Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Mol Cell ; 69(4): 581-593.e7, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29452638

ABSTRACT

The bioenergetics and molecular determinants of the metabolic response to mitochondrial dysfunction are incompletely understood, in part due to a lack of appropriate isogenic cellular models of primary mitochondrial defects. Here, we capitalize on a recently developed cell model with defined levels of m.8993T>G mutation heteroplasmy, mTUNE, to investigate the metabolic underpinnings of mitochondrial dysfunction. We found that impaired utilization of reduced nicotinamide adenine dinucleotide (NADH) by the mitochondrial respiratory chain leads to cytosolic reductive carboxylation of glutamine as a new mechanism for cytosol-confined NADH recycling supported by malate dehydrogenase 1 (MDH1). We also observed that increased glycolysis in cells with mitochondrial dysfunction is associated with increased cell migration in an MDH1-dependent fashion. Our results describe a novel link between glycolysis and mitochondrial dysfunction mediated by reductive carboxylation of glutamine.


Subject(s)
Cytosol/metabolism , Glutamine/metabolism , Malate Dehydrogenase/metabolism , Mitochondria/pathology , NAD/metabolism , Osteosarcoma/pathology , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Cell Movement , Citric Acid Cycle , DNA, Mitochondrial/genetics , Energy Metabolism , Female , Glucose/metabolism , Glycolysis , Humans , Mitochondria/metabolism , Osteosarcoma/genetics , Osteosarcoma/metabolism , Oxidation-Reduction , Tumor Cells, Cultured
2.
Am J Respir Cell Mol Biol ; 68(1): 103-115, 2023 01.
Article in English | MEDLINE | ID: mdl-36264759

ABSTRACT

Mitochondrial fission and a metabolic switch from oxidative phosphorylation to glycolysis are key features of vascular pathology in pulmonary arterial hypertension (PAH) and are associated with exuberant endothelial proliferation and apoptosis. The underlying mechanisms are poorly understood. We describe the contribution of two intracellular chloride channel proteins, CLIC1 and CLIC4, both highly expressed in PAH and cancer, to mitochondrial dysfunction and energy metabolism in PAH endothelium. Pathological overexpression of CLIC proteins induces mitochondrial fragmentation, inhibits mitochondrial cristae formation, and induces metabolic shift toward glycolysis in human pulmonary artery endothelial cells, consistent with changes observed in patient-derived cells. Interactions of CLIC proteins with structural components of the inner mitochondrial membrane offer mechanistic insights. Endothelial CLIC4 excision and mitofusin 2 supplementation have protective effects in human PAH cells and preclinical PAH. This study is the first to demonstrate the key role of endothelial intracellular chloride channels in the regulation of mitochondrial structure, biogenesis, and metabolic reprogramming in expression of the PAH phenotype.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/metabolism , Hypertension, Pulmonary/pathology , Endothelial Cells/metabolism , Familial Primary Pulmonary Hypertension/metabolism , Pulmonary Artery/pathology , Endothelium/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism
3.
Hum Mol Genet ; 29(14): 2420-2434, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32592479

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia and the most prevalent neurodegenerative disease. Genome-wide association studies have linked PICALM to AD risk. PICALM has been implicated in Aß42 production and turnover, but whether it plays a direct role in modulating Aß42 toxicity remains unclear. We found that increased expression of the Drosophila PICALM orthologue lap could rescue Aß42 toxicity in an adult-onset model of AD, without affecting Aß42 level. Imbalances in the glutamatergic system, leading to excessive, toxic stimulation, have been associated with AD. We found that Aß42 caused the accumulation of presynaptic vesicular glutamate transporter (VGlut) and increased spontaneous glutamate release. Increased lap expression reversed these phenotypes back to control levels, suggesting that lap may modulate glutamatergic transmission. We also found that lap modulated the localization of amphiphysin (Amph), the homologue of another AD risk factor BIN1, and that Amph itself modulated postsynaptic glutamate receptor (GluRII) localization. We propose a model where PICALM modulates glutamatergic transmission, together with BIN1, to ameliorate synaptic dysfunction and disease progression.


Subject(s)
Alzheimer Disease/genetics , CCAAT-Enhancer-Binding Protein-beta/genetics , Drosophila Proteins/genetics , Receptors, Ionotropic Glutamate/genetics , Transcription Factors/genetics , Vesicular Glutamate Transport Proteins/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Behavior, Animal , Drosophila melanogaster/genetics , Excitatory Amino Acid Agents , Humans , Monomeric Clathrin Assembly Proteins/genetics , Nerve Tissue Proteins/genetics , Peptide Fragments/genetics , Synaptic Transmission/genetics
4.
EMBO Rep ; 21(9): e48260, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32783398

ABSTRACT

IκB kinase ε (IKKε) is a key molecule at the crossroads of inflammation and cancer. Known to regulate cytokine secretion via NFκB and IRF3, the kinase is also a breast cancer oncogene, overexpressed in a variety of tumours. However, to what extent IKKε remodels cellular metabolism is currently unknown. Here, we used metabolic tracer analysis to show that IKKε orchestrates a complex metabolic reprogramming that affects mitochondrial metabolism and consequently serine biosynthesis independently of its canonical signalling role. We found that IKKε upregulates the serine biosynthesis pathway (SBP) indirectly, by limiting glucose-derived pyruvate utilisation in the TCA cycle, inhibiting oxidative phosphorylation. Inhibition of mitochondrial function induces activating transcription factor 4 (ATF4), which in turn drives upregulation of the expression of SBP genes. Importantly, pharmacological reversal of the IKKε-induced metabolic phenotype reduces proliferation of breast cancer cells. Finally, we show that in a highly proliferative set of ER negative, basal breast tumours, IKKε and PSAT1 are both overexpressed, corroborating the link between IKKε and the SBP in the clinical context.


Subject(s)
Breast Neoplasms , I-kappa B Kinase , Mitochondria , Serine/biosynthesis , Breast Neoplasms/genetics , Female , Humans , I-kappa B Kinase/genetics , Mitochondria/genetics , Mitochondria/metabolism , Oncogenes/genetics
5.
Hum Mol Genet ; 27(13): 2367-2382, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29701772

ABSTRACT

Core myopathies are a group of childhood muscle disorders caused by mutations of the ryanodine receptor (RyR1), the Ca2+ release channel of the sarcoplasmic reticulum. These mutations have previously been associated with elevated inositol trisphosphate receptor (IP3R) levels in skeletal muscle myotubes derived from patients. However, the functional relevance and the relationship of IP3R mediated Ca2+ signalling with the pathophysiology of the disease is unclear. It has also been suggested that mitochondrial dysfunction underlies the development of central and diffuse multi-mini-cores, devoid of mitochondrial activity, which is a key pathological consequence of RyR1 mutations. Here we used muscle biopsies of central core and multi-minicore disease patients with RyR1 mutations, as well as cellular and in vivo mouse models of the disease to characterize global cellular and mitochondrial Ca2+ signalling, mitochondrial function and gene expression associated with the disease. We show that RyR1 mutations that lead to the depletion of the channel are associated with increased IP3-mediated nuclear and mitochondrial Ca2+ signals and increased mitochondrial activity. Moreover, western blot and microarray analysis indicated enhanced mitochondrial biogenesis at the transcriptional and protein levels and was reflected in increased mitochondrial DNA content. The phenotype was recapitulated by RYR1 silencing in mouse cellular myotube models. Altogether, these data indicate that remodelling of skeletal muscle Ca2+ signalling following loss of functional RyR1 mediates bioenergetic adaptation.


