Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nutr Metab Cardiovasc Dis ; 34(6): 1416-1426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38499450

ABSTRACT

BACKGROUND AND AIMS: The gut microbiome exerts important roles in health, e.g., functions in metabolism and immunology. These functions are often exerted via short-chain fatty acid (SCFA) production by gut bacteria. Studies demonstrating causal relationships between interventions targeting the microbiome and clinical outcomes are limited. This study aimed to show a causal relationship between microbiome modulation through fibre intervention and health. METHODS AND RESULTS: This randomized, double-blind, cross-over study included 65 healthy subjects, aged 45-70 years, with increased metabolic risk (i.e., body mass index [BMI] 25-30 kg/m2, low to moderate daily dietary fibre intake, <30g/day). Subjects took daily a fibre mixture of Acacia gum and carrot powder or placebo for 12 weeks, with an 8-week wash-out period. Faecal samples for measurement of SCFAs and microbiome analysis were collected every 4 weeks. Before and after each intervention period subjects underwent the mixed-meal PhenFlex challenge Test (PFT). Health effects were expressed as resilience to the stressors of the PFT and as fasting metabolic and inflammatory state. The fibre mixture exerted microbiome modulation, with an increase in ß-diversity (p < 0.001). α-diversity was lower during fibre mixture intake compared to placebo after 4, 8 and 12 weeks (p = 0.002; p = 0.012; p = 0.031). There was no effect observed on faecal SCFA concentrations, nor on any of the primary clinical outcomes (Inflammatory resilience: p = 0.605, Metabolic resilience: p = 0.485). CONCLUSION: Although the intervention exerted effects on gut microbiome composition, no effects on SCFA production, on resilience or fasting metabolic and inflammatory state were observed in this cohort. REGISTRATION NUMBER CLINICALTRIALS.GOV: NCT04829396.


Subject(s)
Bacteria , Cross-Over Studies , Dietary Fiber , Dietary Supplements , Fatty Acids, Volatile , Feces , Gastrointestinal Microbiome , Healthy Volunteers , Humans , Middle Aged , Dietary Fiber/administration & dosage , Male , Gastrointestinal Microbiome/drug effects , Female , Double-Blind Method , Aged , Fatty Acids, Volatile/metabolism , Feces/microbiology , Feces/chemistry , Bacteria/classification , Bacteria/metabolism , Bacteria/growth & development , Time Factors , Gum Arabic , Treatment Outcome
2.
Appl Environ Microbiol ; 83(1)2017 01 01.
Article in English | MEDLINE | ID: mdl-27793826

ABSTRACT

The postharvest treatment and processing of fresh coffee cherries can impact the quality of the unroasted green coffee beans. In the present case study, freshly harvested Arabica coffee cherries were processed through two different wet and dry methods to monitor differences in the microbial community structure and in substrate and metabolite profiles. The changes were followed throughout the postharvest processing chain, from harvest to drying, by implementing up-to-date techniques, encompassing multiple-step metagenomic DNA extraction, high-throughput sequencing, and multiphasic metabolite target analysis. During wet processing, a cohort of lactic acid bacteria (i.e., Leuconostoc, Lactococcus, and Lactobacillus) was the most commonly identified microbial group, along with enterobacteria and yeasts (Pichia and Starmerella). Several of the metabolites associated with lactic acid bacterial metabolism (e.g., lactic acid, acetic acid, and mannitol) produced in the mucilage were also found in the endosperm. During dry processing, acetic acid bacteria (i.e., Acetobacter and Gluconobacter) were most abundant, along with Pichia and non-Pichia (Candida, Starmerella, and Saccharomycopsis) yeasts. Accumulation of associated metabolites (e.g., gluconic acid and sugar alcohols) took place in the drying outer layers of the coffee cherries. Consequently, both wet and dry processing methods significantly influenced the microbial community structures and hence the composition of the final green coffee beans. This systematic approach to dissecting the coffee ecosystem contributes to a deeper understanding of coffee processing and might constitute a state-of-the-art framework for the further analysis and subsequent control of this complex biotechnological process. IMPORTANCE: Coffee production is a long process, starting with the harvest of coffee cherries and the on-farm drying of their beans. In a later stage, the dried green coffee beans are roasted and ground in order to brew a cup of coffee. The on-farm, postharvest processing method applied can impact the quality of the green coffee beans. In the present case study, freshly harvested Arabica coffee cherries were processed through wet and dry processing in four distinct variations. The microorganisms present and the chemical profiles of the coffee beans were analyzed throughout the postharvest processing chain. The up-to-date techniques implemented facilitated the investigation of differences related to the method applied. For instance, different microbial groups were associated with wet and dry processing methods. Additionally, metabolites associated with the respective microorganisms accumulated on the final green coffee beans.


