Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Mol Cell ; 82(18): 3484-3498.e11, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36070765

ABSTRACT

ADP-ribosyltransferases (ARTs) were among the first identified bacterial virulence factors. Canonical ART toxins are delivered into host cells where they modify essential proteins, thereby inactivating cellular processes and promoting pathogenesis. Our understanding of ARTs has since expanded beyond protein-targeting toxins to include antibiotic inactivation and DNA damage repair. Here, we report the discovery of RhsP2 as an ART toxin delivered between competing bacteria by a type VI secretion system of Pseudomonas aeruginosa. A structure of RhsP2 reveals that it resembles protein-targeting ARTs such as diphtheria toxin. Remarkably, however, RhsP2 ADP-ribosylates 2'-hydroxyl groups of double-stranded RNA, and thus, its activity is highly promiscuous with identified cellular targets including the tRNA pool and the RNA-processing ribozyme, ribonuclease P. Consequently, cell death arises from the inhibition of translation and disruption of tRNA processing. Overall, our data demonstrate a previously undescribed mechanism of bacterial antagonism and uncover an unprecedented activity catalyzed by ART enzymes.


Subject(s)
RNA, Catalytic , Type VI Secretion Systems , ADP Ribose Transferases/chemistry , Adenosine Diphosphate/metabolism , Anti-Bacterial Agents/metabolism , Bacteria/genetics , Diphtheria Toxin/genetics , Diphtheria Toxin/metabolism , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease P/genetics , Type VI Secretion Systems/metabolism , Virulence Factors/metabolism
2.
Nature ; 578(7796): 582-587, 2020 02.
Article in English | MEDLINE | ID: mdl-32051588

ABSTRACT

Addressing the ongoing antibiotic crisis requires the discovery of compounds with novel mechanisms of action that are capable of treating drug-resistant infections1. Many antibiotics are sourced from specialized metabolites produced by bacteria, particularly those of the Actinomycetes family2. Although actinomycete extracts have traditionally been screened using activity-based platforms, this approach has become unfavourable owing to the frequent rediscovery of known compounds. Genome sequencing of actinomycetes reveals an untapped reservoir of biosynthetic gene clusters, but prioritization is required to predict which gene clusters may yield promising new chemical matter2. Here we make use of the phylogeny of biosynthetic genes along with the lack of known resistance determinants to predict divergent members of the glycopeptide family of antibiotics that are likely to possess new biological activities. Using these predictions, we uncovered two members of a new functional class of glycopeptide antibiotics-the known glycopeptide antibiotic complestatin and a newly discovered compound we call corbomycin-that have a novel mode of action. We show that by binding to peptidoglycan, complestatin and corbomycin block the action of autolysins-essential peptidoglycan hydrolases that are required for remodelling of the cell wall during growth. Corbomycin and complestatin have low levels of resistance development and are effective in reducing bacterial burden in a mouse model of skin MRSA infection.


Subject(s)
Anti-Bacterial Agents , Drug Discovery , Peptides, Cyclic , Peptidoglycan/drug effects , Peptidoglycan/metabolism , Actinobacteria/chemistry , Actinobacteria/genetics , Actinobacteria/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Biosynthetic Pathways/genetics , Cell Wall/metabolism , Chlorophenols/chemistry , Chlorophenols/metabolism , Chlorophenols/pharmacology , Disease Models, Animal , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Female , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , Multigene Family , N-Acetylmuramoyl-L-alanine Amidase/antagonists & inhibitors , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Phylogeny , Skin/microbiology , Staphylococcal Infections/microbiology
3.
Proc Natl Acad Sci U S A ; 120(14): e2213771120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36989297

ABSTRACT

Bacteria produce a variety of nucleotide second messengers to adapt to their surroundings. Although chemically similar, the nucleotides guanosine penta- and tetraphosphate [(p)ppGpp] and adenosine penta- and tetraphosphate [(p)ppApp] have distinct functions in bacteria. (p)ppGpp mediates survival under nutrient-limiting conditions and its intracellular levels are regulated by synthetases and hydrolases belonging to the RelA-SpoT homolog (RSH) family of enzymes. By contrast, (p)ppApp is not known to be involved in nutrient stress responses and is synthesized by RSH-resembling toxins that inhibit the growth of bacterial cells. However, it remains unclear whether there exists a family of hydrolases that specifically act on (p)ppApp to reverse its toxic effects. Here, we present the structure and biochemical characterization of adenosine 3'-pyrophosphohydrolase 1 (Aph1), the founding member of a monofunctional (p)ppApp hydrolase family of enzymes. Our work reveals that Aph1 adopts a histidine-aspartate (HD)-domain fold characteristic of phosphohydrolase metalloenzymes and its activity mitigates the growth inhibitory effects of (p)ppApp-synthesizing toxins. Using an informatic approach, we identify over 2,000 putative (p)ppApp hydrolases that are widely distributed across bacterial phyla and found in diverse genomic contexts, and we demonstrate that 12 representative members hydrolyze ppApp. In addition, our in silico analyses reveal a unique molecular signature that is specific to (p)ppApp hydrolases, and we show that mutation of two residues within this signature broadens the specificity of Aph1 to promiscuously hydrolyze (p)ppGpp in vitro. Overall, our findings indicate that like (p)ppGpp hydrolases, (p)ppApp hydrolases are widespread in bacteria and may play important and underappreciated role(s) in bacterial physiology.


Subject(s)
Bacterial Proteins , Toxins, Biological , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Guanosine Pentaphosphate , Bacteria/genetics , Ligases/genetics , Hydrolases/genetics , Adenosine , Guanosine Tetraphosphate
4.
J Biol Chem ; 297(2): 100918, 2021 08.
Article in English | MEDLINE | ID: mdl-34181945

ABSTRACT

Class B metallo-ß-lactamases (MBLs) are Zn2+-dependent enzymes that catalyze the hydrolysis of ß-lactam antibiotics to confer resistance in bacteria. Several problematic groups of MBLs belong to subclass B1, including the binuclear New Delhi MBL (NDM), Verona integrin-encoded MBL, and imipenemase-type enzymes, which are responsible for widespread antibiotic resistance. Aspergillomarasmine A (AMA) is a natural aminopolycarboxylic acid that functions as an effective inhibitor of class B1 MBLs. The precise mechanism of action of AMA is not thoroughly understood, but it is known to inactivate MBLs by removing one catalytic Zn2+ cofactor. We investigated the kinetics of MBL inactivation in detail and report that AMA is a selective Zn2+ scavenger that indirectly inactivates NDM-1 by encouraging the dissociation of a metal cofactor. To further investigate the mechanism in living bacteria, we used an active site probe and showed that AMA causes the loss of a Zn2+ ion from a low-affinity binding site of NDM-1. Zn2+-depleted NDM-1 is rapidly degraded, contributing to the efficacy of AMA as a ß-lactam potentiator. However, MBLs with higher metal affinity and stability such as NDM-6 and imipenemase-7 exhibit greater tolerance to AMA. These results indicate that the mechanism of AMA is broadly applicable to diverse Zn2+ chelators and highlight that leveraging Zn2+ availability can influence the survival of MBL-producing bacteria when they are exposed to ß-lactam antibiotics.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aspartic Acid/analogs & derivatives , Bacteria/drug effects , Zinc/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/chemistry , Aspartic Acid/pharmacology , Bacteria/enzymology , Chelating Agents/pharmacology , Drug Resistance, Bacterial , Microbial Sensitivity Tests/methods , beta-Lactamases/metabolism
5.
J Biol Chem ; 295(24): 8204-8213, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32350117

ABSTRACT

Many bacteria possess enzymes that modify the essential cell-wall polymer peptidoglycan by O-acetylation. This modification occurs in numerous Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus, a common cause of human infections. O-Acetylation of peptidoglycan protects bacteria from the lytic activity of lysozyme, a mammalian innate immune enzyme, and as such is important for bacterial virulence. The O-acetylating enzyme in Gram-positive bacteria, O-acetyltransferase A (OatA), is a two-domain protein consisting of an N-terminal integral membrane domain and a C-terminal extracytoplasmic domain. Here, we present the X-ray crystal structure at 1.71 Å resolution and the biochemical characterization of the C-terminal domain of S. aureus OatA. The structure revealed that this OatA domain adopts an SGNH-hydrolase fold and possesses a canonical catalytic triad. Site-specific replacement of active-site amino acids revealed the presence of a water-coordinating aspartate residue that limits esterase activity. This residue, although conserved in staphyloccocal OatA and most other homologs, is not present in the previously characterized streptococcal OatA. These results provide insights into the mechanism of acetyl transfer in the SGNH/GDSL hydrolase family and highlight important evolutionary differences between homologous OatA enzymes. Furthermore, this study enhances our understanding of PG O-acetyltransferases, which could guide the development of novel antibacterial drugs to combat infections with multidrug-resistant bacterial pathogens.


Subject(s)
Acetyltransferases/chemistry , Acetyltransferases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Staphylococcus aureus/enzymology , Amino Acid Sequence , Biocatalysis , Catalytic Domain , Conserved Sequence , Crystallography, X-Ray , Esterases/metabolism , Models, Molecular , Structural Homology, Protein , Structure-Activity Relationship
6.
J Biol Chem ; 295(2): 504-516, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31771981

ABSTRACT

Peptidoglycan (PG) is a critical component of the bacterial cell wall and is composed of a repeating ß-1,4-linked disaccharide of N-acetylglucosamine and N-acetylmuramic acid appended with a highly conserved stem peptide. In Gram-negative bacteria, PG is assembled in the cytoplasm and exported into the periplasm where it undergoes considerable maturation, modification, or degradation depending on the growth phase or presence of environmental stressors. These modifications serve important functions in diverse processes, including PG turnover, cell elongation/division, and antibiotic resistance. Conventional methods for analyzing PG composition are complex and time-consuming. We present here a streamlined MS-based method that combines differential analysis with statistical 1D annotation approaches to quantitatively compare PGs produced in planktonic- and biofilm-cultured Pseudomonas aeruginosa We identified a core assembly of PG that is present in high abundance and that does not significantly differ between the two growth states. We also identified an adaptive PG assembly that is present in smaller amounts and fluctuates considerably between growth states in response to physiological changes. Biofilm-derived adaptive PG exhibited significant changes compared with planktonic-derived PG, including amino acid substitutions of the stem peptide and modifications that indicate changes in the activity of amidases, deacetylases, and lytic transglycosylases. The results of this work also provide first evidence of de-N-acetylated muropeptides from P. aeruginosa The method developed here offers a robust and reproducible workflow for accurately determining PG composition in samples that can be used to assess global PG fluctuations in response to changing growth conditions or external stimuli.


Subject(s)
Biofilms , Peptidoglycan/metabolism , Plankton/physiology , Pseudomonas aeruginosa/physiology , Biofilms/growth & development , Cell Wall/chemistry , Cell Wall/metabolism , Glycomics , Humans , Mass Spectrometry , Peptidoglycan/chemistry , Plankton/chemistry , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/chemistry
7.
Article in English | MEDLINE | ID: mdl-31932375

