Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nature ; 618(7964): 358-364, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225987

ABSTRACT

The ability to switch between different lifestyles allows bacterial pathogens to thrive in diverse ecological niches1,2. However, a molecular understanding of their lifestyle changes within the human host is lacking. Here, by directly examining bacterial gene expression in human-derived samples, we discover a gene that orchestrates the transition between chronic and acute infection in the opportunistic pathogen Pseudomonas aeruginosa. The expression level of this gene, here named sicX, is the highest of the P. aeruginosa genes expressed in human chronic wound and cystic fibrosis infections, but it is expressed at extremely low levels during standard laboratory growth. We show that sicX encodes a small RNA that is strongly induced by low-oxygen conditions and post-transcriptionally regulates anaerobic ubiquinone biosynthesis. Deletion of sicX causes P. aeruginosa to switch from a chronic to an acute lifestyle in multiple mammalian models of infection. Notably, sicX is also a biomarker for this chronic-to-acute transition, as it is the most downregulated gene when a chronic infection is dispersed to cause acute septicaemia. This work solves a decades-old question regarding the molecular basis underlying the chronic-to-acute switch in P. aeruginosa and suggests oxygen as a primary environmental driver of acute lethality.


Subject(s)
Acute Disease , Chronic Disease , Genes, Bacterial , Oxygen , Pseudomonas Infections , Pseudomonas aeruginosa , RNA, Bacterial , Animals , Humans , Oxygen/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Pseudomonas Infections/complications , Pseudomonas Infections/microbiology , Pseudomonas Infections/pathology , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Cystic Fibrosis/microbiology , Wounds and Injuries/microbiology , Ubiquinone/biosynthesis , Anaerobiosis , Genes, Bacterial/genetics , Sepsis/complications , Sepsis/microbiology
2.
Genes Dev ; 34(23-24): 1697-1712, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33184222

ABSTRACT

Deciphering the mechanisms that regulate the sensitivity of pathogen recognition receptors is imperative to understanding infection and inflammation. Here we demonstrate that the RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) acts on both host and virus-derived 5'-triphosphate RNAs rendering them less active in inducing a RIG-I-mediated immune response. Reducing DUSP11 levels alters host triphosphate RNA packaged in extracellular vesicles and induces enhanced RIG-I activation in cells exposed to extracellular vesicles. Virus infection of cells lacking DUSP11 results in a higher proportion of triphosphorylated viral transcripts and attenuated virus replication, which is rescued by reducing RIG-I expression. Consistent with the activity of DUSP11 in the cellular RIG-I response, mice lacking DUSP11 display lower viral loads, greater sensitivity to triphosphorylated RNA, and a signature of enhanced interferon activity in select tissues. Our results reveal the importance of controlling 5'-triphosphate RNA levels to prevent aberrant RIG-I signaling and demonstrate DUSP11 as a key effector of this mechanism.


Subject(s)
DEAD Box Protein 58/immunology , Dual-Specificity Phosphatases/immunology , Dual-Specificity Phosphatases/metabolism , RNA/immunology , Virus Diseases/immunology , Animals , Cell Line , HEK293 Cells , Host-Pathogen Interactions , Humans , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferons/metabolism , Liposomes/immunology , Mice , Mice, Inbred C57BL , Polyphosphates , RNA Viruses/physiology , RNA, Viral/metabolism , Virus Replication/genetics
3.
bioRxiv ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39211142

ABSTRACT

Proper recognition of viral pathogens is an essential part of the innate immune response. A common viral replicative intermediate and chemical signal that cells use to identify pathogens is the presence of a triphosphorylated 5' end (5'ppp) RNA, which activates the cytosolic RNA sensor RIG-I and initiates downstream antiviral signaling. While 5'pppRNA generated by viral RNA-dependent RNA polymerases (RdRps) can be a potent activator of the immune response, endogenous RNA polymerase III (RNAPIII) transcripts can retain the 5'pppRNA generated during transcription and induce a RIG-I-mediated immune response. We have previously shown that host RNA triphosphatase dual-specificity phosphatase 11 (DUSP11) can act on both host and viral RNAs, altering their levels and reducing their ability to induce RIG-I activation. Our previous work explored how artificially altered DUSP11 can impact immune activation, prompting further exploration into natural contexts of altered DUSP11. Here, we have identified viral DUSP11 homologs (vDUSP11s) present in some avipoxviruses. Consistent with the known functions of endogenous DUSP11, we have shown that expression of vDUSP11s: 1) reduces levels of endogenous RNAPIII transcripts, 2) reduces a cell's sensitivity to 5'pppRNA-mediated immune activation, and 3) restores virus infection defects seen in the absence of DUSP11. Our results identify a virus-relevant context where DUSP11 activity has been co-opted to alter RNA metabolism and influence the outcome of infection.

SELECTION OF CITATIONS
SEARCH DETAIL