Subject(s)
Bacteria/metabolism , Coffea/microbiology , Food Handling , Fungi/metabolism , Microbiota , Seeds/microbiology , Acetic Acid/metabolism , Acetobacter/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Candida/isolation & purification , Desiccation , Endosperm/chemistry , Endosperm/microbiology , Enterobacteriaceae/isolation & purification , Fermentation , Fungi/isolation & purification , Lactic Acid/metabolism , Lactobacillus/isolation & purification , Lactobacillus/metabolism , Mannitol/metabolism , Pichia/isolation & purification , Seeds/anatomy & histology , Seeds/chemistry , Yeasts/isolation & purification
3.
BMC Urol ; 17(1): 90, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28950849

ABSTRACT

BACKGROUND: Urinary tract infections (UTI) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming. Thus, well-tolerated, highly effective therapeutic alternatives are urgently needed. Although there is evidence indicating that bacteriophage therapy may be effective and safe for treating UTIs, the number of investigated patients is low and there is a lack of randomized controlled trials. METHODS AND DESIGN: This study is the first randomized, placebo-controlled, double-blind trial investigating bacteriophages in UTI treatment. Patients planned for transurethral resection of the prostate are screened for UTIs and enrolled if in urine culture eligible microorganisms ≥104 colony forming units/mL are found. Patients are randomized in a double-blind fashion to the 3 study treatment arms in a 1:1:1 ratio to receive either: a) bacteriophage (i.e. commercially available Pyo bacteriophage) solution, b) placebo solution, or c) antibiotic treatment according to the antibiotic sensitivity pattern. All treatments are intended for 7 days. No antibiotic prophylaxes will be given to the double-blinded treatment arms a) and b). As common practice, the Pyo bacteriophage cocktail is subjected to periodic adaptation cycles during the study. Urinalysis, urine culture, bladder and pain diary, and IPSS questionnaire will be completed prior to and at the end of treatment (i.e. after 7 days) or at withdrawal/drop out from the study. Patients with persistent UTIs will undergo antibiotic treatment according to antibiotic sensitivity pattern. DISCUSSION: Based on the high lytic activity and the potential of resistance optimization by direct adaptation of bacteriophages, and considering the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a very promising treatment option for UTIs. Thus, our randomized controlled trial investigating bacteriophages for treating UTIs will provide essential insights into this potentially revolutionizing treatment option. TRIAL REGISTRATION: This study has been registered at clinicaltrials.gov ( www.clinicaltrials.gov/ct2/show/NCT03140085 ). April 27, 2017.


Subject(s)
Bacteriophages , Phage Therapy/methods , Transurethral Resection of Prostate/adverse effects , Urinary Tract Infections/therapy , Bacteriophages/growth & development , Double-Blind Method , Humans , Male , Treatment Outcome , Urinary Tract Infections/diagnosis , Urinary Tract Infections/etiology
4.
Microb Cell Fact ; 14: 195, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26643044

ABSTRACT

BACKGROUND: The lactic acid bacterium Lactobacillus rhamnosus GG is the most studied probiotic bacterium with proven health benefits upon oral intake, including the alleviation of diarrhea. The mission of the Yoba for Life foundation is to provide impoverished communities in Africa increased access to Lactobacillus rhamnosus GG under the name Lactobacillus rhamnosus yoba 2012, world's first generic probiotic strain. We have been able to overcome the strain's limitations to grow in food matrices like milk, by formulating a dried starter consortium with Streptococcus thermophilus that enables the propagation of both strains in milk and other food matrices. The affordable seed culture is used by people in resource-poor communities. RESULTS: We used S. thermophilus C106 as an adjuvant culture for the propagation of L. rhamnosus yoba 2012 in a variety of fermented foods up to concentrations, because of its endogenous proteolytic activity, ability to degrade lactose and other synergistic effects. Subsequently, L. rhamnosus could reach final titers of 1E+09 CFU ml(-1), which is sufficient to comply with the recommended daily dose for probiotics. The specific metabolic interactions between the two strains were derived from the full genome sequences of L. rhamnosus GG and S. thermophilus C106. The piliation of the L. rhamnosus yoba 2012, required for epithelial adhesion and inflammatory signaling in the human host, was stable during growth in milk for two rounds of fermentation. Sachets prepared with the two strains, yoba 2012 and C106, retained viability for at least 2 years. CONCLUSIONS: A stable dried seed culture has been developed which facilitates local and low-cost production of a wide range of fermented foods that subsequently act as delivery vehicles for beneficial bacteria to communities in east Africa.


Subject(s)
Functional Food/microbiology , Lacticaseibacillus rhamnosus/growth & development , Streptococcus thermophilus/growth & development , Africa, Eastern , Animals , Batch Cell Culture Techniques , Functional Food/economics , Genome, Bacterial , Humans , Lacticaseibacillus rhamnosus/genetics , Lacticaseibacillus rhamnosus/metabolism , Milk/chemistry , Milk/microbiology , Probiotics , Streptococcus thermophilus/genetics , Streptococcus thermophilus/metabolism
5.
J Dairy Sci ; 97(5): 2591-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24630646

ABSTRACT

A probiotic dairy product was developed on the basis of a traditional dish called mutandabota to enable resource-poor populations in southern Africa to benefit from a functional food. Mutandabota is widely consumed in rural southern Africa, making it an ideal food matrix to carry probiotics. First, a process to produce probiotic mutandabota was designed. Raw cow milk was boiled and subsequently cooled to ambient temperature (25°C). Next, dry pulp from the fruit of the baobab tree (Adansonia digitata L.) was added to the milk at a concentration of 4% (wt/vol). This mixture was inoculated with the probiotic Lactobacillus rhamnosus yoba and left to ferment for 24h, while the growth of the bacterial culture was monitored. Final ingredients were then added to produce probiotic mutandabota that had 14% (wt/vol) baobab fruit pulp and 7% (wt/vol) sugar in cow milk. The pH of probiotic mutandabota was pH 3.5, which ensures that the product is microbiologically safe. The viable plate count of L. rhamnosus yoba increased from 5.8 ± 0.3 log cfu/mL at the point of inoculation to 8.8 ± 0.4 log cfu/mL at the moment of consumption, thereby meeting the criterion to have a viable count of the probiotic bacterium in excess of 6 log cfu/mL of a product. Baobab fruit pulp at 4% promoted growth of L. rhamnosus yoba with a maximal specific growth rate (µmax) of 0.6 ± 0.2/h at 30°C. The developed technology, though specific for this particular product, has potential to be applied for the delivery of probiotics through a variety of indigenous foods in different regions of the world. Upon consumption, probiotic mutandabota is expected to improve the population's intestinal health, which is especially relevant for vulnerable target groups such as children and elderly people.


Subject(s)
Adansonia/chemistry , Dairy Products/analysis , Food Microbiology , Functional Food/analysis , Lacticaseibacillus rhamnosus/chemistry , Probiotics/chemistry , Fermentation , Food Analysis , Humans , Zimbabwe
6.
J Diet Suppl ; 21(2): 135-153, 2024.
Article in English | MEDLINE | ID: mdl-37078491

ABSTRACT

Omega-3 polyunsaturated fatty acids (PUFAs) and vitamins exert multiple beneficial effects on host health, some of which may be mediated through the gut microbiome. We investigated the prebiotic potential of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and lipid-soluble phylloquinone (vitamin K1), each at 0.2x, 1x and 5x using the simulator of the human intestinal microbial ecosystem (SHIME®) to exclude in vivo systemic effects and host-microbe interactions.Microbial community composition and, diversity [shotgun metagenomic sequencing] and microbial activity [pH, gas pressure, and production of short-chain fatty acids (SCFAs)] were measured over a period of 48 h. Fermentations supernatants were used to investigate the effect on gut barrier integrity using a Caco-2/goblet cell co-culture model.We found that EPA, DHA and vitamin K1 increased alpha-diversity at 24 h when compared with control. Moreover, there was an effect on beta-diversity with changes in gut microbial composition, such as an increase in the Firmicutes/Bacteroidetes (F/B) ratio and a consistent increase in Veillonella and Dialister abundances with all treatments. DHA, EPA, and vitamin K1 also modulated metabolic activity of the gut microbiome by increasing total SCFAs which was related mainly to an increase in propionate (highest with EPA and vitamin K1 at 0.2x). Finally, we found that EPA and DHA increased gut barrier integrity with DHA at 1x and EPA at 5x (p < 0.05, respectively). In conclusion, our in vitro data further establish a role of PUFAs and vitamin K to modulate the gut microbiome with effects on the production of SCFAs and barrier integrity.


Subject(s)
Fatty Acids, Omega-3 , Gastrointestinal Microbiome , Microbiota , Humans , Vitamin K 1 , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Caco-2 Cells , Vitamin K , Fatty Acids, Unsaturated , Fatty Acids
7.
Curr Dev Nutr ; 8(Suppl 1): 102049, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38476722

ABSTRACT

Protein inadequacy is a major contributor to nutritional deficiencies and adverse health outcomes of populations in low- and middle-income countries (LMICs). People in LMICs often consume a diet predominantly based on staple crops, such as cereals or starches, and derive most of their daily protein intakes from these sources. However, plant-based sources of protein often contain low levels of indispensable amino acids (IAAs). Inadequate intake of IAA in comparison with daily requirements is a limiting factor that results in protein deficiency, consequently in the long-term stunting and wasting. In addition, plant-based sources contain factors such as antinutrients that can diminish protein digestion and absorption. This review describes factors that affect protein quality, reviews dietary patterns of populations in LMICs and discusses traditional and novel small- and large-scale techniques that can improve the quality of plant protein sources for enhanced protein bioavailability and digestibility as an approach to tackle malnutrition in LMICs. The more accessible small-scale food-processing techniques that can be implemented at home in LMICs include soaking, cooking, and germination, whereas many large-scale techniques must be implemented on an industrial level such as autoclaving and extrusion. Limitations and considerations to implement those techniques locally in LMICs are discussed. For instance, at-home processing techniques can cause loss of nutrients and contamination, whereas limitations with larger scale techniques include high energy requirements, costs, and safety considerations. This review suggests that combining these small- and large-scale approaches could improve the quality of local sources of proteins, and thereby address adverse health outcomes, particularly in vulnerable population groups such as children, adolescents, elderly, and pregnant and lactating women.

8.
Appl Environ Microbiol ; 79(7): 2233-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23354703

ABSTRACT

We describe here a comparative genome analysis of three dairy product isolates of Lactobacillus rhamnosus GG (LGG) and the ATCC 53103 reference strain to the published genome sequence of L. rhamnosus GG. The analysis showed that in two of three isolates, major DNA segments were missing from the genomic islands LGGISL1,2. The deleted DNA segments consist of 34 genes in one isolate and 84 genes in the other and are flanked by identical insertion elements. Among the missing genes are the spaCBA genes, which encode pilin subunits involved in adhesion to mucus and persistence of the strains in the human intestinal tract. Subsequent quantitative PCR analyses of six commercial probiotic products confirmed that two more products contain a heterogeneous population of L. rhamnosus GG variants, including genotypes with or without spaC. These results underline the relevance for quality assurance and control measures targeting genome stability in probiotic strains and justify research assessing the effect of genetic rearrangements in probiotics on the outcome of in vitro and in vivo efficacy studies.


Subject(s)
Genomic Instability , Lacticaseibacillus rhamnosus/genetics , DNA Transposable Elements , DNA, Bacterial/genetics , Polymerase Chain Reaction , Probiotics , Sequence Deletion
9.
Sci Rep ; 13(1): 13663, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608211

ABSTRACT

Lactic acid bacteria produce γ-aminobutyric acid (GABA) as an acid stress response. GABA is a neurotransmitter that may improve sleep and resilience to mental stress. This study focused on the selection, identification and optimization of a bacterial strain with high GABA production, for development as a probiotic supplement. The scientific literature and an industry database were searched for probiotics and potential GABA producers. In silico screening was conducted to identify genes involved in GABA production. Subsequently, 17 candidates were screened for in vitro GABA production using thin layer chromatography, which identified three candidate probiotic strains Levilactobacillus brevis DSM 20054, Lactococcus lactis DS75843and Bifidobacterium adolescentis DSM 24849 as producing GABA. Two biosensors capable of detecting GABA were developed: 1. a transcription factor-based biosensor characterized by the interaction with the transcriptional regulator GabR was developed in Corynebacterium glutamicum; and 2. a growth factor-based biosensor was built in Escherichia coli, which used auxotrophic complementation by expressing 4-aminobutyrate transaminase (GABA-T) that transfers the GABA amino group to pyruvate, hereby forming alanine. Consequently, the feasibility of developing a workflow based on co-culture with producer strains and a biosensor was tested. The three GABA producers were identified and the biosensors were encapsulated in nanoliter reactors (NLRs) as alginate beads in defined gut-like conditions. The E. coli growth factor-based biosensor was able to detect changes in GABA concentrations in liquid culture and under gut-like conditions. L. brevis and L. lactis were successfully encapsulated in the NLRs and showed growth under miniaturized intestinal conditions.


Subject(s)
Lactobacillales , Lactobacillales/genetics , Workflow , Escherichia coli/genetics , 4-Aminobutyrate Transaminase , Alanine
10.
Sci Rep ; 12(1): 19491, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376341

ABSTRACT

The cognitive skills critical for success have largely been studied in Western populations, despite the fact that children in low- and middle-income countries are at risk to not reach their full developmental potential. Moreover, scientists should leverage recent discovery to explore means of boosting cognition in at-risk populations. This semi-randomized controlled trial examined normative cognitive development and whether it could be enhanced by consumption of a probiotic food in a sample of 251 4- to 7-year-old children in urban schools in Côte d'Ivoire. Participants completed executive functioning measures at baseline (T1) and 5 months later (T2). After T1, children in one school received a probiotic (N = 74) or placebo (N = 79) fermented dairy food every day they were in school for one semester; children in the other school (N = 98) continued their diet as usual. Children improved on all tests across time (Cohen's d = 0.08-0.30). The effects of probiotic ingestion were inconclusive and are interpreted with caution due to socio-political factors affecting daily administration. Given the general feasibility of the study, we hope that it will serve as an inspiration for future research into child development and sustainable (health-promoting) interventions for school children in developing nations.


Subject(s)
Probiotics , Schools , Humans , Child , Child, Preschool , Cote d'Ivoire , Cognition , Risk Factors
11.
Gut Microbes ; 13(1): 1-20, 2021.
Article in English | MEDLINE | ID: mdl-33615992

ABSTRACT

An increasing body of evidence has shown that gut microbiota imbalances are linked to diseases. Currently, the possibility of regulating gut microbiota to reverse these perturbations by developing novel therapeutic and preventive strategies is being extensively investigated. The modulatory effect of vitamins on the gut microbiome and related host health benefits remain largely unclear. We investigated the effects of colon-delivered vitamins A, B2, C, D, and E on the gut microbiota using a human clinical study and batch fermentation experiments, in combination with cell models for the assessment of barrier and immune functions. Vitamins C, B2, and D may modulate the human gut microbiome in terms of metabolic activity and bacterial composition. The most distinct effect was that of vitamin C, which significantly increased microbial alpha diversity and fecal short-chain fatty acids compared to the placebo. The remaining vitamins tested showed similar effects on microbial diversity, composition, and/or metabolic activity in vitro, but in varying degrees. Here, we showed that vitamins may modulate the human gut microbiome. Follow-up studies investigating targeted delivery of vitamins to the colon may help clarify the clinical significance of this novel concept for treating and preventing dysbiotic microbiota-related human diseases. Trial registration: ClinicalTrials.gov, NCT03668964. Registered 13 September 2018 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03668964.


Subject(s)
Bacteria/growth & development , Colon/metabolism , Dietary Supplements , Gastrointestinal Microbiome/physiology , Vitamins/administration & dosage , Ascorbic Acid/administration & dosage , Ascorbic Acid/pharmacokinetics , Bacteria/classification , Bacteria/metabolism , Caco-2 Cells , Colon/microbiology , Cytokines/metabolism , Double-Blind Method , Drug Delivery Systems , Fatty Acids, Volatile/metabolism , Feces/microbiology , Fermentation , HT29 Cells , Humans , Pilot Projects , Riboflavin/administration & dosage , Riboflavin/pharmacokinetics , Vitamin A/administration & dosage , Vitamin A/pharmacokinetics , Vitamin D/administration & dosage , Vitamin D/pharmacokinetics , Vitamin E/administration & dosage , Vitamin E/pharmacokinetics , Vitamins/pharmacokinetics
12.
Front Microbiol ; 12: 681485, 2021.
Article in English | MEDLINE | ID: mdl-34149673

ABSTRACT

INTRODUCTION: The metabolic activity of the gut microbiota plays a pivotal role in the gut-brain axis through the effects of bacterial metabolites on brain function and development. In this study we investigated the association of gut microbiota composition with language development of 3-year-old rural Ugandan children. METHODS: We studied the language ability in 139 children of 36 months in our controlled maternal education intervention trial to stimulate children's growth and development. The dataset includes 1170 potential predictors, including anthropometric and cognitive parameters at 24 months, 542 composition parameters of the children's gut microbiota at 24 months and 621 of these parameters at 36 months. We applied a novel computationally efficient version of the all-subsets regression methodology and identified predictors of language ability of 36-months-old children scored according to the Bayley Scales of Infant and Toddler Development (BSID-III). RESULTS: The best three-term model, selected from more than 266 million models, includes the predictors Coprococcus eutactus at 24 months of age, Bifidobacterium at 36 months of age, and language development at 24 months. The top 20 four-term models, selected from more than 77 billion models, consistently include C. eutactus abundance at 24 months, while 14 of these models include the other two predictors as well. Mann-Whitney U tests suggest that the abundance of gut bacteria in language non-impaired children (n = 78) differs from that in language impaired children (n = 61). While anaerobic butyrate-producers, including C. eutactus, Faecalibacterium prausnitzii, Holdemanella biformis, Roseburia hominis are less abundant, facultative anaerobic bacteria, including Granulicatella elegans, Escherichia/Shigella and Campylobacter coli, are more abundant in language impaired children. The overall predominance of oxygen tolerant species in the gut microbiota was slightly higher in the language impaired group than in the non-impaired group (P = 0.09). CONCLUSION: Application of the all-subsets regression methodology to microbiota data established a correlation between the relative abundance of the anaerobic butyrate-producing gut bacterium C. eutactus and language development in Ugandan children. We propose that the gut redox potential and the overall bacterial butyrate-producing capacity in the gut are important factors for language development.

13.
Lancet Infect Dis ; 21(3): 427-436, 2021 03.
Article in English | MEDLINE | ID: mdl-32949500

ABSTRACT

BACKGROUND: Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. In the context of increasing antibiotic resistance, finding alternative treatments for UTIs is a top priority. We aimed to determine whether intravesical bacteriophage therapy with a commercial bacteriophage cocktail is effective in treating UTI. METHODS: We did a randomised, placebo-controlled, clinical trial, at the Alexander Tsulukidze National Centre of Urology, Tbilisi, Georgia. Men older than 18 years of age, who were scheduled for transurethral resection of the prostate (TURP), with complicated UTI or recurrent uncomplicated UTI but no signs of systemic infection, were allocated by block randomisation in a 1:1:1 ratio to receive intravesical Pyo bacteriophage (Pyophage; 20 mL) or intravesical placebo solution (20 mL) in a double-blind manner twice daily for 7 days, or systemically applied antibiotics (according to sensitivities) as an open-label standard-of-care comparator. Urine culture was taken via urinary catheter at the end of treatment (ie, day 7) or at withdrawal from the trial. The primary outcome was microbiological treatment response after 7 days of treatment, measured by urine culture; secondary outcomes included clinical and safety parameters during the treatment period. Analyses were done in a modified intention-to-treat population of patients having received at least one dose of the allocated treatment regimen. This trial is registered with ClinicalTrials.gov, NCT03140085. FINDINGS: Between June 2, 2017, and Dec 14, 2018, 474 patients were screened for eligibility and 113 (24%) patients were randomly assigned to treatment (37 to Pyophage, 38 to placebo, and 38 to antibiotic treatment). 97 patients (28 Pyophage, 32 placebo, 37 antibiotics) received at least one dose of their allocated treatment and were included in the primary analysis. Treatment success rates did not differ between groups. Normalisation of urine culture was achieved in five (18%) of 28 patients in the Pyophage group compared with nine (28%) of 32 patients in the placebo group (odds ratio [OR] 1·60 [95% CI 0·45-5·71]; p=0·47) and 13 (35%) of 37 patients in the antibiotic group (2·66 [0·79-8·82]; p=0·11). Adverse events occurred in six (21%) of 28 patients in the Pyophage group compared with 13 (41%) of 32 patients in the placebo group (OR 0·36 [95% CI 0·11-1·17]; p=0·089) and 11 (30%) of 37 patients in the antibiotic group (0·66 [0·21-2·07]; p=0·47). INTERPRETATION: Intravesical bacteriophage therapy was non-inferior to standard-of-care antibiotic treatment, but was not superior to placebo bladder irrigation, in terms of efficacy or safety in treating UTIs in patients undergoing TURP. Moreover, the bacteriophage safety profile seems to be favourable. Although bacteriophages are not yet a recognised or approved treatment option for UTIs, this trial provides new insight to optimise the design of further large-scale clinical studies to define the role of bacteriophages in UTI treatment. FUNDING: Swiss Continence Foundation, the Swiss National Science Foundation, and the Swiss Agency for Development and Cooperation. TRANSLATIONS: For the Georgian and German translations of the abstract see Supplementary Materials section.


Subject(s)
Bacteriophages/growth & development , Phage Therapy/methods , Transurethral Resection of Prostate/adverse effects , Urinary Tract Infections/therapy , Aged , Anti-Bacterial Agents/therapeutic use , Double-Blind Method , Georgia , Humans , Logistic Models , Male , Middle Aged , Treatment Outcome , Urinary Tract Infections/drug therapy , Urinary Tract Infections/etiology
14.
Psychoneuroendocrinology ; 129: 105255, 2021 07.
Article in English | MEDLINE | ID: mdl-34020263

ABSTRACT

This semi-randomized controlled trial examined the effects of a probiotic food supplement on cortisol and C-reactive protein (CRP) in a sample of 262 four-to seven-year-old children (56% girls) in two economically-disadvantaged schools in an urban setting in Côte d'Ivoire. For one semester, children in one school were randomized to receive a probiotic (N = 79) or placebo (N = 85) fermented dairy food each day they attended school; one child (due to medical reasons) and all children in the other school (N = 98) continued their diets as usual. Children provided two saliva samples at 11:30 on consecutive days at the end of the study. Analyses revealed that the probiotic group had lower cortisol than the placebo or diet-as-usual groups (p = .015); CRP levels were comparable across groups (p = .549). Exploratory analyses suggested that dose and regularity of consumption may impact the biomarkers as well. This study provides the first evidence that a probiotic milk product may lower cortisol in a sample of young, economically-disadvantaged children.


Subject(s)
C-Reactive Protein , Hydrocortisone , Probiotics , Saliva , Biomarkers/metabolism , C-Reactive Protein/metabolism , Child , Child, Preschool , Cote d'Ivoire , Female , Humans , Hydrocortisone/metabolism , Inflammation , Male , Poverty , Probiotics/administration & dosage , Saliva/chemistry , Stress, Psychological , Students
15.
Trends Mol Med ; 26(2): 137-140, 2020 02.
Article in English | MEDLINE | ID: mdl-31862244

ABSTRACT

A main target in microbiome research is the understanding and ability to safely and effectively modulate the microbiome to improve health. Hereto, we discuss the role of vitamins in relation to the gut microbiome and present a rationale for the modulation of gut microbial communities via selected systemic and colon-targeted vitamin administration.


Subject(s)
Gastrointestinal Microbiome/drug effects , Microbiota/drug effects , Vitamins/administration & dosage , Animals , Colon/microbiology , Humans
16.
Front Nutr ; 7: 574792, 2020.
Article in English | MEDLINE | ID: mdl-33363193

ABSTRACT

Introduction: Following a school milk feeding program in Southwest Uganda, we initiated a probiotic yogurt school feeding program in the same region in 2018. In order to investigate the potential health benefits from probiotic yogurt we conducted an observational study, where we compared the effect of the consumption of locally produced probiotic yogurt containing Lactobacillus rhamnosus yoba 2012 to milk in pre-primary schoolchildren from different schools on the occurrence of respiratory tract infections (common cold) and skin infections (e.g., tinea capitis). Method: A comparative interrupted time series over a period of 3 weeks of baseline followed by 9 weeks of 100 ml of probiotic yogurt or milk consumption for 5 days per week. In total 584 children attending five different schools were followed during consumption of probiotic yogurt and 532 children attending five other schools during consumption of milk. Incidences of respiratory tract infection symptoms and skin infection symptoms, changes in anthropometric indicators and absenteeism were recorded. Results: Over the course of the study period the incidence rate for common cold symptoms decreased faster in the yogurt group than in the milk group (p = 0.09) resulting in a final RR of 0.85 (95% CI: 0.5-1.4) at the end of the observational period. The incidence rate of skin infection related symptoms also reduced faster in the yogurt group compared to the milk group (p < 0.0001) resulting in a relative risk factor (RR) of 0.6 (CI: 0.4-0.9) at the end of the observational period. Anthropometric indicators and level of absenteeism did not show significant differences between yogurt and milk. Conclusion: Notwithstanding the observed positive trend and effect of probiotic yogurt on the incidences of common cold and skin infections, respectively, we consider the results of this comparative interrupted time series inconclusive due to differences in the recorded health parameters between the probiotic yogurt and milk control groups at base line, and fluctuations over the course of the intervention period. An improved study design, with more uniform study groups, a longer intervention period and a third control group without yogurt or milk is required to draw definitive conclusions.

17.
Microorganisms ; 8(3)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121365

ABSTRACT

Chronic exposure of children in sub-Saharan Africa to aflatoxins has been associated with low birth weight, stunted growth, immune suppression, and liver function damage. Lactobacillus species have been shown to reduce aflatoxin contamination during the process of food fermentation. Twenty-three Lactobacillus strains were isolated from fecal samples obtained from a cohort of rural Ugandan children at the age of 54 to 60 months, typed by 16S rRNA gene sequencing, and characterized in terms of their ability to bind aflatoxin B1 in vitro. Evidence for chronic exposure of these children to aflatoxin B1 in the study area was obtained by analysis of local foods (maize flour and peanuts), followed by the identification of the breakdown product aflatoxin M1 in their urine samples. Surprisingly, Lactobacillus in the gut microbiota of 140 children from the same cohort at 24 and 36 months showed the highest positive correlation coefficient with stunting among all bacterial genera identified in the stool samples. This correlation was interpreted to be associated with dietary changes from breastfeeding to plant-based solid foods that pose an additional risk for aflatoxin contamination, on one hand, and lead to increased intake of Lactobacillus species on the other.

18.
Nutrients ; 11(2)2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30691002

ABSTRACT

Fermentation of food products can be used for the delivery of probiotic bacteria and means of food detoxification, provided that probiotics are able to grow, and toxins are reduced in raw materials with minimal effects on consumer acceptability. This study evaluated probiotic enrichment and detoxification of kwete, a commonly consumed traditional fermented cereal beverage in Uganda, by the use of starter culture with the probiotic Lactobacillus rhamnosus yoba 2012 and Streptococcus thermophilus C106. Probiotic kwete was produced by fermenting a suspension of ground maize grain at 30 °C for a period of 24 h, leading to a decrease of the pH value to ≤ 4.0 and increase in titratable acidity of at least 0.2% (w/v). Probiotic kwete was acceptable to the consumers with a score of ≥6 on a 9-point hedonic scale. The products were stable over a month's study period with a mean pH of 3.9, titratable acidity of 0.6% (w/v), and Lactobacillus rhamnosus counts >108 cfu g-1. HPLC analysis of aflatoxins of the water-soluble fraction of kwete indicated that fermentation led to an over 1000-fold reduction of aflatoxins B1, B2, G1, and G2 spiked in the raw ingredients. In vitro fluorescence spectroscopy confirmed binding of aflatoxin B1 to Lactobacillus rhamnosus with an efficiency of 83.5%. This study shows that fermentation is a means to enrich with probiotics and reduce widely occurring aflatoxin contamination of maize products that are consumed as staple foods in sub-Saharan Africa.


Subject(s)
Aflatoxins/analysis , Fermented Foods , Food Contamination/prevention & control , Probiotics , Zea mays , Female , Fermentation , Fermented Foods/analysis , Fermented Foods/standards , Food Storage , Humans , Lacticaseibacillus rhamnosus , Male , Uganda
19.
Front Microbiol ; 9: 1501, 2018.
Article in English | MEDLINE | ID: mdl-30042747

ABSTRACT

Perhaps by serendipity, but Lactobacillus rhamnosus has emerged from the 1980s as the most researched probiotic species. The many attributes of the two main probiotic strains of the species, L. rhamnosus GG and GR-1, have made them suitable for applications to developing countries in Africa and beyond. Their use with a Streptococcus thermophilus starter strain C106, in the fermentation of milk, millet, and juices has provided a means to reach over 250,000 consumers of the first probiotic food on the continent. The social and economical implications for this translational research are significant, and especially pertinent for people living in poverty, with malnutrition and exposure to environmental toxins and infectious diseases including HIV and malaria. This example of probiotic applications illustrates the power of microbes in positively impacting the lives of women, men, and children, right across the food value chain.

20.
Front Microbiol ; 9: 1873, 2018.
Article in English | MEDLINE | ID: mdl-30154777

ABSTRACT

The probiotic Lactobacillus rhamnosus GG (LGG) can play a role in establishing a harmless relationship with Helicobacter pylori and reduce gastric pathology in East African populations. H. pylori has the ability to inhabit the surface of the mucous layer of the human stomach and duodenum. In the developing world, an estimated 51% of the population is carrier of H. pylori, while in some Western countries these numbers dropped below 20%, which is probably associated with improved sanitation and smaller family sizes. Colonization by H. pylori can be followed by inflammation of the gastric mucus layer, and is a risk factor in the development of atrophic gastritis, peptic ulcers and gastric cancer. Notwithstanding the higher prevalence of H. pylori carriers in developing countries, no equal overall increase in gastric pathology is found. This has been attributed to a less pro-inflammatory immune response to H. pylori in African compared to Caucasian populations. In addition, a relatively low exposure to other risk factors in certain African populations may play a role, including the use of non-steroidal anti-inflammatory drugs, smoking, and diets without certain protective factors. A novel approach to the reduction of H. pylori associated gastric pathology is found in the administration of the probiotic bacterium Lactobacillus rhamnosus yoba 2012 (LRY), the generic variant of LGG. This gastro-intestinal isolate inhibits H. pylori by competition for substrate and binding sites as well as production of antimicrobial compounds such as lactic acid. In addition, it attenuates the host's H. pylori-induced apoptosis and inflammation responses and stimulates angiogenesis in the gastric and duodenal epithelium. The probiotic LRY is not able to eradicate H. pylori completely, but its co-supplementation in antibiotic eradication therapy has been shown to relieve side effects of this therapy. In Uganda, unlike other African countries, gastric pathology is relatively common, presumably resulting from the lack of dietary protective factors in the traditional diet. Supplementation with LRY through local production of probiotic yogurt, could be a solution to establish a harmless relationship with H. pylori and reduce gastric pathology and subsequent eradication therapy treatment.

SELECTION OF CITATIONS
SEARCH DETAIL