ABSTRACT

The rise of Gram-negative pathogens expressing metallo-ß-lactamases (MBLs) is a growing concern, threatening the efficacy of ß-lactam antibiotics, in particular, the carbapenems. There are no inhibitors of MBLs in current clinical use. Aspergillomarasmine A (AMA) is an MBL inhibitor isolated from Aspergillus versicolor with the ability to rescue meropenem activity in MBL-producing bacteria both in vitro and in vivo Here, we systematically explored the pairing of AMA with six ß-lactam antibiotic partners against 19 MBLs from three subclasses (B1, B2, and B3). Cell-based assays performed with Escherichia coli and Klebsiella pneumoniae showed that bacteria producing NDM-1 and VIM-2 of subclass B1 were the most susceptible to AMA inhibition, whereas bacteria producing CphA2 and AIM-1 of subclasses B2 and B3, respectively, were the least sensitive. Intracellular antibiotic accumulation assays and in vitro enzyme assays demonstrated that the efficacy of AMA/ß-lactam combinations did not correlate with outer membrane permeability or drug efflux. We determined that the optimal ß-lactam partners for AMA are the carbapenem antibiotics and that the efficacy of AMA is linked to the Zn2+ affinity of specific MBLs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Aspartic Acid/analogs & derivatives , Carbapenems/pharmacology , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , beta-Lactamase Inhibitors/pharmacology , Aspartic Acid/pharmacology , Aspergillus/genetics , Cell Membrane Permeability/physiology , Escherichia coli/genetics , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , beta-Lactam Resistance/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism
8.
Nat Chem Biol ; 14(1): 79-85, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29083419

ABSTRACT

O-Acetylation of the secondary cell wall polysaccharides (SCWP) of the Bacillus cereus group of pathogens, which includes Bacillus anthracis, is essential for the proper attachment of surface-layer (S-layer) proteins to their cell walls. Using a variety of pseudosubstrates and a chemically synthesized analog of SCWP, we report here the identification of PatB1 as a SCWP O-acetyltransferase in Bacillus cereus. Additionally, we report the crystal structure of PatB1, which provides detailed insights into the mechanism of this enzyme and defines a novel subfamily of the SGNH family of esterases and lipases. We propose a model for the O-acetylation of SCWP requiring the translocation of acetyl groups from a cytoplasmic source across the plasma membrane by PatA1 and PatA2 for their transfer to SCWP by PatB1.


Subject(s)
Acetyltransferases/chemistry , Acetyltransferases/metabolism , Bacillus cereus/metabolism , Cell Wall/metabolism , Models, Biological , Polysaccharides, Bacterial/metabolism , Acetylation , Acetyltransferases/genetics , Amino Acid Sequence , Bacillus cereus/enzymology , Cell Membrane/metabolism , Cloning, Molecular , Cytoplasm/metabolism , Models, Molecular , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/genetics , Protein Conformation , Protein Engineering , Protein Transport
9.
PLoS Pathog ; 13(8): e1006558, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28827841

ABSTRACT

The serine-rich repeat (SRR) glycoproteins are a family of adhesins found in many Gram-positive bacteria. Expression of the SRR adhesins has been linked to virulence for a variety of infections, including streptococcal endocarditis. The SRR preproteins undergo intracellular glycosylation, followed by export via the accessory Sec (aSec) system. This specialized transporter is comprised of SecA2, SecY2 and three to five accessory Sec proteins (Asps) that are required for export. Although the post-translational modification and transport of the SRR adhesins have been viewed as distinct processes, we found that Asp2 of Streptococcus gordonii also has an important role in modifying the SRR adhesin GspB. Biochemical analysis and mass spectrometry indicate that Asp2 is an acetyltransferase that modifies N-acetylglucosamine (GlcNAc) moieties on the SRR domains of GspB. Targeted mutations of the predicted Asp2 catalytic domain had no effect on transport, but abolished acetylation. Acetylated forms of GspB were only detected when the protein was exported via the aSec system, but not when transport was abolished by secA2 deletion. In addition, GspB variants rerouted to export via the canonical Sec pathway also lacked O-acetylation, demonstrating that this modification is specific to export via the aSec system. Streptococci expressing GspB lacking O-acetylated GlcNAc were significantly reduced in their ability bind to human platelets in vitro, an interaction that has been strongly linked to virulence in the setting of endocarditis. These results demonstrate that Asp2 is a bifunctional protein involved in both the post-translational modification and transport of SRR glycoproteins. In addition, these findings indicate that these processes are coordinated during the biogenesis of SRR glycoproteins, such that the adhesin is optimally modified for binding. This requirement for the coupling of modification and export may explain the co-evolution of the SRR glycoproteins with their specialized glycan modifying and export systems.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Infections , Glycoproteins/metabolism , Membrane Transport Proteins/metabolism , Virulence/physiology , Acetylation , Blood Platelets/metabolism , Humans , Mutagenesis, Site-Directed , Protein Transport , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
10.
PLoS Pathog ; 13(10): e1006667, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29077761

ABSTRACT

The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain. We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.


Subject(s)
Acetyltransferases/metabolism , Gram-Positive Bacteria/metabolism , Peptidoglycan/metabolism , Staphylococcus aureus/drug effects , Virulence Factors/metabolism , Bacterial Proteins/metabolism , Cell Wall/metabolism , Drug Resistance , Humans , Peptidoglycan/pharmacology , Staphylococcus aureus/pathogenicity , Substrate Specificity/immunology , Virulence
11.
Biochemistry ; 57(16): 2394-2401, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29595955

ABSTRACT

Streptococcus pneumoniae among other Gram-positive pathogens produces O-acetylated peptidoglycan using the enzyme OatA. This process occurs through the transfer of an acetyl group from a donor to the hydroxyl group of an acceptor sugar. While it has been established that this process involves the extracellular, catalytic domain of OatA ( SpOatAC), mechanistic insight is still unavailable. This study examined the enzymatic characteristics of SpOatAC-catalyzed reactions through analysis of both pre-steady- and steady-state kinetics. Our findings clearly show that SpOatAC follows a ping-pong bi-bi mechanism of action involving a covalent acetyl-enzyme intermediate. The modified residue was verified to be the catalytic nucleophile, Ser438. The pH dependence of the enzyme kinetics revealed that a single ionizable group is involved, which is consistent with the participation of a His residue. Single-turnover kinetics of esterase activity demonstrated that k2 ≫ k3, revealing that the rate-limiting step for the hydrolytic reaction was the breakdown of the acetyl-enzyme intermediate with a half-life of >1 min. The previous assignment of Asn491 as an oxyanion hole residue was also confirmed as its replacement with Ala resulted in a 50-fold decrease in catalytic efficiency relative to that of wild-type SpOatAC. However, this loss of catalytic efficiency was mostly due to a large increase in KM, suggesting that Asn491 contributes more to substrate binding.


Subject(s)
Bacterial Proteins/chemistry , Cell Wall/chemistry , Peptidoglycan/chemistry , Streptococcus pneumoniae/chemistry , Bacterial Proteins/genetics , Catalysis , Catalytic Domain , Cell Wall/genetics , Kinetics , Peptidoglycan/genetics , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Substrate Specificity
12.
Biochemistry ; 57(13): 1949-1953, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29522326

ABSTRACT

Bacterial surface (S) layers are paracrystalline arrays of protein assembled on the bacterial cell wall that serve as protective barriers and scaffolds for housekeeping enzymes and virulence factors. The attachment of S-layer proteins to the cell walls of the Bacillus cereus sensu lato, which includes the pathogen Bacillus anthracis, occurs through noncovalent interactions between their S-layer homology domains and secondary cell wall polysaccharides. To promote these interactions, it is presumed that the terminal N-acetylmannosamine (ManNAc) residues of the secondary cell wall polysaccharides must be ketal-pyruvylated. For a few specific S-layer proteins, the O-acetylation of the penultimate N-acetylglucosamine (GlcNAc) is also required. Herein, we present the X-ray crystal structure of the SLH domain of the major surface array protein Sap from B. anthracis in complex with 4,6- O-ketal-pyruvyl-ß-ManNAc-(1,4)-ß-GlcNAc-(1,6)-α-GlcN. This structure reveals for the first time that the conserved terminal SCWP unit is the direct ligand for the SLH domain. Furthermore, we identify key binding interactions that account for the requirement of 4,6- O-ketal-pyruvyl-ManNAc while revealing the insignificance of the O-acetylation on the GlcNAc residue for recognition by Sap.


Subject(s)
Acetylglucosamine/chemistry , Bacillus anthracis/chemistry , Cell Wall/chemistry , Hexosamines/chemistry , Membrane Glycoproteins/chemistry , Polysaccharides, Bacterial/chemistry , Acetylglucosamine/metabolism , Bacillus anthracis/metabolism , Cell Wall/metabolism , Crystallography, X-Ray , Hexosamines/metabolism , Membrane Glycoproteins/metabolism , Polysaccharides, Bacterial/metabolism , Protein Domains
13.
J Biol Chem ; 291(43): 22686-22702, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27474744

ABSTRACT

Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target.


Subject(s)
Campylobacter jejuni/metabolism , Campylobacter jejuni/pathogenicity , Cell Wall/metabolism , Peptidoglycan/metabolism , Virulence Factors/metabolism , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Campylobacter jejuni/genetics , Cell Wall/genetics , Peptidoglycan/genetics , Virulence Factors/genetics
15.
Bioorg Chem ; 54: 44-50, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24769153

ABSTRACT

Post-synthetic modification of the bacterial cell wall represents an important strategy for pathogenic bacteria to evade innate immunity and control autolysins. Modifications to the glycan backbone of peptidoglycan are generally restricted to the C-6 hydroxyl and C-3 amino moieties, with the most common being acetylation and deacetylation. In this review we discuss the pathways for O-acetylation, de-O-acetylation and N-deacetylation with an emphasis on the chemical-biological approaches used in their investigation. The current challenges in the field and the prospects of targeting these systems with novel therapeutics are also explored.


Subject(s)
Peptidoglycan/biosynthesis , Peptidoglycan/metabolism , Acetylation , Models, Molecular , Molecular Structure , Peptidoglycan/chemistry
16.
Nat Commun ; 15(1): 4036, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740750

ABSTRACT

Microbial Ni2+ homeostasis underpins the virulence of several clinical pathogens. Ni2+ is an essential cofactor in urease and [NiFe]-hydrogenases involved in colonization and persistence. Many microbes produce metallophores to sequester metals necessary for their metabolism and starve competing neighboring organisms. The fungal metallophore aspergillomarasmine A (AMA) shows narrow specificity for Zn2+, Ni2+, and Co2+. Here, we show that this specificity allows AMA to block the uptake of Ni2+ and attenuate bacterial Ni-dependent enzymes, offering a potential strategy for reducing virulence. Bacterial exposure to AMA perturbs H2 metabolism, ureolysis, struvite crystallization, and biofilm formation and shows efficacy in a Galleria mellonella animal infection model. The inhibition of Ni-dependent enzymes was aided by Zn2+, which complexes with AMA and competes with the native nickelophore for the uptake of Ni2+. Biochemical analyses demonstrated high-affinity binding of AMA-metal complexes to NikA, the periplasmic substrate-binding protein of the Ni2+ uptake system. Structural examination of NikA in complex with Ni-AMA revealed that the coordination geometry of Ni-AMA mimics the native ligand, Ni-(L-His)2, providing a structural basis for binding AMA-metal complexes. Structure-activity relationship studies of AMA identified regions of the molecule that improve NikA affinity and offer potential routes for further developing this compound as an anti-virulence agent.


Subject(s)
Bacterial Proteins , Nickel , Nickel/metabolism , Nickel/chemistry , Animals , Virulence/drug effects , Bacterial Proteins/metabolism , Biofilms/drug effects , Zinc/metabolism , Zinc/chemistry , Moths/microbiology , Urease/metabolism , Urease/antagonists & inhibitors , Biological Transport
17.
Nat Microbiol ; 9(3): 763-775, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336881

ABSTRACT

Many bacterial surface glycans such as the peptidoglycan (PG) cell wall are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting carrier is distributed among competing pathways has remained unclear. Here we describe the isolation of hyperactive variants of Pseudomonas aeruginosa MraY, the enzyme that forms the first lipid-linked PG precursor. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in vitro. The activated MraY variants have substitutions that map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural and molecular dynamics results suggest that this cavity is a binding site for externalized lipid II. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism that prevents the sequestration of lipid carrier in the PG biogenesis pathway.


Subject(s)
Bacteria , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genetics , Feedback , Cell Wall/metabolism , Lipids
18.
Cell Chem Biol ; 31(4): 760-775.e17, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38402621

ABSTRACT

Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.


Subject(s)
Amino Acyl-tRNA Synthetases , Antifungal Agents , Animals , Mice , Antifungal Agents/pharmacology , Amino Acyl-tRNA Synthetases/genetics , Candida albicans , Structure-Activity Relationship
19.
bioRxiv ; 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37577621

ABSTRACT

Many bacterial surface glycans such as the peptidoglycan (PG) cell wall, O-antigens, and capsules are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting lipid carrier is effectively distributed among competing pathways has remained unclear for some time. Here, we describe the isolation and characterization of hyperactive variants of Pseudomonas aeruginosa MraY, the essential and conserved enzyme catalyzing the formation of the first lipid-linked PG precursor called lipid I. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in a purified system. Amino acid substitutions within the activated MraY variants unexpectedly map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural evidence and molecular dynamics simulations suggest that the cavity is a binding site for lipid II molecules that have been transported to the outer leaflet of the membrane. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism to prevent the sequestration of lipid carrier in the PG biogenesis pathway. MraY belongs to the broadly distributed polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase (PNPT) superfamily of enzymes. We therefore propose that similar feedback mechanisms may be widely employed to coordinate precursor supply with demand by polymerases, thereby optimizing the partitioning of lipid carriers between competing glycan biogenesis pathways.

20.
Nat Microbiol ; 7(3): 451-462, 2022 03.
Article in English | MEDLINE | ID: mdl-35246663

ABSTRACT

The caseinolytic protease (ClpP) is part of a highly conserved proteolytic complex whose disruption can lead to antibacterial activity but for which few specific inhibitors have been discovered. Specialized metabolites produced by bacteria have been shaped by evolution for specific functions, making them a potential source of selective ClpP inhibitors. Here, we describe a target-directed genome mining strategy for discovering ClpP-interacting compounds by searching for biosynthetic gene clusters that contain duplicated copies of ClpP as putative antibiotic resistance genes. We identify a widespread family of ClpP-associated clusters that are known to produce pyrrolizidine alkaloids but whose connection to ClpP has never been made. We show that previously characterized molecules do not affect ClpP function but are shunt metabolites derived from the genuine product of these gene clusters, a reactive covalent ClpP inhibitor. Focusing on one such cryptic gene cluster from Streptomyces cattleya, we identify the relevant inhibitor, which we name clipibicyclene, and show that it potently and selectively inactivates ClpP. Finally, we solve the crystal structure of clipibicyclene-modified Escherichia coli ClpP. Clipibicyclene's discovery reveals the authentic function of a family of natural products whose specificity for ClpP and abundance in nature illuminate the role of eco-evolutionary forces during bacterial competition.


Subject(s)
Endopeptidase Clp , Protease Inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Endopeptidase Clp/chemistry , Endopeptidase Clp/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genes, Bacterial/genetics , Multigene Family , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL