Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Rev Sci Instrum ; 90(6): 063106, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31255015

ABSTRACT

The design and performance of a high-resolution transmission-type X-ray spectrometer for use in the 15-26 keV energy range at synchrotron light sources is reported. Monte Carlo X-ray-tracing simulations were performed to optimize the performance of the transmission-type spectrometer, based on the DuMond geometry, for use at the Super X-ray absorption beamline of the Swiss Light Source at the Paul Scherrer Institute. This spectrometer provides an instrumental energy resolution of 3.5 eV for X-ray emission lines around 16 keV and 12.5 eV for emission lines at 26 keV, which is comparable to the natural linewidths of the K and L X-ray transitions in the covered energy range. First experimental data are presented and compared with results of the Monte Carlo X-ray simulations.

2.
Rev Sci Instrum ; 78(9): 093102, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17902942

ABSTRACT

High-resolution x-ray measurements were performed with a von Hamos-type bent crystal spectrometer using for the detection of the diffracted photons either a back-illuminated charge-coupled device (CCD) camera or a front-illuminated one. For each CCD the main x-ray emission lines (e.g., Kalpha, Kbeta, Lalpha, and Lbeta) of a variety of elements were measured in order to probe the performances of the two detectors between 1 and 18 keV. From the observed x-ray lines the linearity of the energy response, the noise level, the energy resolution, and the quantum efficiency ratio of the two CCDs were determined.

3.
Rev Sci Instrum ; 84(9): 093104, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089813

ABSTRACT

We report on a high-resolution transmission-type curved crystal spectrometer based on the modified DuMond slit geometry. The spectrometer was developed at the University of Fribourg for the study of photoinduced X-ray spectra. K and L X-ray transitions with energies above about 10 keV can be measured with an instrumental resolution comparable to their natural linewidths. Construction details and operational characteristics of the spectrometer are presented. The variation of the energy resolution as a function of the focal distance and diffraction order is discussed. The high sensitivity of the spectrometer is demonstrated via the 2s-1s dipole-forbidden X-ray transition of Gd which could be observed despite its extremely low intensity. The precision of the instrument is illustrated by comparing the sum of the energies of the Au K-L2 and L2-M3 cascading transitions with the energy of the crossover K-M3 transition as well as by considering the energy differences of the Gd Kα1 X-ray line measured at five different diffraction orders. Finally, to demonstrate the versatility of the spectrometer, it is shown that the latter can also be used for in-house extended X-ray absorption fine structure measurements.

4.
Rev Sci Instrum ; 83(10): 103105, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126749

ABSTRACT

We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.

5.
Phys Rev Lett ; 102(7): 073006, 2009 Feb 20.
Article in English | MEDLINE | ID: mdl-19257666

ABSTRACT

We report on the photon energy dependence of the K-shell double photoionization (DPI) of Mg, Al, and Si. The DPI cross sections were derived from high-resolution measurements of x-ray spectra following the radiative decay of the K-shell double vacancy states. Our data evince the relative importance of the final-state electron-electron interaction to the DPI. By comparing the double-to-single K-shell photoionization cross-section ratios for neutral atoms with convergent close-coupling calculations for He-like ions, the effect of outer shell electrons on the K-shell DPI process is assessed. Universal scaling of the DPI cross sections with the effective nuclear charge for neutral atoms is revealed.

6.
Phys Rev Lett ; 97(7): 073001, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-17026224

ABSTRACT

We report on the first high-resolution measurements of the K x-ray resonant Raman scattering (RRS) in Si. The measured x-ray RRS spectra, interpreted using the Kramers-Heisenberg approach, revealed spectral features corresponding to electronic excitations to the conduction and valence bands in silicon. The total cross sections for the x-ray RRS at the 1s absorption edge and the 1s-3p excitation were derived. The Kramers-Heisenberg formalism was found to reproduce quite well the x-ray RRS spectra, which is of prime importance for applications of the total-reflection x-ray fluorescence technique.

SELECTION OF CITATIONS
SEARCH DETAIL