Subject(s)
Inositol 1,4,5-Trisphosphate Receptors/genetics , Mitochondria/genetics , Muscular Diseases/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Animals , Calcium Signaling/genetics , Gene Expression Regulation , Humans , Inositol/metabolism , Mice , Mitochondria/metabolism , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Mutation
6.
Hum Mol Genet ; 26(20): 4028-4041, 2017 10 15.
Article in English | MEDLINE | ID: mdl-29016861

ABSTRACT

DJ-1 is an oxidation sensitive protein encoded by the PARK7 gene. Mutations in PARK7 are a rare cause of familial recessive Parkinson's disease (PD), but growing evidence suggests involvement of DJ-1 in idiopathic PD. The key clinical features of PD, rigidity and bradykinesia, result from neurotransmitter imbalance, particularly the catecholamines dopamine (DA) and noradrenaline. We report in human brain and human SH-SY5Y neuroblastoma cell lines that DJ-1 predominantly forms high molecular weight (HMW) complexes that included RNA metabolism proteins hnRNPA1 and PABP1 and the glycolysis enzyme GAPDH. In cell culture models the oxidation status of DJ-1 determined the specific complex composition. RNA sequencing indicated that oxidative changes to DJ-1 were concomitant with changes in mRNA transcripts mainly involved in catecholamine metabolism. Importantly, loss of DJ-1 function upon knock down (KD) or expression of the PD associated form L166P resulted in the absence of HMW DJ-1 complexes. In the KD model, the absence of DJ-1 complexes was accompanied by impairment in catecholamine homeostasis, with significant increases in intracellular DA and noraderenaline levels. These changes in catecholamines could be rescued by re-expression of DJ-1. This catecholamine imbalance may contribute to the particular vulnerability of dopaminergic and noradrenergic neurons to neurodegeneration in PARK7-related PD. Notably, oxidised DJ-1 was significantly decreased in idiopathic PD brain, suggesting altered complex function may also play a role in the more common sporadic form of the disease.


Subject(s)
Catecholamines/metabolism , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Brain/metabolism , Cell Line, Tumor , Dopamine/metabolism , Homeostasis , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Parkinson Disease/genetics , Parkinson Disease/metabolism
7.
Nucleic Acids Res ; 45(15): 8712-8730, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28911113

ABSTRACT

The potential to understand fundamental biological processes from gene expression data has grown in parallel with the recent explosion of the size of data collections. However, to exploit this potential, novel analytical methods are required, capable of discovering large co-regulated gene networks. We found current methods limited in the size of correlated gene sets they could discover within biologically heterogeneous data collections, hampering the identification of multi-gene controlled fundamental cellular processes such as energy metabolism, organelle biogenesis and stress responses. Here we describe a novel biclustering algorithm called Massively Correlated Biclustering (MCbiclust) that selects samples and genes from large datasets with maximal correlated gene expression, allowing regulation of complex networks to be examined. The method has been evaluated using synthetic data and applied to large bacterial and cancer cell datasets. We show that the large biclusters discovered, so far elusive to identification by existing techniques, are biologically relevant and thus MCbiclust has great potential in the analysis of transcriptomics data to identify large-scale unknown effects hidden within the data. The identified massive biclusters can be used to develop improved transcriptomics based diagnosis tools for diseases caused by altered gene expression, or used for further network analysis to understand genotype-phenotype correlations.


Subject(s)
Algorithms , Datasets as Topic , Gene Expression Profiling , Gene Regulatory Networks/physiology , High-Throughput Nucleotide Sequencing , Neoplasms/genetics , Cluster Analysis , Databases, Genetic , Gene Expression Profiling/methods , Gene Expression Profiling/statistics & numerical data , Gene Expression Regulation , Genes, Regulator , Genetic Association Studies/methods , Genetic Association Studies/statistics & numerical data , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Phenotype
8.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 1009-1017, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28132899

ABSTRACT

Loss of function mutations of the protein MICU1, a regulator of mitochondrial Ca2+ uptake, cause a neuronal and muscular disorder characterised by impaired cognition, muscle weakness and an extrapyramidal motor disorder. We have shown previously that MICU1 mutations cause increased resting mitochondrial Ca2+ concentration ([Ca2+]m). We now explore the functional consequences of MICU1 mutations in patient derived fibroblasts in order to clarify the underlying pathophysiology of this disorder. We propose that deregulation of mitochondrial Ca2+ uptake through loss of MICU1 raises resting [Ca2+]m, initiating a futile Ca2+ cycle, whereby continuous mitochondrial Ca2+ influx is balanced by Ca2+ efflux through the sodium calcium exchanger (NLCXm). Thus, inhibition of NCLXm by CGP-37157 caused rapid mitochondrial Ca2+ accumulation in patient but not control cells. We suggest that increased NCLX activity will increase sodium/proton exchange, potentially undermining oxidative phosphorylation, although this is balanced by dephosphorylation and activation of pyruvate dehydrogenase (PDH) in response to the increased [Ca2+]m. Consistent with this model, while ATP content in patient derived or control fibroblasts was not different, ATP increased significantly in response to CGP-37157 in the patient but not the control cells. In addition, EMRE expression levels were altered in MICU1 patient cells compared to the controls. The MICU1 mutations were associated with mitochondrial fragmentation which we show is related to altered DRP1 phosphorylation. Thus, MICU1 serves as a signal-noise discriminator in mitochondrial calcium signalling, limiting the energetic costs of mitochondrial Ca2+ signalling which may undermine oxidative phosphorylation, especially in tissues with highly dynamic energetic demands. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Subject(s)
Calcium Signaling , Calcium-Binding Proteins/genetics , Cation Transport Proteins/genetics , Energy Metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mutation , Cells, Cultured , Humans
9.
Bioorg Med Chem ; 26(8): 1686-1704, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29477813

ABSTRACT

Designing novel inverse agonists of NR RORγt still represents a challenge for the pharmaceutical community to develop therapeutics for treating immune diseases. By exploring the structure of NRs natural ligands, the representative arotenoid ligands and RORs specific ligands share some chemical homologies which can be exploited to design a novel molecular structure characterized by a polycyclic core bearing a polar head and a hydrophobic tail. Compound MG 2778 (8), a cyclopenta[a]phenantrene derivative, was identified as lead compound which was chemically modified at position 2 in order to obtain a small library for preliminary SARs. Cell viability and estrogenic activity of compounds 7, 8, 19a, 30, 31 and 32 were evaluated to attest selectivity. The selected 7, 8, 19a and 31 compounds were assayed in a Gal4 UAS-Luc co-transfection system in order to determine their ability to modulate RORγt activity in a cellular environment. They were evaluated as inverse agonists taken ursolic acid as reference compound. The potency of compounds was lower than that of ursolic acid, but their efficacy was similar. Compound 19a was the most active, significantly reducing RORγt activity at low micromolar concentrations.


Subject(s)
Autoimmune Diseases/drug therapy , Drug Inverse Agonism , Receptors, Retinoic Acid/antagonists & inhibitors , Steroids/pharmacology , Autoimmune Diseases/pathology , Cell Cycle/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Hep G2 Cells , Humans , Molecular Docking Simulation , Molecular Structure , Receptors, Retinoic Acid/metabolism , Steroids/chemical synthesis , Steroids/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
10.
Biochem J ; 474(14): 2489-2508, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28341808

ABSTRACT

Coenzyme A (CoA) is an obligatory cofactor in all branches of life. CoA and its derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. Abnormal biosynthesis and homeostasis of CoA and its derivatives have been associated with various human pathologies, including cancer, diabetes and neurodegeneration. Using an anti-CoA monoclonal antibody and mass spectrometry, we identified a wide range of cellular proteins which are modified by covalent attachment of CoA to cysteine thiols (CoAlation). We show that protein CoAlation is a reversible post-translational modification that is induced in mammalian cells and tissues by oxidising agents and metabolic stress. Many key cellular enzymes were found to be CoAlated in vitro and in vivo in ways that modified their activities. Our study reveals that protein CoAlation is a widespread post-translational modification which may play an important role in redox regulation under physiological and pathophysiological conditions.


Subject(s)
Coenzyme A/metabolism , Proteins/metabolism , Animals , Cysteine/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Kidney/metabolism , Liver/metabolism , Male , Myocardium/metabolism , Organ Specificity , Oxidation-Reduction , Oxidative Stress , Protein Processing, Post-Translational , Rabbits , Rats, Sprague-Dawley , Sulfhydryl Compounds/metabolism
11.
J Biol Chem ; 291(9): 4356-73, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26679998

ABSTRACT

The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use.


Subject(s)
Cerebral Cortex/drug effects , Cyclophilins/antagonists & inhibitors , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Multiple Sclerosis/prevention & control , Neurons/drug effects , Neuroprotective Agents/therapeutic use , Quinolinium Compounds/therapeutic use , Amino Acid Substitution , Animals , Cell Proliferation/drug effects , Cells, Cultured , Cerebral Cortex/immunology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Peptidyl-Prolyl Isomerase F , Cyclophilins/genetics , Cyclophilins/metabolism , Cyclosporins/adverse effects , Cyclosporins/chemical synthesis , Cyclosporins/pharmacology , Cyclosporins/therapeutic use , Hep G2 Cells , Humans , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred Strains , Mice, Knockout , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Mutation , Neurons/immunology , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/adverse effects , Neuroprotective Agents/pharmacology , Peptides, Cyclic/adverse effects , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Quinolinium Compounds/adverse effects , Quinolinium Compounds/chemical synthesis , Quinolinium Compounds/pharmacology , Random Allocation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/pathology
12.
Mol Cell ; 32(5): 641-51, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-19061639

ABSTRACT

Among the new players at the endoplasmic reticulum (ER)-mitochondria interface regulating interorganelle calcium signaling, those specifically involved during ER stress are not known at present. We report here that the truncated variant of the sarcoendoplasmic reticulum Ca(2+)-ATPase 1 (S1T) amplifies ER stress through the PERK-eIF2alpha-ATF4-CHOP pathway. S1T, which is localized in the ER-mitochondria microdomains, determines ER Ca(2+) depletion due to increased Ca(2+) leak, an increased number of ER-mitochondria contact sites, and inhibition of mitochondria movements. This leads to increased Ca(2+) transfer to mitochondria in both resting and stimulated conditions and activation of the mitochondrial apoptotic pathway. Interestingly, S1T knockdown was shown to prevent ER stress, mitochondrial Ca(2+) overload, and subsequent apoptosis. Thus, by bridging ER stress to apoptosis through increased ER-mitochondria Ca(2+) transfer, S1T acts as an essential determinant of cellular fate.


Subject(s)
Apoptosis , Calcium/metabolism , Endoplasmic Reticulum/enzymology , Endoplasmic Reticulum/pathology , Mitochondria/enzymology , Mutation/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Activating Transcription Factor 4/metabolism , Apoptosis/drug effects , Base Sequence , Brefeldin A/pharmacology , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/ultrastructure , Enzyme Induction/drug effects , Eukaryotic Initiation Factor-2/metabolism , HeLa Cells , Homeostasis/drug effects , Humans , Isoenzymes/metabolism , Mitochondria/drug effects , Mitochondria/ultrastructure , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/enzymology , Molecular Sequence Data , Response Elements/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/biosynthesis , eIF-2 Kinase/metabolism
14.
Circ Res ; 112(2): 236-45, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23118311

ABSTRACT

RATIONALE: The ability of a cell to independently regulate nuclear and cytosolic Ca(2+) signaling is currently attributed to the differential distribution of inositol 1,4,5-trisphosphate receptor channel isoforms in the nucleoplasmic versus the endoplasmic reticulum. In cardiac myocytes, T-tubules confer the necessary compartmentation of Ca(2+) signals, which allows sarcomere contraction in response to plasma membrane depolarization, but whether there is a similar structure tunneling extracellular stimulation to control nuclear Ca(2+) signals locally has not been explored. OBJECTIVE: To study the role of perinuclear sarcolemma in selective nuclear Ca(2+) signaling. METHODS AND RESULTS: We report here that insulin-like growth factor 1 triggers a fast and independent nuclear Ca(2+) signal in neonatal rat cardiac myocytes, human embryonic cardiac myocytes, and adult rat cardiac myocytes. This fast and localized response is achieved by activation of insulin-like growth factor 1 receptor signaling complexes present in perinuclear invaginations of the plasma membrane. The perinuclear insulin-like growth factor 1 receptor pool connects extracellular stimulation to local activation of nuclear Ca(2+) signaling and transcriptional upregulation through the perinuclear hydrolysis of phosphatidylinositol 4,5-biphosphate inositol 1,4,5-trisphosphate production, nuclear Ca(2+) release, and activation of the transcription factor myocyte-enhancing factor 2C. Genetically engineered Ca(2+) buffers--parvalbumin--with cytosolic or nuclear localization demonstrated that the nuclear Ca(2+) handling system is physically and functionally segregated from the cytosolic Ca(2+) signaling machinery. CONCLUSIONS: These data reveal the existence of an inositol 1,4,5-trisphosphate-dependent nuclear Ca(2+) toolkit located in direct apposition to the cell surface, which allows the local control of rapid and independent activation of nuclear Ca(2+) signaling in response to an extracellular ligand.


Subject(s)
Calcium Signaling/physiology , Cell Nucleus/physiology , Membrane Microdomains/metabolism , Myocytes, Cardiac/metabolism , Receptor, IGF Type 1/physiology , Sarcolemma/physiology , Adult , Animals , Animals, Newborn , Cell Nucleus/metabolism , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/physiology , Rats , Rats, Sprague-Dawley , Sarcolemma/metabolism , Signal Transduction/physiology
15.
Brain ; 137(Pt 7): 1894-906, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24898351

ABSTRACT

Spinal and bulbar muscular atrophy is an X-linked degenerative motor neuron disease caused by an abnormal expansion in the polyglutamine encoding CAG repeat of the androgen receptor gene. There is evidence implicating endoplasmic reticulum stress in the development and progression of neurodegenerative disease, including polyglutamine disorders such as Huntington's disease and in motor neuron disease, where cellular stress disrupts functioning of the endoplasmic reticulum, leading to induction of the unfolded protein response. We examined whether endoplasmic reticulum stress is also involved in the pathogenesis of spinal and bulbar muscular atrophy. Spinal and bulbar muscular atrophy mice that carry 100 pathogenic polyglutamine repeats in the androgen receptor, and develop a late-onset neuromuscular phenotype with motor neuron degeneration, were studied. We observed a disturbance in endoplasmic reticulum-associated calcium homeostasis in cultured embryonic motor neurons from spinal and bulbar muscular atrophy mice, which was accompanied by increased endoplasmic reticulum stress. Furthermore, pharmacological inhibition of endoplasmic reticulum stress reduced the endoplasmic reticulum-associated cell death pathway. Examination of spinal cord motor neurons of pathogenic mice at different disease stages revealed elevated expression of markers for endoplasmic reticulum stress, confirming an increase in this stress response in vivo. Importantly, the most significant increase was detected presymptomatically, suggesting that endoplasmic reticulum stress may play an early and possibly causal role in disease pathogenesis. Our results therefore indicate that the endoplasmic reticulum stress pathway could potentially be a therapeutic target for spinal and bulbar muscular atrophy and related polyglutamine diseases.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Muscular Disorders, Atrophic/pathology , Muscular Disorders, Atrophic/physiopathology , Age Factors , Androgens/pharmacology , Androgens/therapeutic use , Animals , Anterior Horn Cells/physiopathology , Apoptosis/drug effects , Apoptosis/genetics , Cells, Cultured , Dihydrotestosterone/pharmacology , Dihydrotestosterone/therapeutic use , Disease Models, Animal , Embryo, Mammalian , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscular Disorders, Atrophic/drug therapy , Muscular Disorders, Atrophic/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Spinal Cord/pathology , Thapsigargin/therapeutic use
16.
J Cell Physiol ; 229(3): 353-61, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24002908

ABSTRACT

Mitochondria provide the primary source of ATP in the oocyte and early embryo and mitochondrial dysfunction and deficit of mitochondria-derived ATP has been linked to suboptimal developmental competence. We have undertaken a study of ATP in the maturing mouse oocyte using a novel recombinant FRET based probe, AT1.03. We show that AT1.03 can be successfully used to monitor cytosolic ATP levels in single live oocytes over extended time periods. We find that ATP levels undergo dynamic changes associated with specific maturational events and that oocytes display altered rates of ATP consumption at different stages of maturation. Cumulus enclosed oocytes have a higher ATP level during maturation than denuded oocytes and this can be abolished by inhibition of gap junctional communication between the oocyte and cumulus cells. Our work uses a new approach to shed light on regulation of ATP levels and ATP consumption during oocyte maturation.


Subject(s)
Adenosine Triphosphate/metabolism , Cell Communication , Cumulus Cells/metabolism , Energy Metabolism , In Vitro Oocyte Maturation Techniques , Oocytes/metabolism , Animals , Biosensing Techniques , Cells, Cultured , Coculture Techniques , Female , Fertilization in Vitro , Fluorescence Resonance Energy Transfer , Gap Junctions/metabolism , Mice , Time Factors , Time-Lapse Imaging
17.
Cancer Res ; 84(17): 2911-2925, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-38924467

ABSTRACT

Adaptive metabolic switches are proposed to underlie conversions between cellular states during normal development as well as in cancer evolution. Metabolic adaptations represent important therapeutic targets in tumors, highlighting the need to characterize the full spectrum, characteristics, and regulation of the metabolic switches. To investigate the hypothesis that metabolic switches associated with specific metabolic states can be recognized by locating large alternating gene expression patterns, we developed a method to identify interspersed gene sets by massive correlated biclustering and to predict their metabolic wiring. Testing the method on breast cancer transcriptome datasets revealed a series of gene sets with switch-like behavior that could be used to predict mitochondrial content, metabolic activity, and central carbon flux in tumors. The predictions were experimentally validated by bioenergetic profiling and metabolic flux analysis of 13C-labeled substrates. The metabolic switch positions also distinguished between cellular states, correlating with tumor pathology, prognosis, and chemosensitivity. The method is applicable to any large and heterogeneous transcriptome dataset to discover metabolic and associated pathophysiological states. Significance: A method for identifying the transcriptomic signatures of metabolic switches underlying divergent routes of cellular transformation stratifies breast cancer into metabolic subtypes, predicting their biology, architecture, and clinical outcome.


Subject(s)
Breast Neoplasms , Mitochondria , Multigene Family , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Mitochondria/metabolism , Mitochondria/genetics , Transcriptome , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Prognosis , Energy Metabolism/genetics
18.
Sci Adv ; 10(28): eado3501, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38985859

ABSTRACT

Macrocyclic drugs can address an increasing range of molecular targets but enabling central nervous system (CNS) access to these drugs has been viewed as an intractable problem. We designed and synthesized a series of quinolinium-modified cyclosporine derivatives targeted to the mitochondrial cyclophilin D protein. Modification of the cation to enable greater delocalization was confirmed by x-ray crystallography of the cations. Critically, greater delocalization improved brain concentrations. Assessment of the compounds in preclinical assays and for pharmacokinetics identified a molecule JP1-138 with at least 20 times the brain levels of a non-delocalized compound or those reported for cyclosporine. Levels were maintained over 24 hours together with low hERG potential. The paradigm outlined here could have widespread utility in the treatment of CNS diseases.


Subject(s)
Quinolinium Compounds , Animals , Humans , Quinolinium Compounds/chemistry , Quinolinium Compounds/pharmacokinetics , Cyclosporine/chemistry , Cyclosporine/pharmacokinetics , Central Nervous System/metabolism , Central Nervous System/drug effects , Crystallography, X-Ray , Peptides/chemistry , Peptides/pharmacokinetics , Brain/metabolism , Brain/drug effects , Mice
19.
J Cell Sci ; 124(Pt 13): 2143-52, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21628424

ABSTRACT

Increasing evidence indicates that endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR), but that beyond a certain degree of ER damage, this response triggers apoptotic pathways. The general mechanisms of the UPR and its apoptotic pathways are well characterized. However, the metabolic events that occur during the adaptive phase of ER stress, before the cell death response, remain unknown. Here, we show that, during the onset of ER stress, the reticular and mitochondrial networks are redistributed towards the perinuclear area and their points of connection are increased in a microtubule-dependent fashion. A localized increase in mitochondrial transmembrane potential is observed only in redistributed mitochondria, whereas mitochondria that remain in other subcellular zones display no significant changes. Spatial re-organization of these organelles correlates with an increase in ATP levels, oxygen consumption, reductive power and increased mitochondrial Ca²âº uptake. Accordingly, uncoupling of the organelles or blocking Ca²âº transfer impaired the metabolic response, rendering cells more vulnerable to ER stress. Overall, these data indicate that ER stress induces an early increase in mitochondrial metabolism that depends crucially upon organelle coupling and Ca²âº transfer, which, by enhancing cellular bioenergetics, establishes the metabolic basis for the adaptation to this response.


Subject(s)
Endoplasmic Reticulum/metabolism , Energy Metabolism , Mitochondria/metabolism , Stress, Physiological , Anti-Bacterial Agents/pharmacology , Apoptosis/physiology , Calcium/metabolism , Cell Respiration , Enzyme Inhibitors/pharmacology , HeLa Cells , Histamine Agonists/pharmacology , Humans , Membrane Potential, Mitochondrial , Oxygen Consumption/drug effects , Phosphatidylinositol Phosphates/metabolism , Signal Transduction/physiology
20.
Biochim Biophys Acta ; 1803(8): 931-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20434493

ABSTRACT

Single-stranded DNA binding protein (SSB) plays important roles in DNA replication, recombination and repair through binding to single-stranded DNA. The mammalian mitochondrial SSB (mtSSB) is a bacterial type SSB. In vitro, mtSSB was shown to stimulate the activity of the mitochondrial replicative DNA helicase and polymerase, but its in vivo function has not been investigated in detail. Here we studied the role of mtSSB in the maintenance of mitochondrial DNA (mtDNA) in cultured human cells. RNA interference of mtSSB expression in HeLa cells resulted in rapid reduction of the protein and a gradual decline of mtDNA copy number. The rate of mtDNA synthesis showed a moderate decrease upon mtSSB knockdown in HeLa cells. These results confirmed the requirement of mtSSB for mtDNA replication. Many molecules of mammalian mtDNA hold a short third strand, so-called 7S DNA, whose regulation is poorly understood. In contrast to the gradual decrease of mtDNA copy number, 7S DNA was severely reduced upon mtSSB knockdown in HeLa cells. Further, 7S DNA synthesis was significantly affected by mtSSB knockdown in an oseteosarcoma cell line. These data together suggest that mtSSB plays an important role in the maintenance of 7S DNA alongside its role in mtDNA replication. In addition, live-cell staining of mtDNA did not imply alteration in the organisation of mitochondrial nucleoid protein-mtDNA complexes upon mtSSB knockdown in HeLa cells. This result suggests that the presence of 7S DNA is not crucial for the organisation of mitochondrial nucleoids.


Subject(s)
DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Mitochondria , DNA/genetics , DNA Replication , DNA, Mitochondrial/genetics , DNA-Binding Proteins/genetics , Gene Dosage , HeLa Cells , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/ultrastructure , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL