kinase CK2 in NRL-enriched complexes bound to Rho promoter-enhancer regions and in NRL-enriched high molecular mass fractions from the bovine retina. The presence of CK2 in NRL complexes was confirmed by co-immunoprecipitation from developing and adult mouse retinal extracts. In vitro kinase assay and bioinformatic analysis indicated phosphorylation of NRL at Ser117 residue by CK2. Co-transfection of Csnk2a1 cDNA encoding murine CK2 with human NRL and CRX reduced the bovine Rho promoter-driven luciferase expression in HEK293 cells and mutagenesis of NRL-Ser117 residue to Ala restored the reporter gene activity. In concordance, overexpression of CK2 in the mouse retina in vivo by electroporation resulted in reduction of Rho promoter-driven DsRed reporter expression as well as the transcript level of many phototransduction genes. Thus, our studies demonstrate that CK2 can phosphorylate Ser117 of NRL. Modulation of NRL activity by CK2 suggests intricate interdependence of transcriptional and signaling pathways in maintaining rod homeostasis.


Subject(s)
Casein Kinase II , Eye Proteins , Animals , Cattle , Mice , Humans , Casein Kinase II/genetics , Casein Kinase II/metabolism , HEK293 Cells , Eye Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Retina/metabolism , Rhodopsin/genetics , Rhodopsin/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Mammals/metabolism , Proto-Oncogene Proteins c-maf/metabolism
5.
Hum Mol Genet ; 32(3): 431-449, 2023 01 13.
Article in English | MEDLINE | ID: mdl-35997788

ABSTRACT

Usher syndrome (USH) is the most common form of hereditary deaf-blindness in humans. USH is a complex genetic disorder, assigned to three clinical subtypes differing in onset, course and severity, with USH1 being the most severe. Rodent USH1 models do not reflect the ocular phenotype observed in human patients to date; hence, little is known about the pathophysiology of USH1 in the human eye. One of the USH1 genes, USH1C, exhibits extensive alternative splicing and encodes numerous harmonin protein isoforms that function as scaffolds for organizing the USH interactome. RNA-seq analysis of human retinae uncovered harmonin_a1 as the most abundant transcript of USH1C. Bulk RNA-seq analysis and immunoblotting showed abundant expression of harmonin in Müller glia cells (MGCs) and retinal neurons. Furthermore, harmonin was localized in the terminal endfeet and apical microvilli of MGCs, presynaptic region (pedicle) of cones and outer segments (OS) of rods as well as at adhesive junctions between MGCs and photoreceptor cells (PRCs) in the outer limiting membrane (OLM). Our data provide evidence for the interaction of harmonin with OLM molecules in PRCs and MGCs and rhodopsin in PRCs. Subcellular expression and colocalization of harmonin correlate with the clinical phenotype observed in USH1C patients. We also demonstrate that primary cilia defects in USH1C patient-derived fibroblasts could be reverted by the delivery of harmonin_a1 transcript isoform. Our studies thus provide novel insights into PRC cell biology, USH1C pathophysiology and development of gene therapy treatment(s).


Subject(s)
Usher Syndromes , Humans , Usher Syndromes/genetics , Usher Syndromes/therapy , Usher Syndromes/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Retina/metabolism , Photoreceptor Cells/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
6.
Hum Mol Genet ; 31(22): 3914-3933, 2022 11 10.
Article in English | MEDLINE | ID: mdl-35776116

ABSTRACT

The basic motif-leucine zipper (bZIP) transcription factor neural retina leucine zipper (NRL) determines rod photoreceptor cell fate during retinal development, and its loss leads to cone-only retina in mice. NRL works synergistically with homeodomain protein Cone-Rod Homeobox and other regulatory factors to control the transcription of most genes associated with rod morphogenesis and functional maturation, which span over a period of several weeks in the mammalian retina. We predicted that NRL gradually establishes rod cell identity and function by temporal and dynamic regulation of stage-specific transcriptional targets. Therefore, we mapped the genomic occupancy of NRL at four stages of mouse photoreceptor differentiation by CUT&RUN analysis. Dynamics of NRL binding revealed concordance with the corresponding changes in transcriptome of the developing rods. Notably, we identified c-Jun proto-oncogene as one of the targets of NRL, which could bind to specific cis-elements in the c-Jun promoter and modulate its activity in HEK293 cells. Coimmunoprecipitation studies showed the association of NRL with c-Jun, also a bZIP protein, in transfected cells as well as in developing mouse retina. Additionally, shRNA-mediated knockdown of c-Jun in the mouse retina in vivo resulted in altered expression of almost 1000 genes, with reduced expression of phototransduction genes and many direct targets of NRL in rod photoreceptors. We propose that c-Jun-NRL heterodimers prime the NRL-directed transcriptional program in neonatal rod photoreceptors before high NRL expression suppresses c-Jun at later stages. Our study highlights a broader cooperation among cell-type restricted and widely expressed bZIP proteins, such as c-Jun, in specific spatiotemporal contexts during cellular differentiation.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Retinal Rod Photoreceptor Cells , Animals , Humans , Mice , Basic-Leucine Zipper Transcription Factors/genetics , Cell Differentiation/genetics , Eye Proteins/genetics , HEK293 Cells , Mammals/metabolism , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism
7.
Hum Mol Genet ; 31(13): 2137-2154, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35075486

ABSTRACT

Retinal diseases exhibit extensive genetic heterogeneity and complex etiology with varying onset and severity. Mutations in over 200 genes can lead to photoreceptor dysfunction and/or cell death in retinal neurodegeneration. To deduce molecular pathways that initiate and/or drive cell death, we adopted a temporal multiomics approach and examined molecular and cellular events in newborn and developing photoreceptors before the onset of degeneration in a widely-used Pde6brd1/rd1 (rd1) mouse, a model of autosomal recessive retinitis pigmentosa caused by PDE6B mutations. Transcriptome profiling of neonatal and developing rods from the rd1 retina revealed early downregulation of genes associated with anabolic pathways and energy metabolism. Quantitative proteomics of rd1 retina showed early changes in calcium signaling and oxidative phosphorylation, with specific partial bypass of complex I electron transfer, which precede the onset of cell death. Concurrently, we detected alterations in central carbon metabolism, including dysregulation of components associated with glycolysis, pentose phosphate and purine biosynthesis. Ex vivo assays of oxygen consumption and transmission electron microscopy validated early and progressive mitochondrial stress and abnormalities in mitochondrial structure and function of rd1 rods. These data uncover mitochondrial overactivation and related metabolic alterations as determinants of early pathology and implicate aberrant calcium signaling as an initiator of higher mitochondrial stress. Our studies thus provide a mechanistic framework with mitochondrial damage and metabolic disruptions as early drivers of photoreceptor cell death in retinal degeneration.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Animals , Cell Death/genetics , Disease Models, Animal , Mice , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Retinal Degeneration/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinitis Pigmentosa/pathology
8.
Nucleic Acids Res ; 50(6): e35, 2022 04 08.
Article in English | MEDLINE | ID: mdl-34928367

ABSTRACT

Three-dimensional (3D) conformation of the chromatin is crucial to stringently regulate gene expression patterns and DNA replication in a cell-type specific manner. Hi-C is a key technique for measuring 3D chromatin interactions genome wide. Estimating and predicting the resolution of a library is an essential step in any Hi-C experimental design. Here, we present the mathematical concepts to estimate the resolution of a dataset and predict whether deeper sequencing would enhance the resolution. We have developed HiCRes, a docker pipeline, by applying these concepts to several Hi-C libraries.


Subject(s)
Chromosomes , Computational Biology/methods , Genome , Chromatin/genetics , Gene Library , Genomics
9.
Semin Cell Dev Biol ; 110: 70-88, 2021 02.
Article in English | MEDLINE | ID: mdl-32747192

ABSTRACT

The primary cilium is a ubiquitous microtubule-based organelle that senses external environment and modulates diverse signaling pathways in different cell types and tissues. The cilium originates from the mother centriole through a complex set of cellular events requiring hundreds of distinct components. Aberrant ciliogenesis or ciliary transport leads to a broad spectrum of clinical entities with overlapping yet highly variable phenotypes, collectively called ciliopathies, which include sensory defects and syndromic disorders with multi-organ pathologies. For efficient light detection, photoreceptors in the retina elaborate a modified cilium known as the outer segment, which is packed with membranous discs enriched for components of the phototransduction machinery. Retinopathy phenotype involves dysfunction and/or degeneration of the light sensing photoreceptors and is highly penetrant in ciliopathies. This review will discuss primary cilia biogenesis and ciliopathies, with a focus on the retina, and the role of CP110-CEP290-CC2D2A network. We will also explore how recent technologies can advance our understanding of cilia biology and discuss new paradigms for developing potential therapies of retinal ciliopathies.


Subject(s)
Antigens, Neoplasm/genetics , Cell Cycle Proteins/genetics , Cilia/metabolism , Ciliopathies/genetics , Cytoskeletal Proteins/genetics , Microtubule-Associated Proteins/genetics , Phosphoproteins/genetics , Retinal Degeneration/genetics , Retinitis Pigmentosa/genetics , Animals , Antigens, Neoplasm/metabolism , Biological Transport , Cell Cycle Proteins/metabolism , Centrioles/metabolism , Centrioles/ultrastructure , Cilia/ultrastructure , Ciliopathies/metabolism , Ciliopathies/pathology , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Gene Expression Regulation , Humans , Light Signal Transduction , Mice , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Microtubules/ultrastructure , Phosphoproteins/metabolism , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology
10.
Ophthalmology ; 130(5): 488-500, 2023 05.
Article in English | MEDLINE | ID: mdl-36481221

ABSTRACT

PURPOSE: To determine whether reticular pseudodrusen (RPD) status, ARMS2/HTRA1 genotype, or both are associated with altered geographic atrophy (GA) enlargement rate and to analyze potential mediation of genetic effects by RPD status. DESIGN: Post hoc analysis of an Age-Related Eye Disease Study 2 cohort. PARTICIPANTS: Eyes with GA: n = 771 from 563 participants. METHODS: Geographic atrophy area was measured from fundus photographs at annual visits. Reticular pseudodrusen presence was graded from fundus autofluorescence images. Mixed-model regression of square root of GA area was performed by RPD status, ARMS2 genotype, or both. MAIN OUTCOME MEASURES: Change in square root of GA area. RESULTS: Geographic atrophy enlargement was significantly faster in eyes with RPD (P < 0.0001): 0.379 mm/year (95% confidence interval [CI], 0.329-0.430 mm/year) versus 0.273 mm/year (95% CI, 0.256-0.289 mm/year). Enlargement was also significantly faster in individuals carrying ARMS2 risk alleles (P < 0.0001): 0.224 mm/year (95% CI, 0.198-0.250 mm/year), 0.287 mm/year (95% CI, 0.263-0.310 mm/year), and 0.307 mm/year (95% CI, 0.273-0.341 mm/year) for 0, 1, and 2, respectively. In mediation analysis, the direct effect of ARMS2 genotype was 0.074 mm/year (95% CI, 0.009-0.139 mm/year), whereas the indirect effect of ARMS2 genotype via RPD status was 0.002 mm/year (95% CI, -0.006 to 0.009 mm/year). In eyes with incident GA, RPD presence was not associated with an altered likelihood of central involvement (P = 0.29) or multifocality (P = 0.16) at incidence. In eyes with incident noncentral GA, RPD presence was associated with faster GA progression to the central macula (P = 0.009): 157 µm/year (95% CI, 126-188 µm/year) versus 111 µm/year (95% CI, 97-125 µm/year). Similar findings were observed in the Age-Related Eye Disease Study. CONCLUSIONS: Geographic atrophy enlargement is faster in eyes with RPD and in individuals carrying ARMS2/HTRA1 risk alleles. However, RPD status does not mediate the association between ARMS2/HTRA1 genotype and faster enlargement. Reticular pseudodrusen presence and ARMS2/HTRA1 genotype are relatively independent risk factors, operating by distinct mechanisms. Reticular pseudodrusen presence does not predict central involvement or multifocality at GA incidence but is associated with faster progression toward the central macula. Reticular pseudodrusen status should be considered for improved predictions of enlargement rate. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.


Subject(s)
Geographic Atrophy , Retinal Drusen , Humans , Geographic Atrophy/diagnosis , Geographic Atrophy/genetics , Geographic Atrophy/epidemiology , Retinal Drusen/diagnosis , Retinal Drusen/genetics , Retinal Drusen/epidemiology , Risk Factors , Genotype , Alleles , Fluorescein Angiography , High-Temperature Requirement A Serine Peptidase 1/genetics , Proteins/genetics
11.
Exp Eye Res ; 234: 109599, 2023 09.
Article in English | MEDLINE | ID: mdl-37488009

ABSTRACT

Limbal epithelial stem cells are not only critical for corneal epithelial homeostasis but also have the capacity to change from a relatively quiescent mitotic phenotype to a rapidly proliferating cell in response to population depletion following corneal epithelial wounding. Pax6+/- mice display many abnormalities including corneal vascularization and these aberrations are consistent with a limbal stem cell deficiency (LSCD) phenotype. FoxC1 has an inhibitory effect on corneal avascularity and a positive role in stem cell maintenance in many tissues. However, the role of FoxC1 in limbal epithelial stem cells remains unknown. To unravel FoxC1's role(s) in limbal epithelial stem cell homeostasis, we utilized an adeno-associated virus (AAV) vector to topically deliver human FOXC1 proteins into Pax6 +/- mouse limbal epithelium. Under unperturbed conditions, overexpression of FOXC1 in the limbal epithelium had little significant change in differentiation (PAI-2, Krt12) and proliferation (BrdU, Ki67). Conversely, such overexpression resulted in a marked increase in the expression of putative limbal epithelial stem cell markers, N-cadherin and Lrig1. After corneal injuries in Pax6 +/- mice, FOXC1 overexpression enhanced the behavior of limbal epithelial stem cells from quiescence to a highly proliferative status. Overall, the treatment of AAV8-FOXC1 may be beneficial to the function of limbal epithelial stem cells in the context of a deficiency of Pax6 function.


Subject(s)
Corneal Diseases , Epithelium, Corneal , Limbus Corneae , Animals , Humans , Mice , Cornea , Corneal Diseases/metabolism , Debridement , Epithelial Cells , Epithelium, Corneal/metabolism , Limbus Corneae/metabolism , Stem Cells
12.
Adv Exp Med Biol ; 1415: 165-171, 2023.
Article in English | MEDLINE | ID: mdl-37440030

ABSTRACT

Inherited retinal degenerations (IRDs) are clinically and genetically heterogenous blinding diseases that manifest through dysfunction of target cells, photoreceptors, and retinal pigment epithelium (RPE) in the retina. Despite knowledge of numerous underlying genetic defects, current therapeutic approaches, including gene centric applications, have had limited success, thereby asserting the need of new directions for basic and translational research. Human diseases have commonalities that can be represented in a network form, called diseasome, which captures relationships among disease genes, proteins, metabolites, and patient meta-data. Clinical and genetic information of IRDs suggest shared relationships among pathobiological factors, making these a model case for network medicine. Characterization of the diseasome would considerably improve our understanding of retinal pathologies and permit better design of targeted therapies for disrupted regions within the integrated disease network. Network medicine in synergy with the ongoing artificial intelligence revolution can boost therapeutic developments, especially gene agnostic treatment opportunities.


Subject(s)
Artificial Intelligence , Retinal Degeneration , Humans , Retina/pathology , Retinal Degeneration/genetics , Retinal Degeneration/therapy , Retinal Degeneration/pathology , Retinal Pigment Epithelium/pathology , Biology
13.
PLoS Genet ; 16(9): e1008934, 2020 09.
Article in English | MEDLINE | ID: mdl-32870927

ABSTRACT

Significant association signals from genome-wide association studies (GWAS) point to genomic regions of interest. However, for most loci the causative genetic variant remains undefined. Determining expression quantitative trait loci (eQTL) in a disease relevant tissue is an excellent approach to zoom in on disease- or trait-associated association signals and hitherto on relevant disease mechanisms. To this end, we explored regulation of gene expression in healthy retina (n = 311) and generated the largest cis-eQTL data set available to date. Genotype- and RNA-Seq data underwent rigorous quality control protocols before FastQTL was applied to assess the influence of genetic markers on local (cis) gene expression. Our analysis identified 403,151 significant eQTL variants (eVariants) that regulate 3,007 genes (eGenes) (Q-Value < 0.05). A conditional analysis revealed 744 independent secondary eQTL signals for 598 of the 3,007 eGenes. Interestingly, 99,165 (24.71%) of all unique eVariants regulate the expression of more than one eGene. Filtering the dataset for eVariants regulating three or more eGenes revealed 96 potential regulatory clusters. Of these, 31 harbour 130 genes which are partially regulated by the same genetic signal. To correlate eQTL and association signals, GWAS data from twelve complex eye diseases or traits were included and resulted in identification of 80 eGenes with potential association. Remarkably, expression of 10 genes is regulated by eVariants associated with multiple eye diseases or traits. In conclusion, we generated a unique catalogue of gene expression regulation in healthy retinal tissue and applied this resource to identify potentially pleiotropic effects in highly prevalent human eye diseases. Our study provides an excellent basis to further explore mechanisms of various retinal disease etiologies.


Subject(s)
Retina/metabolism , Retina/physiology , Retinal Diseases/genetics , Autopsy , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Healthy Volunteers , Humans , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics
14.
PLoS Genet ; 16(12): e1009259, 2020 12.
Article in English | MEDLINE | ID: mdl-33362196

ABSTRACT

Rab-GTPases and associated effectors mediate cargo transport through the endomembrane system of eukaryotic cells, regulating key processes such as membrane turnover, signal transduction, protein recycling and degradation. Using developmental transcriptome data, we identified Rabgef1 (encoding the protein RabGEF1 or Rabex-5) as the only gene associated with Rab GTPases that exhibited strong concordance with retinal photoreceptor differentiation. Loss of Rabgef1 in mice (Rabgef1-/-) resulted in defects specifically of photoreceptor morphology and almost complete loss of both rod and cone function as early as eye opening; however, aberrant outer segment formation could only partly account for visual function deficits. RabGEF1 protein in retinal photoreceptors interacts with Rabaptin-5, and RabGEF1 absence leads to reduction of early endosomes consistent with studies in other mammalian cells and tissues. Electron microscopy analyses reveal abnormal accumulation of macromolecular aggregates in autophagosome-like vacuoles and enhanced immunostaining for LC3A/B and p62 in Rabgef1-/- photoreceptors, consistent with compromised autophagy. Transcriptome analysis of the developing Rabgef1-/- retina reveals altered expression of 2469 genes related to multiple pathways including phototransduction, mitochondria, oxidative stress and endocytosis, suggesting an early trajectory of photoreceptor cell death. Our results implicate an essential role of the RabGEF1-modulated endocytic and autophagic pathways in photoreceptor differentiation and homeostasis. We propose that RabGEF1 and associated components are potential candidates for syndromic traits that include a retinopathy phenotype.


Subject(s)
Autophagy , Endocytosis , Guanine Nucleotide Exchange Factors/genetics , Neurogenesis , Photoreceptor Cells/metabolism , Retinal Degeneration/metabolism , Animals , Female , Guanine Nucleotide Exchange Factors/metabolism , Male , Mice , Mice, Inbred BALB C , Photoreceptor Cells/cytology , Retinal Degeneration/genetics , Transcriptome
15.
BMC Biol ; 20(1): 68, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35307029

ABSTRACT

BACKGROUND: Functional complexity of the eukaryotic mitochondrial proteome is augmented by independent gene acquisition from bacteria since its endosymbiotic origins. Mammalian homologs of many ancestral mitochondrial proteins have uncharacterized catalytic activities. Recent forward genetic approaches attributed functions to proteins in established metabolic pathways, thereby limiting the possibility of identifying novel biology relevant to human disease. We undertook a bottom-up biochemistry approach to discern evolutionarily conserved mitochondrial proteins with catalytic potential. RESULTS: Here, we identify a Parkinson-associated DJ-1/PARK7-like protein-glutamine amidotransferase-like class 1 domain-containing 3A (GATD3A), with bacterial evolutionary affinities although not from alphaproteobacteria. We demonstrate that GATD3A localizes to the mitochondrial matrix and functions as a deglycase. Through its amidolysis domain, GATD3A removes non-enzymatic chemical modifications produced during the Maillard reaction between dicarbonyls and amines of nucleotides and amino acids. GATD3A interacts with factors involved in mitochondrial mRNA processing and translation, suggestive of a role in maintaining integrity of important biomolecules through its deglycase activity. The loss of GATD3A in mice is associated with accumulation of advanced glycation end products (AGEs) and altered mitochondrial dynamics. CONCLUSIONS: An evolutionary perspective helped us prioritize a previously uncharacterized but predicted mitochondrial protein GATD3A, which mediates the removal of early glycation intermediates. GATD3A restricts the formation of AGEs in mitochondria and is a relevant target for diseases where AGE deposition is a pathological hallmark.


Subject(s)
Gammaproteobacteria , Glycation End Products, Advanced , Animals , Gammaproteobacteria/metabolism , Glycation End Products, Advanced/metabolism , Mammals , Mice , Mitochondrial Proteins/genetics , Protein Deglycase DJ-1/metabolism
16.
Hum Mol Genet ; 29(12): 2022-2034, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32246154

ABSTRACT

Genome-wide association studies (GWAS) have identified 52 independent variants at 34 genetic loci that are associated with age-related macular degeneration (AMD), the most common cause of incurable vision loss in the elderly worldwide. However, causal genes at the majority of these loci remain unknown. In this study, we performed whole exome sequencing of 264 individuals from 63 multiplex families with AMD and analyzed the data for rare protein-altering variants in candidate target genes at AMD-associated loci. Rare coding variants were identified in the CFH, PUS7, RXFP2, PHF12 and TACC2 genes in three or more families. In addition, we detected rare coding variants in the C9, SPEF2 and BCAR1 genes, which were previously suggested as likely causative genes at respective AMD susceptibility loci. Identification of rare variants in the CFH and C9 genes in our study validated previous reports of rare variants in complement pathway genes in AMD. We then extended our exome-wide analysis and identified rare protein-altering variants in 13 genes outside the AMD-GWAS loci in three or more families. Two of these genes, SCN10A and KIR2DL4, are of interest because variants in these genes also showed association with AMD in case-control cohorts, albeit not at the level of genome-wide significance. Our study presents the first large-scale, exome-wide analysis of rare variants in AMD. Further independent replications and molecular investigation of candidate target genes, reported here, would assist in gaining novel insights into mechanisms underlying AMD pathogenesis.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Macular Degeneration/genetics , NAV1.8 Voltage-Gated Sodium Channel/genetics , Receptors, KIR2DL4/genetics , Aged , Aged, 80 and over , Exome/genetics , Humans , Macular Degeneration/pathology , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Exome Sequencing
17.
Mol Biol Evol ; 37(7): 2002-2014, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32191319

ABSTRACT

Sensory systems are tuned by selection to maximize organismal fitness in particular environments. This tuning has implications for intraspecies communication, the maintenance of species boundaries, and speciation. Tuning of color vision largely depends on the sequence of the expressed opsin proteins. To improve tuning of visual sensitivities to shifts in habitat or foraging ecology over the course of development, many organisms change which opsins are expressed. Changes in this developmental sequence (heterochronic shifts) can create differences in visual sensitivity among closely related species. The genetic mechanisms by which these developmental shifts occur are poorly understood. Here, we use quantitative trait locus analyses, genome sequencing, and gene expression studies in African cichlid fishes to identify a role for the transcription factor Tbx2a in driving a switch between long wavelength sensitive (LWS) and Rhodopsin-like (RH2) opsin expression. We identify binding sites for Tbx2a in the LWS promoter and the highly conserved locus control region of RH2 which concurrently promote LWS expression while repressing RH2 expression. We also present evidence that a single change in Tbx2a regulatory sequence has led to a species difference in visual tuning, providing the first mechanistic model for the evolution of rapid switches in sensory tuning. This difference in visual tuning likely has important roles in evolution as it corresponds to differences in diet, microhabitat choice, and male nuptial coloration.


Subject(s)
Cichlids/metabolism , Evolution, Molecular , Opsins/metabolism , T-Box Domain Proteins/metabolism , Animals , HEK293 Cells , Humans , Quantitative Trait Loci
18.
Hum Mol Genet ; 28(5): 804-817, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30445545

ABSTRACT

Regulation of cell type-specific gene expression is critical for generating neuronal diversity. Transcriptome analyses have unraveled extensive heterogeneity of transcribed sequences in retinal photoreceptors because of alternate splicing and/or promoter usage. Here we show that Frmpd1 (FERM and PDZ domain containing 1) is transcribed from an alternative promoter specifically in the retina. Electroporation of Frmpd1 promoter region, -505 to +382 bp, activated reporter gene expression in mouse retina in vivo. A proximal promoter sequence (-8 to +33 bp) of Frmpd1 binds to neural retina leucine zipper (NRL) and cone-rod homeobox protein (CRX), two rod-specific differentiation factors, and is necessary for activating reporter gene expression in vitro and in vivo. Clustered regularly interspaced short palindromic repeats/Cas9-mediated deletion of the genomic region, including NRL and CRX binding sites, in vivo completely eliminated Frmpd1 expression in rods and dramatically reduced expression in rod bipolar cells, thereby overcoming embryonic lethality caused by germline Frmpd1 deletion. Our studies demonstrate that a cell type-specific regulatory control region is a credible target for creating loss-of-function alleles of widely expressed genes.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Regulation , PDZ Domains , Promoter Regions, Genetic , Retinal Rod Photoreceptor Cells/metabolism , Sequence Deletion , Alternative Splicing , Base Sequence , Binding Sites , Carrier Proteins/chemistry , Cell Differentiation , Exons , Humans , Protein Binding , Transcription, Genetic
19.
Trends Genet ; 34(5): 341-351, 2018 05.
Article in English | MEDLINE | ID: mdl-29395379

ABSTRACT

For decades, RNA has served in a supporting role between the genetic carrier (DNA) and the functional molecules (proteins). It is finally time for RNA to take center stage in all aspects of biology. The retina provides a unique opportunity to dissect the molecular underpinnings of neuronal diversity and disease. Transcriptome profiles of the retina and its resident cell types have unraveled unique features of the RNA landscape. The discovery of distinct RNA molecules and the recognition that RNA processing is a major cause of retinal neurodegeneration have prompted the design of biomarkers and novel therapeutic paradigms. We review here RNA biology as it pertains to the retina, emphasizing new avenues for investigations in development and disease.


Subject(s)
Gene Expression Regulation/genetics , RNA, Untranslated/genetics , Retina/growth & development , Retinal Diseases/genetics , Animals , Computational Biology , Gene Expression Profiling , Humans , Neurons/metabolism , Neurons/pathology , Retinal Diseases/pathology
20.
Ophthalmology ; 128(3): 425-442, 2021 03.
Article in English | MEDLINE | ID: mdl-32858063

ABSTRACT

PURPOSE: To analyze associations between the dietary intake of multiple nutrients and risk of progression to late age-related macular degeneration (AMD), its subtypes, and large drusen. DESIGN: Post hoc analysis of 2 controlled clinical trial cohorts: Age-Related Eye Disease Study (AREDS) and AREDS2. PARTICIPANTS: Eyes with no late AMD at baseline among AREDS participants (n = 4504) and AREDS2 participants (n = 3738) totaled 14 135 eyes. Mean age was 71.0 years (standard deviation, 6.7 years), and 56.5% of patients were women. METHODS: Fundus photographs were collected at annual study visits and graded centrally for late AMD. Dietary intake of multiple nutrients was calculated from food frequency questionnaires. MAIN OUTCOME MEASURES: Progression to late AMD, geographic atrophy (GA), neovascular AMD, and (separate analyses) large drusen. RESULTS: Over median follow-up of 10.2 years, of the 14 135 eyes, 32.7% progressed to late AMD. For 9 nutrients, intake quintiles 4 or 5 (vs. 1) were associated significantly (P ≤ 0.0005) with decreased risk of late AMD: vitamin A, vitamin B6, vitamin C, folate, ß-carotene, lutein and zeaxanthin, magnesium, copper, and alcohol. For 3 nutrients, quintiles 4 or 5 were associated significantly with increased risk: saturated fatty acid, monounsaturated fatty acid, and oleic acid. Similar results were observed for GA. Regarding neovascular AMD, 9 nutrients were associated nominally with decreased risk-vitamin A, vitamin B6, ß-carotene, lutein and zeaxanthin, magnesium, copper, docosahexaenoic acid, omega-3 fatty acid, and alcohol-and 3 nutrients were associated with increased risk-saturated fatty acid, monounsaturated fatty acid, and oleic acid. In separate analyses (n = 5399 eyes of 3164 AREDS participants), 12 nutrients were associated nominally with decreased risk of large drusen. CONCLUSIONS: Higher dietary intake of multiple nutrients, including minerals, vitamins, and carotenoids, is associated with decreased risk of progression to late AMD. These associations are stronger for GA than for neovascular AMD. The same nutrients also tend to show protective associations against large drusen development. Strong genetic interactions exist for some nutrient-genotype combinations, particularly omega-3 fatty acids and CFH. These data may justify further research into underlying mechanisms and randomized trials of supplementation.


Subject(s)
Diet/statistics & numerical data , Geographic Atrophy/epidemiology , Retinal Drusen/epidemiology , Wet Macular Degeneration/epidemiology , Aged , Aged, 80 and over , Diet Surveys , Dietary Supplements/statistics & numerical data , Disease Progression , Energy Intake , Female , Follow-Up Studies , Geographic Atrophy/diagnosis , Humans , Male , Middle Aged , Retinal Drusen/diagnosis , Wet Macular Degeneration/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL